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In this thesis, novel optical hydrogen (H2) sensors based on manganese 
dioxide (MnO2), zinc oxide (ZnO) and molybdenum trioxide (MoO3) 
nanostructures coated on tapered multimode fiber (MMF) via chemical bath 
deposition (CBD) were developed and investigated. The use of H2 as a clean 
fuel in various application requires practical and robust sensors as to 
minimize the risk of explosions associated with its volatile properties. 
Semiconducting metal oxides (SMO) has been widely used for decades in H2 
sensing purpose due to its simplicity in fabrication, low cost and high 
sensitivity. Nanostructures SMO thin films as sensing layer has been 
reported to enhance the sensitivity of the sensors due to its high surface 
area to increase the gas molecules-sensing layer interaction. Typical SMO 
gas sensors are electrical based in which conductivity changes as it reacts to 
H2 gas. However, it has certain limitations such as easily affected by 
electromagnetic interference (EMI) thus compromise the signal response and 
small sparks could ignite massive explosion if the H2 concentration leaks is 
more than 4% in the environment. On the other hand, optical sensor which 
has yet well explored, offers advantages in term of size, light weight, 
resistant to EMI and resilient in high temperature environment. By integrating 
the optical transducer with SMO material, it can be employed as a hydrogen 
gas sensor. There are various methods of producing SMO material such as 
chemical and physical vapor deposition, RF sputtering, electrochemical 
deposition and thermal evaporation. These techniques require complicated 
setup with high operating temperature along with carrier gas during the 
process and need conductive substrate to perform the procedure. These 
techniques were also difficult to be implemented on optical fiber. 
Alternatively, chemical bath deposition method provides simple and easy 
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setup, low operating temperature, low cost and environmental friendly. 
Therefore the author opted this method to fabricate H2 sensor using tapered 
optical fiber coated with selected SMO incorporated with palladium (Pd) as a 
catalyst to enhance the optical responses. 
 
 
In this study, the fabricated sensor is comprised of tapered multimode silica 
fiber (MMF) as the transducing platform. The tapering process is essential as 
to enhance the sensitivity to the environment through the interaction of 
evanescent field on the tapered surface area. The tapered region is then 
coated with sensing layer which is also important factors that influence the 
performance of the sensor. For this work, the author focused on a few kinds 
of SMO material well-known for their electrochromic properties which are 
manganese dioxide (MnO2), zinc oxide (ZnO) and molybdenum trioxide 
(MoO3), combined with Pd as the catalytic layer. The SMOs were grown via 
chemical bath technique and in-situ deposited onto the tapered optical fiber. 
The morphology of MnO2, ZnO and MoO3 synthesized and deposited on 
optical fiber were found to be nanograins, nanoflowers and nanogranules 
which were well distributed over the cylindrical shaped of the tapered optical 
fiber. The absorbance response of these sensors was characterized in terms 
of response and recovery times, sensitivity, repeatability and selectivity. It 
was discovered that the optimum thickness where the sensors of MnO2, ZnO 
and MoO3 exhibited maximum absorbance response are 300 nm, 280 nm 
and 250 nm respectively. It was revealed that the annealed sensor 
demonstrated higher sensitivity compared to as-prepared sensor. It was 
discovered that annealed Pd/MoO3 coated on tapered optical fiber sensor 
exhibited highest absorbance increase of 3.80 when exposed to 1% H2 at 
low operating temperature of 150oC as compared to other metal oxides 
nanostructures. The response and recovery times recorded were 1.2 min 
and 3.0 min. The developed MnO2, ZnO and MoO3 nanostructures coated on 
tapered optical fiber sensor for H2 using CBD technique are the first of its 
kind according to the author’s knowledge. 
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PENDERIA HIDROGEN MENGGUNAKAN GENTIAN OPTIK TIRUS 
DISALUT DENGAN OKSIDA LOGAM BERSTRUKTUR NANO MELALUI 

TEKNIK PEMENDAPAN MANDIAN KIMIA 

Oleh 

NOR AKMAR BINTI MOHD YAHYA 

Julai 2018 

Pengerusi :   Mohd Hanif bin Yaacob, PhD 
Fakulti :   Kejuruteraan 

Dalam tesis ini, penderia hidrogen optik baru (H2) yang berasaskan kepada 
nanostructures mangan dioksida (MnO2), zink oksida (ZnO) dan molibdenum 
trioksida (MoO3) yang disalut ke atas gentian optik multimodal tirus (MMF) 
melalui pemendapan mandi kimia (CBD) . Penggunaan H2 sebagai bahan 
bakar bersih dalam pelbagai aplikasi memerlukan pengesan praktikal dan 
tahan lama untuk meminimumkan risiko letupan yang berkaitan dengan sifat 
hidrogen yang tidak menentu. Semikonduktor logam oksida (SMO) telah 
digunakan secara meluas selama beberapa dekad dalam tujuan sensing H2 
kerana mudah dalam fabrikasi, berkos rendah dan mempunyai kepekaan 
yang tinggi. SMO filem-filem nipis berstruktur nano yang digunakan sebagai 
lapisan penderia telah banyak dilaporkan mengenai peningkatan kepekaan 
mengesan disebabkan oleh permukaan kawasan yang tinggi untuk 
meningkatkan interaksi lapisan penderia-molekul gas. Penderia gas SMO 
yang sering digunapakai adalah jenis elektrik yang berasaskan perubahan 
konduktiviti apabila ia bertindak balas terhadap gas H2. Walau 
bagaimanapun, ia mempunyai batasan tertentu seperti mudah terjejas oleh 
gangguan elektromagnetik (EMI) dengan itu menjejaskan tindak balas 
isyarat dan percikan api kecil boleh menyalakan letupan besar jika 
kebocoran kepekatan H2melebihi daripada 4% dalam persekitaran. Di sisi 
lain, penderia optik yang masih belum diterokai dengan baik, menawarkan 
kelebihan dari segi saiz, ringan, tahan terhadap EMI dan tahan lama dalam 
persekitaran suhu tinggi. Dengan mengintegrasikan transduser optik dengan 
bahan SMO, ia boleh digunakan sebagai penderia gas hidrogen. Terdapat 
pelbagai kaedah untuk menghasilkan bahan SMO seperti pemendapan wap 
kimia dan fizikal, semburan gelombang radio, pemendapan elektrokimia dan 
penyejatan haba. Teknik ini memerlukan persediaan rumit dengan suhu 
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operasi yang tinggi bersama-sama dengan gas pembawa semasa proses 
dan memerlukan substrat konduktif untuk melaksanakan prosedur. Teknik-
teknik ini juga sukar untuk dilaksanakan pada gentian optik. Secara 
alternatif, kaedah pemendapan mandi kimia menyediakan persediaan 
mudah, suhu operasi yang rendah, kos rendah dan mesra alam sekitar. Oleh 
itu, pengarang memilih kaedah ini untuk mengesan H2 menggunakan 
gentian optik tirus yang disalut dengan SMO terpilih yang digabungkan 
dengan palladium (Pd) sebagai pemangkin untuk meningkatkan tindak balas 
optik. 
 
 
Dalam kajian ini, penderia yang direka terdiri daripada gentian kaca 
multimodal (MMF) sebagai asas transduser. Proses penirusan adalah 
penting untuk meningkatkan kepekaan terhadap alam sekitar melalui 
interaksi gelombang evanesen di kawasan permukaan tirus. Rantau tirus 
kemudian dilapisi dengan lapisan penderia yang juga merupakan faktor 
penting yang mempengaruhi prestasi penderia tersebut. Untuk karya ini, 
pengarang memberi tumpuan kepada beberapa jenis bahan SMO yang 
terkenal dengan sifat elektrokromiknya iaitu mangan dioksida (MnO2), zink 
oksida (ZnO) dan molibdenum trioksida (MoO3), digabungkan dengan Pd 
sebagai lapisan pemangkin. SMOs ditumbuh melalui teknik mandi kimia 
secara in-situ dan didepositkan atas gentian optik tirus. Morfologi MnO2, ZnO 
dan MoO3 yang disintesis dan didepositkan pada gentian optik didapati 
berbentuk nanograins, nanoflowers dan nanogranules yang menyelaputi 
dengan baik dan sekata di atas gentian optik tirus berbentuk silinder. 
Respon penyerapan penderia ini dicirikan dari segi masa tindak balas dan 
pemulihan, kepekaan, pengulangan dan selektiviti. Telah ditemui bahawa 
ketebalan optimum di mana sensor MnO2, ZnO dan MoO3 menunjukkan 
tindak balas penyerapan maksimum adalah 300 nm, 280 nm dan 250 nm 
masing-masing. Telah didedahkan bahawa penderia yang anneal 
menunjukkan kepekaan yang lebih tinggi berbanding penderia yang tidak di 
anneal. Telah didapati bahawa Pd/MoO3 yang disalut pada penderia gentian 
optik tirus menunjukkan peningkatan penyerapan tertinggi sebanyak 3.80 
apabila terdedah kepada 1% H2 pada suhu operasi yang rendah iaitu 150oC 
berbanding dengan struktur nano oksida yang lain. Masa tindak balas dan 
pemulihan yang direkodkan adalah 1.2 min dan 3.0 min. MnO2, ZnO dan 
MoO3 berstruktur nano yang bersalut pada penderia gentian optik tirus untuk 
H2 menggunakan teknik CBD adalah yang pertama seumpamanya menurut 
pengetahuan pengarang. 
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       CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Hydrogen (H2) is a colourless, odourless, nontoxic, highly volatile and 
inflammable. The use of H2 as a clean source of energy in various 
applications such as automobiles, aircraft, fuel cells, chemical industries and 
food processing has drawn much attention to the safety and health concerns 
due to its volatile properties [1]. The gas is highly flammable and burnable in 
air at a very wide range of 4% to 75% by volume [2]. The leaking of H2 with 
high concentration mixing with oxygen can cause explosion which is a threat 
to environment that includes the lives of human being. The explosive 
reactions can be triggered by heat, spark or even sunlight. The H2 auto-
ignition temperature (spontaneous ignition in air) is reported to be at 500 ºC 
[3]. In order to avoid such devastated state, research and investigation on 
developing suitable H2 gas sensors prior to its purpose and application has 
been carried out over decades.  

There are four main types of hydrogen sensors which are chemiresistor, 
surface acousticwave, microelectronic and optical based sensors. The most 
common sensors widely used are electrical sensors 
(chemiresistor/microelectronic) due to its low cost and high sensitivity 
towards gases. Even so, this type of sensor is susceptible by 
electromagnetic interference (EMI) thus compromising the signal response. 
On the other hand, optical sensors using optical fiber offers other valuable 
characteristic such as their small size, light weight, immune to 
electromagnetic interference (EMI), non-inductive with low attenuation and 
resilient in ruggedness with high temperature environment [4]. By 
manipulating the core or cladding of the optical fiber, the sensing response 
can be monitored through absorbance, reflectance or transmission.  

W. Jin et al. [5] has reviewed on the recent development for gas detection 
using micro/nano-engineered optical fibers such as tapered optical fibers, 
fiber-tip micro-cavities, hollow-cores fibers, and suspended-core fibers. They 
also discussed on the detection schemes which are direct absorption 
(evanescent wave) and photoacoustic spectroscopy that can be applied 
depending on the preferred sensing method. The gas sensing optical fiber 
based using absorbance measurement is resulted from evanescent wave 
that changes to its surrounding. The light propagating in the fiber core 
produces evanescent field which radiates at the boundary of the core into the 
cladding of the optical fiber. By modifying the fiber cladding and coating it 
with a gas sensitive layer, the evanescent field changes when the layer 
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interacts with the gas molecules. Thus, the light in the fiber core alters its 
properties upon exposure to different gas concentrations [6]. 

One of the ways to modify the fiber cladding is to taper the optical fiber using 
the heat and pull technique. As of now, the research on tapered optical fiber 
has drawn much attention thanks to its advantages on strong evanescent 
wave and simplicity of production. There are various papers reported on 
tapered optical fiber as a sensor including strain, humidity, temperature, 
refractive index, chemical (liquid/gas) and biological sensors [7]–[14]. This 
has portrayed that tapered optical fiber has great potential to be developed in 
sensors application. 

There are two main approaches to detect chemical substance using fiber 
optic. One is by measuring the intrinsic optical properties of the 
target/analyte (eg. refractive index) and another is by monitoring optical 
properties change of the fixed indicator such as sensing layer coated on the 
fiber optic [15]. The later approach usually incorporates with sensing layer 
that is sensitive to react with target/analyte. There are many type of sensing 
layers that are sensitive towards hydrogen gas. Organic (polymer) and 
inorganic materials (semiconductor metal oxides) and composite materials 
have been extensively studied on its electronic, chemical and optical 
properties. Semiconductor metal oxides (SMO) are popular to exhibit fast 
response, high sensitivity, long term stability, low cost and simplicity in 
fabrication [16]. Materials like ZnO, NiO, SnO2, CuO, MoO3, TiO2, WO3, and 
Fe2O3 are recognized to exhibit strong gas response with conductivity 
change [17].  

Various techniques have been studied to synthesis SMO with nanostructures 
which offers high surface areas to promote more gas molecules-sensing 
layer interaction. These techniques include electrochemical deposition, sol-
gel method, thermal plasma, hydrothermal, chemical bath deposition, RF 
sputter, chemical/physical vapor deposition and flame spray pyrolysis [2]. 
With development of nanostructures SMO with easy fabrication and 
deposition methods, it is appealing to develop a sensitive and reliable 
hydrogen sensor which is able to detect leakage instantly. By combining the 
advantages of optical fiber sensors with sensitive nanostructures sensing 
layer for hydrogen gas sensing application, it is an interesting research 
direction to be explored. 

1.2 Problem Statement 

Current H2 sensors widely used is electrical based sensors. As mentioned 
previously, these type of sensors have major drawbacks which are 
vulnerable towards EMI and small sparks could ignite massive explosion if 
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the H2 concentration leakage is more than 4% in the environment. This could 
be a threat to the human lives. Meanwhile, optical fiber sensor offers 
features that can overcome disadvantages of electrical sensor. By 
integrating this optical fiber with nanostructures metal oxides, H2 sensors can 
be developed. It is important to detect H2 concentration lower of its explosive 
threshold limit with fast response and high sensitivity. 

Apart from that, the common nanomaterial deposition for optical fiber is 
based on physical deposition techniques for instance sputtering, dip-coating 
and drop casting methods. Sputtering technique could provide uniform 
coating but not quite suitable for cylindrical shape of optical fiber that could 
yield different thickness at certain area. Same goes with dip-coating and 
drop casting methods with easy techniques but hardly produce controlled 
thickness and the sensing layer attachment on optical fiber is poor. On the 
contrary, chemical bath deposition (CBD) method could offer better solution 
for sensing layer coating problem. This technique exhibits homogenous and 
uniform coating towards cylindrical shape of optical fiber as well as controlled 
thickness. Furthermore, the sensing layer coating is chemically bonded 
which makes the adherent strong. This technique is also simple and easy to 
perform. To coat SMO on optical fiber using CBD technique is still not 
establish. Therefore, different SMO are required to produce high viability for 
optical fiber coating. 

1.3 Objectives 

This thesis focuses on the development of tapered optical fiber sensors 
coated with metal oxide nanostructures for H2 sensing application via 
chemical bath deposition. The objectives of this research are as follows: 

 To design and develop hydrogen gas sensors based on metal oxides 
nanostructures coated on tapered optical fiber via chemical bath 
deposition method. 

 To micro-characterize the synthesized metal oxides nanostructures. 
 To evaluate the optical fiber sensor performance (sensitivity, response 

& recovery time, repeatability, and selectivity) based on absorbance 
measurement. 

 To discuss the sensing mechanism of gas molecules-sensing layer 
interaction of tapered optical fiber sensor. 
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In order to achieve these goals, the following research questions are outlined 
accordingly: 

 What are the semiconductor metal oxides that are sensitive and
change its optical properties when interact with H2 gas?

 How these materials can be synthesized and coated onto tapered
optical fiber?

 Which optical measurement can be used to investigate the response
of the developed sensors toward H2 gas?

 How different are the sensing performance with different waist
diameter of tapered optical fiber?

 How different are the sensing performance of semiconductor metal
oxides with different thicknesses and morphologies?

With these research questions, the investigation focused on a few type of 
semiconductor metal oxides (SMO) which are known for their sensing 
properties towards H2 gas. In addition to that, nanostructured SMO has the 
ability to produce outstanding gasochromic properties as suggested in 
literature review. Based on the above reference, the author has developed 
optical fiber sensors based on manganese dioxide (MnO2), zinc oxide (ZnO) 
and molybdenum trioxide (MoO3) nanostructures incorporate with nobel 
metal catalyst of palladium (Pd). The nanostructures of these SMO were 
synthesized and deposited via chemical bath depositon (CBD) technique 
onto tapered optical fiber which was then coated with very thin layer of Pd 
(5nm). To the best of the author’s knowledge, none of these SMO 
synthesized via CBD coated on tapered multimode optical fiber for H2 
detection have been reported or published. The optical responses were 
analysed in term of their gas sensing performance and micro-
characterization that has helped the author to understand more on the gas 
interaction mechanism in optical sensors. The description of the research 
project is illustrated in Figure 1.1. 
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Figure 1.1 : Research design of the project 

1.4 Scope of Work and Limitation 

In this research project, the author focuses on the synthesis of selected SMO 
via chemical bath deposition technique onto tapered optical fiber. The 
dimension profile of waist length is fixed to 10 mm and the up/down taper is 
2 mm. This profile is well-establised and adequate to provide sensitivity 
suitable for gas sensing and easy to handle [18]. The deposition parameters 
are varied to study on the thicknesses and morphologies of the sensing 
layer. The as-prepared and anneal sensors were prepared to test on their H2 
sensing performance. The investigation was further discussed on the effect 
of with/without Pd catalyst towards sensing response. The optimum 
operating temperature for H2 sensing was also tested so the largest 
response can be obtained.  Sensitivity and repeatability of the fabricated 
sensors were determined as well as selectivity towards other gases was also 
measured. Throughout this project, a very thin layer of palladium is DC 
sputtered on top of the sensing layer. Although the research work focuses on 
chemical deposition method of SMO that offers better coating and adherent, 
DC sputtering is used for Pd due to its function is solely as a catalyst and 
only complementing the actual sensing layer.   

1.5 Thesis Organisation 

This thesis consists of 6 chapters. Chapter 1 basically touches on the 
overview of the research work, problem statements, objective and thesis 
outline. The background of previous works and literature reviews related to 
the project were discussed and presented in Chapter 2. Methods of 
developing and fabricating the sensors including how tapered optical fiber 
was produced as well as SMO synthesization and deposition techniques via 
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chemical bath were clarified in Chapter 3. Description on equipment used for 
micro-characterization measurement plus gas sensing setup and 
measurement were reviewed in Chapter 4. Chapter 5 mainly discusses on 
the results of each of the sensing layer of SMO sensors fabricated in terms 
of its micro-characterization and sensing response towards H2 gas. Finally, 
Chapter 6 concludes all the work done and summarises some future 
research suggestion. 
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