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Computational fluid dynamics (CFD) simulations are becoming a reliable tool in under-
standing disease progression, investigating blood flow patterns and evaluating medical de-
vice performance such as mechanical heart valves (MHV). Previous studies indicated that
the non-physiological flow pattern (i.e. recirculation, stagnation, and vortex) might cause
a trapped platelet and be responsible for the formation of blood clots in MHV. Accurate
simulation of this flow requires a high order accuracy numerical scheme together with
a scale resolving turbulence model such as large eddy simulation (LES). This requires
the use of uniform orthogonal grids for the descretisation process, which is not able to
handle complex branching arterial domains that contain MHV, where the generation are
usually boundary-fitted (BF) grid with non-orthogonality and distortions. Therefore, non-
boundary fitted (NBF) Cartesian grid method is an alternative solution. The objective of
this study is to develop a new NBF method based on the volume of fluid (VOF), containing
the colour function, namely NBF-VOF Cartesian grid method. A single set of governing
equation is used for both solid and fluids identified by unity colour function and zero
colour function respectively. The solid was treated as a fluid with very high viscosity to
theoretically reduce its deformability, and subsequently satisfy a no-slip condition at the
boundary. In the first attempt, we found that in prior, the treatment was not satisfied. To
suppress the fluid velocities in the solid, we introduced the artificial term derived from
the colour function into an algebraic system of momentum equations, which had a sig-
nificant impact on the originality of this study. The developed solver, NBF-VOF, is then
thoroughly validated using a variety of numerical and experimental results available in the
literature which is Hagen-Poiseuille flow, lid-driven cavity, flow over a cylinder, 90o tube
flow, and pulsatile flow through the real anatomic aorta. Opensource CFD software was
used as our simulation platform. Although the second order method degenerates the spa-
tial accuracy of convergence rate as function of the grid size from 2 to 1.5, an agreement
was found for all cases qualitative and quantitatively. The grid uncertainty obtained was
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less than 5%, which was within the acceptable range. The computational time was lower
when the viscosity of solid was higher. However, higher solid viscosity gives lagging in
the result for transient cases. Despite this, using higher time step, until the maximum
Courant number of 4.0, can speed up the simulation time and preserved the stability. Fi-
nally, another breakthrough in this study was the application of the solver to simulate
pulsatile blood flow of MHV placed in an axisymmetric and real patient anatomic aorta
with the sinus, which reveals complex blood flow patterns, shear stress loading, and his-
tory of particles age in the local domain, that consequently can identified the potential of
blood clotting.
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Fakulti : Kejuruteraan

Pengkomputeran dinamik bendalir (CFD) telah menjadi alat yang boleh dipercayai dalam
memahami perkembangan penyakit, menyiasat corak aliran darah dan menilai prestasi
peranti perubatan seperti injap jantung mekanik (MHV). Kajian terdahulu menunjukkan
bahawa corak aliran bukan fisiologi, menyebabkan platelet terperangkap, bertanggung-
jawab ke atas pembentukan darah beku pada MHV. Ketepatan simulasi aliran ini memer-
lukan darjah ketepatan yang tinggi dengan skala yang dapat menyelesaikan masalah per-
golakan seperti simulasi eddy besar (LES). Ini memerlukan penggunaan grid ortogonal
seragam, yang tidak dapat dikendalikan oleh bentuk arteri yang komplek yang mengan-
dungi MHV, di mana grid biasanya digunakan adalah kaedah grid terikat (BF) yang tidak
ortogonal dan terherot. Oleh itu, kaedah grid tidak terikat (NBF) adalah penyelesaian al-
ternatif. Objektif kajian ini adalah untuk membangunkan kaedah NBF baru berdasarkan
jumlah cecair (VOF) yang mengandungi warna berfungsi diberi nama NBF-VOF. Satu
persamaan digunakan untuk mengenali kedua-dua pepejal dan bendalir adalah melalui
warna fungsi uniti dan kosong. Pepejal dianggap sebagai bendalir dengan kelikatan
yang sangat tinggi yang secara teorinya mengurangkan perubahan bentuk, dan memenuhi
syarat tidak-slip di sempadan. Pada percubaan awal, kami dapati bahawa, kaedah itu tidak
memuaskan. Untuk terus menyekat halaju bendalir dalam pepejal, kami memperkenalkan
istilah buatan yang diterbitkan dari warna fungsi ke dalam sistem algebra persamaan mo-
mentum. Seterusnya, kaedah NBF-VOF disahkan menggunakan pelbagai hasil kaedah
berangka dan eksperimen yang terdapat dalam literatur melalui perisian sumber terbuka
OpenFoam. Aliran Hegen-poissuelle, rongga yang didorong, aliran ke atas silinder, 90o

aliran tiub, dan aliran denyutan melalui aorta anatomik sebenar. Kesamaan yang sangat
baik telah dihasilkan untuk semua kes. Walaupun menggunakan ketepatan kaedah darjah
kedua, ketepatan kadar konvergen kaedah NBF-VOF berpndukan saiz grid merosot dari-
pada 2.0 kepada 1.5, perbandingan yang hampir dengan ujikaji diperoleh dari segi kulitatif
dan kuantitatif. The grid uncertainty obtained was less than 5%, which was within the ac-
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ceptable range. Ketidakpastian grid diperoleh < 5%, berada pada anggaran yang boleh
diterima. Masa pengiraan adalah rendah apabila menggunakan kelikatan pepejal yang
tinggi. Tetapi kelikatan pepejal yang tinggi memberikan hasil yang ketinggalan untuk kes
bergantung masa. Nisbah kelikatan antara pepejal dan cecair pada magnitud 100, mem-
berikan keadaan optimum untuk kestabilan dan masa pengaliran. WAlaubagaimanapun,
menggunakan nombor Courant setinggi Co = 4, dapat mempercepatkan masa simulasi.
Akhirnya, aplikasi kaedah ini telah dijalankan untuk mensimulasikan aliran darah MHV
yang diletakkan dalam aorta simetri dan anatomik, yang mendedahkan corak aliran darah
yang kompleks, beban tekanan ricih, dan tempoh masa sejarah zarah di domain setem-
pat,yang seterusnya dapat mengenal pasti potensi pembekuan darah.

iv
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Imagine that a person has accidentally cut his finger. After some time, the blood will
begin to clot to stop the finger from bleeding. That is the good function ofblood clotting.
However, if a blood clot develops in a patients heart valve due to some abnormal flow,
there is a possibility that the clot may break off and go to the brain (causing a stroke) or
to other organs in the body. In certain cases, the blood could clot at the valve itself and
cause it to malfunction. To avoid this, blood thinners (usually warfarin) must be taken at
the right dosage everyday with periodic blood tests and dietary restrictions (Cannegieter
et al., 1994; Shoeb and Fang, 2013). This routine may change the lifestyle of the patient.
A second complication is bleeding due to the use of blood thinners. A patient taking a
blood thinner may encounter a problem when he is injured or requires surgery, whereby
during the surgery, the use of the blood thinner has to be controlled to prevent excessive
bleeding during the operation. This puts the patient at risk. It has been reported that the
risk of both bleeding and blood clots is 1-2% each year. Therefore, for a patient who
receives a artificial heart valve at the age of 40 years and lives to the age of 80 years,
there is a 40-80% chance of both bleeding and blood clotting occurring (Shoeb and Fang,
2013). Moreover, the use of blood thinners will also cause birth mortality among young
women who wish to have children (Vitale et al., 1999; Neumann et al., 2016).

Scientific knowledge of the heart dates back as far as the beginnings of recorded history.
Among the first people to investigate and write about the anatomy of the heart was the
Greek physician, Erasistratus (around 250 BC), and Claudius Galenus (around 129-201)
who was a Greek-born Roman physician. Later, Leonardo da Vinci (1452-1519) also
made some advances in the understanding of blood flow (Gharib et al., 2002). Briefly, da
Vinci believed that the valve was closed during a forward flow by the vortex that forms
behind the valve leaflets through his drawing in Figure 1.1. Nevertheless, after nearly 500
years later, finding an accurate quantitative description of the cardiac function still poses
a challenge. Only just recently, in 2014, da Vincis vortex formation and re-circulation
were reported in-vivo (Bissell et al., 2014) and in-vitro (Querzoli et al., 2014) studies and
direct comparison have been made.
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Figure 1.1: Similar pattern between postulated (da Vinci’s) and measured blood
vortices in the aortic root
(Source: Bissell et al., 2014)

Cardiovascular disease (CVD) remains the leading global cause of death, accounting for
more than 17.3 million deaths per year in 2013 worldwide, according to the American
Heart Association’s 2017 Heart Disease and Stroke Statistics Update (Benjamin et al.,
2017). Its represents 31 % of all global deaths, a number that is expected to grow to
more than 23.6 million by 2030. More than 75% of CVD deaths occur in low-income and
middle-income countries, and 80% of all CVD deaths are due to heart attacks and strokes.

One of the CVD is associated with the malfunction of heart valves such as stenosis (heart
valve that does not open properly) and regurgitation (backflow of blood as the valves are
closing). Figure 1.2 shows the flow direction of blood through the valves. Unrepaired
valves necessitate surgery so that the artificial heart valves replacement can be done. It is
estimated that more than 300,000 replacement heart valves are implanted annually world-
wide (Jahandardoost et al., 2016). Since the first implantation of artificial heart valves in
1952, significant risks, such as the need for anticoagulation drugs and re-surgery opera-
tion, are still present. Current artificial heart valves suffer from several problems such as
blood cell damage (haemolysis) and formation of the blood clot (thrombosis) (Yoganathan
et al., 2004; Borazjani, 2015; Bark et al., 2016). This complication requires patients to
undergo anticoagulant therapy, which may lead to life-threatening haemorrhage or stroke
if poorly managed.
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Figure 1.2: Direction of blood through the valves

1.2 Computational Modelling of Cardiovascular Flow

A thorough understanding of the aerodynamic characteristics in blood flow is needed to
improved artificial heart valve performance. Although the measurement of aerodynamic
properties through current advance medical imaging devices are feasible, such as mag-
netic resonance imaging (MRI), computed tomography (CT) scans, and echocardiography
(Mittal et al., 2016), it remains to be a complicated process for determining the local in-
fluence of fluid mechanical factors such as viscous stress on the blood constituents (Yokoi
et al., 2005). Furthermore, experimental work in this focus area is expensive and limited.
Alternatively, using mathematical equations through a numerical method and simulation
should be adopted.

Being able to look into the heart through mathematical equations would be a fantastic
achievement. The visualisation of the blood flow behaviours in the heart, for example
through the heart valve has become an interest in the computational fluid dynamics (CFD)
community for the last few decades due to the increasing use of supercomputer nowadays.
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CFD simulations can provide valuable information to the medical device manufacturers
and surgeons in making critical decisions in the treatment of heart valve repair or replace-
ments. The visualisation will enable them to access the level of disease (such as blood
clotting) in great detail. Whether either CFD information will allow access to the level
of disease in great detail or not, it will continue to be the subject of intense debate in
literature (Yun et al., 2014a; Jahandardoost et al., 2016).

Nevertheless, CFD modelling is widely used to unravel many engineering problems,
for example, in the design and manufacturing of aircrafts (Ahmad et al., 2005; Firdaus
et al., 2016; Ismail and Roe, 2009; Aftab et al., 2016), marine technology (Carrica et al.,
2013; Zakaria et al., 2013), electronic cooling (Abdullah et al., 2009), and recently in the
biomedical field (Riazuddin et al., 2010; Zakaria et al., 2016; Basri et al., 2016). Many of
these engineering problems involve complex geometries that do not fit exactly in Carte-
sian co-ordinates (Versteeg and Malalasekera, 2007). When the flow boundary does not
coincide with the co-ordinate lines of a cartesian grid, one could proceed by non-Cartesian
grid coordinate systems (i.e. cylindrical, axisymmetric three-dimensional or spherical co-
ordinates). For the worst cases, randomized, skewed and distorted grid may be used.

Grid generation represents a critical step in modelling complex geometry and is usually
performed using unstructured meshing algorithms conforming to the surface geometry
which leads to poor mesh generation. The poor mesh in turn will influence the accu-
racy, stability and convergence of the numerical solution. Although hexahedral Cartesian
meshes are known to provide a higher accuracy and reduce the computational costs, their
application in computational cardiovascular studies is challenging due to the complex and
branching topology of vascular territories. Due to this restraint, the use of accurate CFD
simulations in the medical field is still sparse in literature, and its numerical development
continues to be of major interest in research.

There are two main types of grid meshes for complex geometry: boundary fitted (BF)
methods and non-boundary-fitted (NBF) methods. BF volume mesh is created around the
imported geometry. The BF method will usually generate a poor unstructured tetrahedral
mesh quality. Poor quality surface and volume meshes can result in difficulties with the
solution of the flow problem, ranging from inaccurate solutions to non-convergence of
the solution process. Therefore, to generate a high-quality mesh, significant user effort is
usually required to perform the meshing procedure at the boundary when the boundary-
fitted (BF) grid method is used. This task is an additional burden and is tedious. With
the NBF method, the underlying grid does not coincide with the geometry of the surface
being treated, thus efficiently generating the Cartesian hexahedral mesh.

The earlier study of fluid flow using the NBF method in the biomedical field was done
by Peskin (1977), where the so-called immersed boundary (IB) method was introduced
to simulate the fluid flow problem in a heart valve. Later, further improvements to the
method were developed such as the fictitious domain method (Glowinski et al., 1999;
Yu et al., 2013), cut cell method (Meinke et al., 2013; Qin and Krivodonova, 2013), and
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ghost fluid method (Fedkiw et al., 1999; Liu, 2014), just to name a few. These methods
use local forcing function to identify a solid object, which comes with several issues such
as unaligned between boundary and grid, blur interface, and stiffness of the governing
equations. Another method is volume of fluid (VOF) (Hirt and Nichols, 1981; Takagi
et al., 2012) mostly used to solve multiphase fluid flow problem. In VOF method, colour
function α is used to distinguish between fluid and solid, where α = 1 is solid, and α = 0
is fluid. The implementation VOF method for fluid-solid geometry is sparse but rarely
can be found in literature such as in (Ravoux et al., 2003; Ng, 2009). A schematic view
comparison between the traditional BF, common NBF and VOF methods representation
grid is shown in Figure 1.3.

Figure 1.3: Schematic view comparison of grid structure between (a) BF, (b) NBF
and (c) VOF methods

In this work, a robust procedure of new NBF method combining with VOF method with-
out the local forcing function was proposed. The methodology adopted in this work is
designed so that it could be suitably implemented in an open source code, OpenFOAM,
and could be used to solve fluid flow problems in the biomedical field faced by scientists
and researchers. Such a numerical study may not require substantial changes to existing
CFD codes, particularly those codes done in-house by specific researchers. Furthermore,
medical imaging techniques provide the multi-component geometry as voxel data for each
patient, which would share the same ground as the Cartesian grid VOF colour function.
As far as the authors know, present work is the first to implement an NBF grid technique
through a simple extension of the VOF interface capturing scheme, particularly for MHV
flow in blood clotting estimation.

1.3 Problem Statement

The MHV is prone to blood clotting. A blood clot can be estimated from the accumu-
lation of the shear stress and residence time of the platelet. For the Newtonian fluid, the
shear stress was proportional to the velocity gradient. The velocity gradient can yield the
complex flow such as vorticity, stagnation flow, and separation. To be able to capture this
rich dynamic complex flow structure in pulsation and highly turbulent flow, high order ac-
curate numerical methods are needed to discretising and solving the governing equations
numerically.
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The numerical accuracy and stability are mainly influenced by the mesh quality. For a
simple 2D test case on uniform Cartesian grids, a second-order method should remain
close to the second-order accuracy. However, when the grids are uniformly distorted
(skewed), a second-order finite volume method (FVM) can drop to less than the second-
order (Ismail et al., 2010; Chizari and Ismail, 2015). Furthermore, in randomised grids,
a second-order FVM can behave very erratically (negative order of accuracy) (Chizari
and Ismail, 2016). The meshing for complex geometry using conventional BF method
is always either unstructured, high aspect ratio,high skewness, or non-orthogonal. These
characteristics affect the accuracy and stability of the numerical method. To ensure uni-
form Cartesian grid used for the whole computational domain regardless the complexity
of the geometry, non-boundary-fitted (NBF) grid method is a perfect candidate.

However, previous NBF grid method faced several issues. Firstly, the grid point did not
necessarily coincide with the boundary node (Fadlun et al., 2000); making interpolating
the velocity is necessary. Secondly, the resolution at the interface is smeared in a few
grid cells, thus required very fine mesh at the interface. Finally, the forcing function in
previous NBF method required a user-defined parameter. This parameter must be chosen
in as such a way that to balance between producing solid nature of embedded domain
and to avoid numerical oscillation, at a reasonable computational cost. Too large forcing
function parameter will increase the stiffness of the governing equations and, therefore,
affect convergence properties (Engels et al., 2015).

Therefore, this study intends to fill the gap of knowledge to develop a new NBF method
for a pseudo-rigid-body, using the idea of mixture properties of viscosity µ and colour
function α of the volume of fluid (VOF). As no additional forcing function is needed,
the new method hypothesises that the global user defines parameters that do not affect the
overall accuracy, convergence and total computational cost. The newly developed method
will be demonstrated for the first time with real MHV flow implant in the aorta to see the
potential of blood clotting. It is hypothesised that the developed method is feasible for
modelling the blood flow in through MHV in the aorta.

1.4 Research Objectives

The ultimate goal of this research is to develop a new fluid flow numerical method using
NBF grid method on the Cartesian grid for the flow on a complex stationary domain. The
method must be able to integrate medical images and accurately simulate the flow field
through the heart valves, showing the non-physiological flow patterns, responsible for
blood clotting. To achieve this objective, the focus of the thesis will be on the following
specific aims:

1. To identify issues and current reseach direction on numerical method, and aerody-
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namics characteristics on blood clot potential for MHV simulation.

2. To develop a new Cartesian NBF grid method for complex geometry namely, non-
boundary-fitted/volume of fluid (NBF-VOF) Cartesian grid method.

3. To validate a new develop NBF-VOF Cartesian grid method with conventional BF
method, previous NBF method, and previous experimental result using a series of
benchmark tests.

4. To verify the develop NBF-VOF Cartesian grid method in simulating blood flow
through the MHV located in an axisymmetric and anatomic aorta to access the flow
pattern and location of blood clot potential.

1.5 Scopes of the Studies

The present study was bounded by the following scopes,

1. This study involved numerical works, where a new mathematical method was intro-
duced and integrated with Opensource OpenFOAM CFD platform via editable C++
code. Nevertheless, to validate the solver, comparison with available numerical and
experimental data was made. For MHV, existing experimental work in literature
was used for validation purposes.

2. The turbulent model available in the literature varied, ranging from RANS, LES and
DNS. In this study,only one model was used, which was the LES turbulent model,
since a previous study (Nguyen et al., 2012) reported it could handle rich dynamic
flow field in MHV. Furthermore, LES is more superior than common RANS model
because it can solve instantaneous details of flow field, which is required in blood
clot formation simulation (Anupindi et al., 2013; Yun et al., 2014b). Therefore,
investigating or implementation of any other turbulent model is currently beyond
the scope of the study.

3. Among the variety of MHV available in the market for clinical practice, present
study used the St Jude Mechanical (SJM) heart valve model as the computational
model. This type has good hemodynamic flow and covers over 80% implanted into
the patient (Mirkhani et al., 2016). It has plenty of numerical and experimental
data solution. Furthermore, many researchers use them as a model for CFD code
validation purpose (i.e. (Yun et al., 2014b; Jahandardoost et al., 2016)).

4. The leaflet was treat stationary which is sufficient to access the blood clot potential.
Therefore, present study developed a method that was suitable for fixed boundaries
only, and the fixed valve’s leaflet was chosen instead.

5. The blood properties were assumed to be Newtonian since the size of the heart and
surrounding blood vessels was larger by at least three orders of magnitude than
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the typical blood cell (the typical size of blood cells is of the order of 10 µm).
Therefore, when considering flow phenomena associated with heart valves, it is
treated blood, for the most part, as a continuum medium that was incompressible
and Newtonian (Sotiropoulos et al., 2016). Therefore discussion up to molecular
level is also beyond the scope of the study.

1.6 Thesis Outline

This thesis is divided into five chapters including an introductory chapter (Chapter 1).
Followed by Chapter 2, where present study provided the comprehensive literature review
concerning numerical methodologies for the solution of the BF and NBF method, method
for estimating blood clotting, experimental cases suitable for the heart valve validation,
and some parametric study that contribute to blood clotting.

Furthermore, Chapter 3 is the primary framework of this thesis where the gap was illus-
trated. The mathematical formulation and solution strategy for the modified NBF method,
namely NBF- VOF grid method is shown. This chapter also show the bridging between
previous old method to present new method. Two treatments were made: 1) impose high
viscous solid and 2) modification of the linear system of Navier-Stokes equations. In
Chapter 3, a comprehensive validation and verification was also done. The validation
data was taken from analytical solution, established existing numerical and experimental
data. Furthermore, the new method also validated using conventional BF method with
real aorta vessel as test geometry.

Moreover, Chapter 4 discusses the application or practical contribution of current NBF-
VOF method in a real complex geometry of medical image data. Although the validation
of the solver is extensively done in Chapter 3, present study continue to provide the model
validation using asymmetric aorta case, where an experimental and numerical solution
exists. Present study also compared the flow field between the axisymmetric and anatomic
aorta and accessed the potential of blood clot potential.

Finally, the conclusion of the entire finding is done in Chapter 5 together with a recom-
mendation for future work. It is also worth to mention that some content of this thesis has
been published in journal articles and the list of publication is presented in the appropriate
section.
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