

UNIVERSITI PUTRA MALAYSIA

SUITABILITY OF MECHANIZED SWEET CORN CULTIVATION IN SEKINCHAN, MALAYSIA

MOMTAZ ISAAK HOMMOOD

FK 2018 94

SUITABILITY OF MECHANIZED SWEET CORN CULTIVATION IN SEKINCHAN, MALAYSIA

MOMTAZ ISAAK HOMMOOD

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

February 2018

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

DEDICATION

To my compassionate parents;

My brothers and sisters;

My wife and my children, Sohaib, Mohammed, Elaf, Afnan, and Razan, and

To all who gave me a helping hand in my times of need,

I gratefully dedicate this humble effort to you all.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

SUITABILITY OF MECHANIZED SWEET CORN CULTIVATION IN SEKINCHAN, MALAYSIA

By

MOMTAZ ISAAK HOMMOOD

February 2018

Chairman Faculty Professor Azmi Yahya, PhDEngineering

Corn (Zea mays L.) is grown for human consumption, animal feed and also for industrial applications. Its acreage has been increasing in Malaysia over the years and this trend is expected to continue as advances are made in its cultivation, harvesting, and processing concurrently with producing corn accompanied by the disbursements of energy. However, all reported physical and mechanical properties of sweet corn cobs and biomass materials depend on their moisture content. The following conclusions are drawn from the inquiry on physical and mechanical properties of sweet corn cobs and biomass materials. The average physical properties for weight 0.420 ± 0.0315 kg, length 21.68 ± 0.853 cm, diameter 4.94 ± 0.134 cm, volume 431.8 \pm 9.83 cm³, porosity 46.74 \pm 2.13 %, repose angle 26.76 \pm 1.142, and angle of friction 32.90 ± 0.82 of sweet corn cobs and some of their components were measured. Moreover, the average mechanical properties for pulling force at $0^{\circ} 319.03 \pm 11.15$ N; at 45° 116.21 \pm 2.53 N; at 90° 51.14 \pm 1.97 N, compression force at vertical 497.56 \pm 63.14 N; at horizontal 2801.26± 346.10 N, shearing force at 0° 503.76± 29.75 N; at 45° 448.27± 34.03 N and penetration 1.633± 0.144 N of sweet corn cobs and some of their components were measured. In addition, the physical properties of sweet corn plant for height of plant 211.7 ± 3.62 cm, width of plant 96.0 ± 2.17 cm, diameter of stalk at 20 cm from ground 2.21 ± 0.089 cm, weight of complete plant with root 0.833 \pm 0.0491 kg, leaves 0.077 \pm 0.0018 kg, stalk 0.318 \pm 0.0094 kg, corncobs 0.420 \pm 0.0315 kg and roots 0.068 ± 0.0017 kg, moisture content of leaves 56.22 ± 5.10 %, stalk 79.54 \pm 2.14 % and roots 62.33 \pm 3.85 %, and the average mechanical properties for pulling force at 0° 549.32± 6.27 N; at 45° 400.19± 3.05 N; 90° 334.00± 3.09 N, and shearing force at 0° 205.45 \pm 20.59 N; at 45° 167.15 \pm 25.10 N of the plant were conducted. Furthermore, a study on the biomass potentials of corn plant give an overview of the biomass situation of the sweet corn plant and their components. The calorie content of the corn cob was found to be the highest with an average of 18293 J/g (18.29 MJ/kg) followed by that of stalk with 17727 J/g (MJ/kg). The sugar content

was shown to be the highest in the kernel with 13.8 °Brix, as kernel sucrose concentration is regulated by endosperm carbohydrate metabolism during kernel development. The enhancement of kernels is made successful by; reduction of starch synthesis activities, increase in sucrose accumulation and productivity of yield in biomass material and its consumption annually as animal feed and in industrial applications. Cultivation of sweet corn in a standard plot size of 1.214 ha under a standard seed spacing of 29 cm and standard row spacing of 78 cm had the potential of producing 71,144 sweet corn ears/hectare or 26,742 kg sweet corn ears/hectare. The yield potential for sweet corn kernel is 8,558 kg sweet corn kernels/hectare whereas for plant residues it is 34,181 kg sweet corn plant residues/hectare. Besides, a study on machines and human performances in all agricultural operations of sweet corn in Malaysia has been successfully conducted to identify the crucial and critical field operations for the mechanisation index and their relationship with energy. The mechanisation index of 36.49 % was recorded for the cultivation system and is a reflection of the level of machinery inclusion in sweet corn production in Malaysia. The most critical operation requiring mechanisation is, therefore harvesting operation with bags. It has an index of 0.83 % representing human labour input of about 99.17 % of the operation's energy expenditure. Economy in energy systems is becoming increasingly essential for researchers both directly and indirectly, especially in the cultivation of sweet corn. Some of the advantages of reduced energy are a saving in energy input, reduced time and manpower costs, and improved yields. From the results of the study at mean yield of corn cobs 9991.02 kg/ha, the energy expenditure was 58714.81 MJ/ha with energy intensity value of 5.88 MJ/kg. The average effective field capacity for the harvesting operation was found to be 0.47 ha/hr. The average machine output of the harvesting operation for sweet corn cobs yield was 4695.78 t/hr, while, the average machine output of the harvesting operation for biomass material was 5275.96 t/hr. The results were used to develop yield predictive models for performance by using Artificial Neural Networks Modelling (ANN) and optimisation of the results of this estimate by using Particle Swarm Optimisation (PSO). A method of reference frequency was used to determine best sweet corn cultivation practices for enhanced productivity, a motion study was conducted to evaluate the mechanisation indices of operations.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KESESUAIAN PENANAMAN JAGUNG MANIS SECARA MEKANISASI DI SEKINCHAN, MALAYSIA

Oleh

MOMTAZ ISAAK HOMMOOD

Februari 2018

: Profesor Azmi Yahya, PhD Pengerusi Fakulti :

Kejuruteraan

Jagung (Zea mays L.) ditanam untuk makanan manusia makanan ternak dan penggunaan perindustrian. Kawasannya telah meningkat di Malaysia sejak kebelakangan dan trendnya dijangka berterusan memandangkan pendahuluan dibuat dalam penanaman, penuaian, dan pemprosesannya. serentak dengan menghasilkan jagung disertai tenaga pengeluaran. Walau bagaimanapun, semua sifat fizikal dan mekanikal yang dikaji daripada bahan gebu manis dan bahan biomas bergantung kepada kandungan lembapannya. Kesimpulan berikut diambil daripada penyelidikan mengenai sifat fizikal dan mekanik jagung manis dan bahan biomas. Sifat fizikal purata untuk berat 0.420 ± 0.0315 kg, panjang 21.68 ± 0.853 cm, diameter $4.94 \pm$ 0.134 cm, kelantangan 431.8 ± 9.83) 1.142, dan sudut geseran 32.90 ± 0.82 daripada pokok jagung manis dan beberapa komponennya diukur. Selain itu, sifat mekanikal purata daya tarik di 0° 319.03 \pm 11.15 N; di 45° 116.21 \pm 2.53 N; di 90° 51.14 \pm 1.97 N, daya mampatan di menegak 497.56 \pm 63.14 N, di kekuatan ricih di 0° 503.76 \pm 29.75 N; di 45° 448.27 \pm 34.03 N dan penembusan 1.633 \pm 0.144 N daripada pokok manis dan beberapa komponennya diukur 211.7 ± 3.62 cm, lebar tanaman 96.0 ± 2.17 cm, diameter batang 20 cm dari tanah 2.21 ± 0.089 cm, berat tumbuhan lengkap dengan akar 0.833 ± 0.0491 , daun 0.077 ± 0.0018 kg, tangkai 0.420 ± 0.0094 kg, corncobs 0.420 ± 0.0315) kg dan akar 0.068 ± 0.0017 kg, kandungan lembapan daun $56.22 \pm 5.10\%$, tangkai 79.54 $\pm 2.14\%$ dan akar $62.33 \pm 3.85\%$ dan sifat mekanikal purata untuk tarik daya di 0° 549.32 \pm 6.27 N, di 45° 400.19 \pm 3.05, di 90° 334.00 \pm 3.09 N dan kekuatan ricih di 0° 205.45 ± 20.59 ; di 45° 167.15 ± 25.10 N kilang telah dijalankan. Tambahan pula, mengkaji potensi biojisim kilang jagung memberi gambaran keseluruhan keadaan biomas jagung jagung manis dan komponennya serta kandungan kalori yang didapati bahawa cob mempunyai kandungan kalori tertinggi dengan purata 18293 J/g (18.29 MJ / kg) diikuti dengan tangkai dengan 17727 J / g (MJ / kg), kandungan gula ditunjukkan bahawa kernel mempunyai kandungan gula tertinggi iaitu 13.8 ° Brix, kerana kepekatan sukrosa kernel dikawal oleh metabolisme

karbohidrat endosperma semasa penjanaan kernel. Peningkatan biji dibuat dengan berjaya dengan pengurangan aktiviti sintesis kanji dan peningkatan dalam pengumpulan sukrosa dan produktiviti bahan biomas hasil dan penggunaannya setiap tahun untuk digunakan sebagai makanan haiwan dan industri. Penanaman jagung manis dalam saiz plot 1.214 ha di bawah jarak benih standard 29 cm dan jarak baris standard 78 cm berpotensi menghasilkan 71,144 tongkol manis / hektar atau 26,742 kg tongkol manis / hektar. Potensi hasil untuk kernel jagung manis adalah 8,558 kg biji jagung manis / hektar sedangkan untuk sisa tanaman adalah 34.181 kg residu tanaman jagung manis / hektar. Selain itu, kajian mengenai mesin dan persembahan manusia dalam semua operasi pertanian jagung manis di Malaysia telah berjaya dijalankan untuk mengenal pasti operasi lapangan kritikal dan kritikal untuk mengenal pasti indeks mekanisasi dan hubungan mereka dengan tenaga. Indeks mekanisasi sebesar 36.49 % direkam untuk sistem penanaman dan merupakan cerminan dari tingkat inklusi mesin dalam produksi jagung manis di Malaysia. Oleh itu, operasi yang paling penting yang memerlukan mekanisasi adalah. operasi penuaian menggunakan beg. Ia mempunyai indeks 0.83% mewakili pembabitan tenaga manusia kira-kira 99.17% daripada perbelanjaan tenaga operasi. Mengurangkan sistem tenaga menjadi semakin penting bagi penyelidik baik secara langsung atau tidak langsung, terutamanya dalam penanaman jagung manis. Beberapa kelebihan tenaga berkurangan ialah penjimatan tenaga input, mengurangkan masa dan kos tenaga kerja, hasil yang lebih baik. Dari hasil kajian pada hasil purata jagung 9991.02 kg / ha, perbelanjaan tenaga sebesar 58714.81 MJ / ha dengan nilai intensitas energi 5,88 MJ / kg. Keupayaan ladang purata untuk operasi penuaian didapati 0.47 ha / jam. Pengeluaran mesin purata operasi penuaian untuk hasil jagung jagung manis adalah 4695.78 t/jam. Walaupun, purata pengeluaran mesin bagi operasi penuaian bagi bahan biomas ialah 5275.96 t / jam. Hasilnya digunakan untuk menghasilkan model ramalan hasil untuk prestasi dengan menggunakan Pemodelan Rangkaian Neural Buatan (ANN) dan pengoptimuman keputusan anggaran ini dengan menggunakan Pengoptimuman Swarm Partikel (PSO). Satu kaedah frekuensi rujukan digunakan untuk menentukan amalan penanaman jagung manis yang terbaik untuk meningkatkan produktiviti mereka, Satu kajian pergerakan dijalankan untuk menilai indeks mekanisasi operasi.

ACKNOWLEDGEMENTS

First and foremost, all special praises and thanks to Allah for facilitating me to accomplish this humble work for the attainment of the degree of Doctor of Philosophy with Universiti Putra Malaysia.

I extend my thanks and gratitude to my distinguished supervisor Professor Dr. Ir. Azmi bin Dato' Haji Yahya for his constructive criticisms, valuable advice, thorough guidance and constant words of encouragement, which evidently led to the successful completion of this research within the stipulated period. Similarly, I thank the members of my supervisory committee Dr. Nazmi Mat Nawi and Dr. Muhammad Razif bin Mahadi for their guidance and willing assistance at all times. Your assistance and support are much appreciated and I am grateful. During the research work, I worked in many laboratories of the Faculty of Engineering, UPM, and I have met technicians especially Mr. Roshdi in our Machine Design Labouratory, I am grateful to him and to the other technicians for being ever so helpful in many ways. I also thank farmer Mr Ahmedeen for providing me with the fields of sweet corn to carry out my research. My thanks and appreciation also go to Miss Nur Fatiha for her help in my research. In addition, I owe all my friends I have made during my study especially, Aliyu, Renny, Erwin, Suha, Farkad, Mudhather, a big thank you for their friendship

To my family, especially my father, my mother, my wife and my children for giving me much needed support during all the years of my study.

To the many others too numerous to mention by name, I thank them for their moral and spiritual support and would like to let them know that they will always have a place in my heart. I certify that a Thesis Examination Committee has met on 21 February 2018 to conduct the final examination of Momtaz Isaak Hommood on his thesis entitled "Suitability of Mechanized Sweet Corn Cultivation in Sekinchan, Malaysia" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Hasfalina binti Che Man, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Desa bin Ahmad, PhD

Professor Ir. Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Nor Mariah bt Adam, PhD Professor Ir. Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Md. Ataur Rahman, PhD

Professor International Islamic University Malaysia Malaysia (External Examiner)

RUSLI HAJI ABDULLAH, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 30 July 2018

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Azmi Yahya, PhD Professor, Ir Faculty of Engineering Universiti Putra Malaysia (Chairman)

Nazmi Mat Nawi, PhD Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Muhammad Razif bin Mahadi, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature:	Date:
e	

Name and Matric No: Momtaz Isaak Hommood, GS38695

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: Name of Chairman of	
Supervisory	
Committee:	Professor Ir. Dr. Azmi Yahya
Signature:	
Name of	
Member of	
Supervisory	
Committee:	Dr. Nazmi Mat Nawi
Signature:	
Name of	
Member of	
Supervisory	
Committee:	Dr. Muhammad Razif bin Mahadi

TABLE OF CONTENTS

Page

ABS7 ACKI APPF DECI LIST LIST LIST LIST	NOWLEDGEMENTS ROVAL LARATION OF TABLES OF FIGURES OF APPENDICES OF ABBREVIATIONS	i iii v vii xiii xiii xviii xxii xxv
CHA	PTER	
1	INTRODUCTION1.1Background of the study1.2Problem Statement1.3Purpose and objectives of the Study1.4Scope and limitation of the study1.5Contributions of research work1.6Thesis layout	1 1 5 7 7 8 9
2	 LITERATURE REVIEW 2.1 Sweet corn cultivation 2.2 Sweet corn production in Malaysia 2.3 Importance and usage of sweet corn 2.4 Physical and mechanical properties of sweet corn 2.5 Biomass potential of sweet corn plant 2.6 Energy analysis 2.6.1 Output – Input energy study 2.7 Yield modelling and energy inputs in sweet corn production 2.7.1 Artificial Neural Networks Modelling 2.7.2 Particle Swarm Optimisation 2.8 Summary 	10 10 12 13 13 13 16 19 21 26 26 28 30
3	 MATERIALS AND METHODS 3.1 Introduction 3.2 Physical and mechanical properties of sweet corn 3.2.1 Physical properties of corn cobs 3.2.2 Mechanical properties of corn cob and corn plant 3.2.2.1 Pulling force of biomass material (N) 3.2.2.2 Shearing force of biomass material (N) 	32 32 34 34 36 36 36

		3.2.2.3	Compression force of corn cobs and kernel (N)	37
2.2	D'	3.2.2.4	Penetration of corn cobs and kernel (N)	37
3.3			l of sweet corn plant	38
			content of corn %	38
			value determination	39
2.4	3.3.3	0	ntent determination	40
3.4		ption of st		41
3.5			man Performances in sweet corn operations	43
		-	rations for sweet corn cultivation	44
	3.5.2		per Limb Assessment (RULA) and Rapid Entire	
		•	sessment (REBA) for human activities according	
•			corn cultivation operations	46
3.6			ergy inputs/outputs for sweet corn field	
	operat			46
	3.6.1		rise energy budget	46
		-	n-wise energy budget	57
			d indirect energy inputs	58
			le and non-renewable energy inputs	58
3.7		-	s and output cost analysis	58
		Cost of fa		58
			arvested yield	62
		Cost ratio		62
3.8			f mechanisation index for the cultivation	64
3.9			time distribution	65
3.10			sweet corn yield predictive model	65
			Neural Networks Modelling	66
			warm Optimisation	68
3.11		Iodel valid		72
3.12	Perfor	mance Ana	alysis	73
DECU				
			USSIONS	75
4.1	-		chanical properties of sweet corn	75
	4.1.1		characteristics	75
		4.1.1.1	Weight of plant	76
	4.1.2		cal characteristics	78
		4.1.2.1	Pulling force of plant components of sweet corn	78
		4.1.2.2	Shearing force of plant components of sweet	
			corn	79
		4.1.2.3	Compression force of plant components of	
			sweet corns	80
		4.1.2.4	Penetration force of plant components of sweet	
			corn	80
		4.1.2.5	Bending force of plant stalks of sweet corn	81
4.2			erial of sweet corn plant	81
			isture content	81
			oric content	82
	4.2.3	Sugar con	ntent	83

4

G

		4.2.4 Yield	88
		4.2.5 Yield prediction	88
		4.2.6 Feed value for human and animal consumption	89
	4.3	Measurement of human energy expenditure	90
		4.3.1 Distribution of conventional human energy expenditure	
		according to operations	91
		4.3.2 Distribution of polar measured physical human energy	
		expenditure according to operations	92
		4.3.3 Comparison of Conventional versus Polar measured	
		human energy expenditure according to operations	93
	4.4	Human Energy Expenditure in sweet corn cultivation	94
	4.5	Mechanisation status in sweet corn cultivation	95
		4.5.1 Mechanisation Level of Sweet Corn Field Operation	
		Based on PHE Cartesian Plot	95
		4.5.2 Mechanisation Level of Sweet Corn Field Operation	
		Based on Mechanisation Index	113
	4.6	Analysis of energy inputs and outputs in the study area	115
		4.6.1 Analysis of energy inputs based operations	115
		4.6.2 Analysis of energy inputs based on sources	125
		4.6.3 4.6.3 Basic energy ratio analysis	131
	4.7	Cost analysis	132
		4.7.1 Production cost distribution based on operations	132
		4.7.2 Benefit - cost analysis	137
	4.8	Time and motion analysis of field operations	139
	4.9	Development of sweet corn yield predictive model	140
		4.9.1 Artificial Neural Networks Modelling	140
		4.9.2 Particle Swarm Optimisation	144
	4.10	Validation of developed models	148
	4.11	Sensitivity analysis of energy inputs on products yield	149
5	CONC	CLUSIONS AND RECOMMENDATIONS	152
5	5.1	Conclusions	152
	5.2	Recommendations	154
	5.2		101
	RENC		155
	NDICE		167
		DF STUDENT	225
LIST OF PUBLICATIONS 2			

G

xii

LIST OF TABLES

Table		Page
2.1	Top ten corn producing countries in the world in 2014	11
2.2	Corn harvested area, production, yield and import in Malaysia 2007-2014	12
2.3	Some properties of cereal stalks at harvesting	15
2.4	Biomass potential and use distribution between regions	17
2.5	Sugar content of different type of sweet corn	19
2.6	Survey of energy coefficients	20
2.7	Energy input and cost of corn production per hectare in the USA	21
2.8	Economic analysis of corn grain production in Iran	26
2.9	RMSE and R^2 of the multiple linear regression model and the ANN model on training and validation data	28
2.10	Literature models of energy use in this study	30
3.1	The specification of bomb calorimeter)	40
3.2	The specification of analogue hand-held refractometer	41
3.3	Cropping periods of data collection in the field operations for the sweet corn cultivation	44
3.4	Current technology use and worker involvement in field operations	44
3.5	Energy conversion coefficients used to compute energy value for the farm inputs and outputs	47
3.6	Economic life of farm machinery used by farmers in the study area	50
4.1	Physical characteristics of sweet corn plant	75
4.2	Physical characteristics of corn cobs	76
4.3	Wet weight of complete plant and weight of each component, kg	77
4.4	Dry weight of complete plant and weight of each component, kg	77

4.5	ANOVA result for wet weight and dry weight	78
4.6	Duncan test results for wet and dry weights of each plant component, kg	78
4.7	Pulling force of plant components of sweet corn, N	79
4.8	ANOVA test result of pulling force for analysis of corn cob, leaves and plant	79
4.9	Shearing force of plant components of sweet corn	80
4.10	Compression force of plant components of sweet corn	81
4.11	Penetration force of plant component of sweet corn	81
4.12	Bending force of plant stalks of sweet corn	81
4.13	Moisture content of each plant component	82
4.14	Moisture content for leaves and stalk at different sections	82
4.15	Caloric value of each plant component, J/g	83
4.16	Caloric value for leaves and stalk and different section, J/g	83
4.17	Sugar content of each plant component, °Brix	84
4.18	Sugar content for leaves and stalk at different section, °Brix	84
4.19	ANOVA test result for moisture content, caloric content and sugar content analysis	84
4.20	ANOVA test result for moisture content, caloric content and sugar content analysis for leaves and stalk at different sections	85
4.21	Duncan test result for moisture content, caloric content and sugar content analysis for each plant component	85
4.22	Duncan test result for moisture content, caloric content and sugar content analysis for leaves and stalk at different sections	86
4.23	Correlation of caloric and sugar content with respect to moisture content	86
4.24	Model summary of caloric value	87
4.25	Model coefficients of caloric value	87
4.26	Model summary of sugar content	87

	4.27	Model coefficients of sugar content	88
	4.28	Yield prediction	89
	4.29	Feed value for human and animal consumption	89
	4.30	Estimation of biomass energy potential of sweet corn crop	90
	4.31	Distribution of conventional human energy expenditure according to operations	91
	4.32	Distribution of polar measured physical human energy expenditure according to operations	93
	4.33	Comparison of Conventional versus Polar measured human energy expenditure according to operations	94
	4.34	Estimated total annual human energy expenditure for the field operations in the sweet corn cultivation	95
	4.35	Production capacity, mean increase in heart rate and energy expenditure for individual field operations in sweet corn cultivation	96
	4.36	Mechanisation index for individual field operations in the sweet corn cultivation	114
	4.37	Distribution of average tillage energy according to sources, MJ/ha	116
	4.38	Distribution of average energy expenditure for planting operation using seeds, MJ/ha	117
	4.39	Distribution of average energy expenditure for planting operation using seedling, MJ/ha	119
	4.40	Distribution of average energy expenditure for fertilising operation, MJ/ha	120
	4.41	Distribution of average energy expenditure for spraying operation using knapsack, MJ/ha	121
	4.42	Distribution of average energy expenditure for spraying operation using blower, MJ/ha	122
	4.43	Distribution of average energy expenditure for harvesting operation using wheelbarrow, MJ/ha	123
	4.44	Distribution of average energy expenditure for harvesting operation using bags, MJ/ha	124

4.45	Distribution of average energy expenditure for cutting plants operation, MJ/ha	125
4.46	Operations – wise energy expenditure sweet corn	126
4.47	Rate of farm inputs use in the study area	127
4.48	Fertiliser use rate by type, kg/ha	130
4.49	Chemical use rate by type, kg/ha	131
4.50	Energy ratio analysis	132
4.51	Summary of cost distribution for tillage operations, RM/ha	133
4.52	Summary of cost distribution for planting operations using seeds, RM/ha	134
4.53	Summary of cost distribution for planting operations using seedling, RM/ha	134
4.54	Summary of cost distribution for fertilising operations, RM/ha	135
4.55	Summary of cost distribution for spraying operation using knapsack, RM/ha	135
4.56	Summary of cost distribution for spraying operation using blower, RM/ha	136
4.57	Summary of cost distribution for harvesting operation using wheelbarrow, RM/ha	137
4.58	Summary of cost distribution for harvesting operation using bags, RM/ha	137
4.59	Summary of cost distribution for cutting plants operation, RM/ha	137
4.60	Benefit - cost analysis	138
4.61	Farm costs and benefit-cost ratio in some selected countries	138
4.62	Production capacity and total field time based operations	140
4.63	Time and motion analysis for sweet corn operations	140
4.64	Performance analysis to estimate sweet corn cobs yield using ANN model	142
4.65	Performance analysis to estimate sweet corn biomass yield using ANN model	143

4.66	Performance analysis to estimate sweet corn cobs yield using ANN-PSO model	144
4.67	Comparison between actual and predicted yield for sweet corn cobs yield	145
4.68	RMSE and R^2 of validation of the multiple linear regression model and the ANN-PSO model for sweet corn cobs yield	146
4.69	Performance analysis to estimate sweet corn biomass yield using ANN- PSO model	147
4.70	Comparison between actual and predicted yield for sweet corn biomass yield	147
4.71	RMSE and R^2 of validation of the multiple linear regression model and the ANN-PSO model for sweet corn biomass yield	148
4.72	Validation analysis to estimate sweet corn cobs yield using ANN and ANN-PSO models	149
4.73	Validation analysis to estimate sweet corn biomass yield using ANN and ANN-PSO models	149
4.74	Statistical analysis of the best ANN and ANN-PSO models	149
4.75	MSE and R^2 of the ANN model and the ANN-PSO model on training, testing and validation data of sweet corn cobs yield	150
4.76	MSE and R^2 of the ANN model and the ANN-PSO model on training, testing and validation data of sweet corn biomass yield	150

C

C

LIST OF FIGURES

Figure		Page
1.1	Growth of human population, animal production, corn production, animal feed production trends in the world during 2000 - 2014	1
1.2	Growth of human population, corn production and animal production trends in Malaysia during 2000 - 2014	2
1.3	Malaysian corn imports	3
1.4	Malaysian imports of food material (mt and %)	4
2.1	Percentage contribution of corn by countries	11
2.2	Generic sketch of a sweet corn plant,	16
2.3	The relationship between mean moisture content of individual plants and days after sowing	18
3.1	Research methodology flow diagram	33
3.2	Determination of some physical properties of sweet corn cobs	34
3.3	Measuring the pulling force of corn cobs	36
3.4	An Instron Universal Test Machine	37
3.5	Measuring the compression force of corn cobs and kernel	38
3.6	Measuring the penetration of corn cobs and kernel	39
3.7	Adiabatic bomb calorimeter	39
3.8	Hand-held refractometer	41
3.9	Malaysia map showing location Sekinchan	42
3.10	Farms and plots of sweet corn cultivation in Sekinchan	42
3.11	Flow diagram for data collection	45
3.12	REBA employee assessment worksheet	48
3.13	RULA employee assessment worksheet	49

3.14	A schematic diagram of a multilayer perceptron with one hidden layer	67
3.15	Flowchart for training of the ANN using PSO algorithm	70
3.16	Flow diagram of ANN-PSO methodology used for sweet corn cobs and biomass prediction	72
4.1	Brix reading in plant component vs. weight of sugar	88
4.2	The Polar S810M Heart Rate Monitor used in the study	91
4.3	PCL-HRL-EGL coordinates for field operations in sweet corn cultivation	97
4.4	The operator looks behind repetitively in tillage operation	98
4.5	The graphical REBA's score summary of tillage operation	99
4.6	The graphical RURA's score summary of tillage operation	99
4.7	The operator's postures in planting operation using seeds	100
4.8	The graphical REBA's score summary of planting operation using seeds	100
4.9	The graphical RULA's score summary of planting operation using seeds	101
4.10	The operator's postures in planting operation using seedling	102
4.11	The graphical REBA's score summary of planting operation using seedling	102
4.12	The graphical RULA's score summary of planting operation using seedling	102
4.13	The operator's postures in fertilising operation	103
4.14	The graphical REBA's score summary of fertilising operation	104
4.15	The graphical RULA's score summary of fertilising operation	104
4.16	The operator's postures in spraying operation using knapsack	105
4.17	The graphical REBA's score summary of spraying operation using knapsack	105
4.18	The graphical RULA's score summary of spraying operation using knapsack	106

4.19	The operator's postures in spraying operation using blower	107
4.20	The graphical REBA's score summary of spraying operation using blower	107
4.21	The graphical RULA's score summary of spraying operation using blower	107
4.22	The operator's postures in harvesting operation using wheelbarrow	108
4.23	The graphical REBA's score summary of harvesting operation using wheelbarrow	109
4.24	The graphical RULA's score summary of harvesting operation using wheelbarrow	109
4.25	The operator's postures in harvesting operation using bags	110
4.26	The graphical REBA's score summary of harvesting operation using bags	110
4.27	The graphical RULA's score summary of harvesting operation using bags	111
4.28	The operator's postures in cutting plants operation	112
4.29	The graphical REBA's score summary of cutting plants operation	112
4.30	The graphical RULA's score summary of cutting plants operation	112
4.31	Tractor - rotary tiller combination performing the tillage operation	116
4.32	Distribution of average tillage energy based sources	116
4.33	Showing some farm workers conducting planting operation using seeds	118
4.34	Some farm workers conducting planting operation using seedling	119
4.35	Some farm workers conducting fertilising operation	120
4.36	A farm worker performing pesticide application using knapsack sprayer	121
4.37	Farm worker carrying out spraying operation using blower sprayer	122
4.38	Farm worker conducting harvesting operation using wheelbarrow	123
4.39	Farm worker conducting harvesting operation using bags	124

4.40	A farm worker engaged in the plant cutting operation	125
4.41	Operations-wise energy distribution	126
4.42	Energy distribution according to source	127
4.43	Distribution of human energy based operations	128
4.44	Distribution of machinery energy based operations	129
4.45	Distribution of fuel energy based operations	130
4.46	Distribution of NPK use rate by the farmers	130
4.47	Distribution of chemical use rate by type	131
4.48	Plot of error per iteration of sweet corn cobs yield	142
4.49	Plot of error per iteration of sweet corn biomass yield	143
4.50	ANN-PSO predicted and actual yield of sweet corn cobs	145
4.51	ANN-PSO. Predicted and actual yield of sweet corn biomass	147
4.52	Sensitivity analysis of energy inputs on sweet corn cobs yield	151
4.53	Sensitivity analysis of energy inputs on sweet corn biomass yield	151

C

LIST OF APPENDICES

Apper	endix		
А	Demography Data Of The Involved Workers In Sweet Corn Cultivations	167	
A1	Demography data of the involved workers in sweet corn cultivations	167	
В	Physical And Mechanical Properties And Biomass Potential Result Tables	168	
B1	Physical properties of corn plant	168	
B2	Weight of complete plant and weight of each component	169	
B3	Weight of corn components	170	
B4	Physical characteristics of corn cobs	171	
B5	Pulling force of plant component of sweet corn	172	
B6	Compression force of corn cobs and kernels	173	
B7	Penetration force of corn cobs and kernels	174	
B8	Shearing force of corn cobs, stalks and kernels	175	
B9	Bending force of stalks	176	
B10	Moisture content of complete plant and weight of each components	177	
B11	Caloric content of complete plant and weight of each components	180	
B12	Sugar content of complete plant and weight of each components	182	
С	Energy Result Tables	184	
C1	Energy distribution for tillage operation	184	
C2	Energy distribution for planting with seeds operation	184	
C3	Energy distribution for planting with seedling operation	185	
C4	Energy distribution for fertilising operation	186	
C5	Energy distribution for spraying using knapsack operation	187	

C6 Energy distribution for spraying using blower operation		Energy distribution for spraying using blower operation	188
	C7	Energy distribution for harvesting with wheelbarrow operation	189
	C8	Energy distribution for harvesting with bags operation	190
	C9	Energy distribution for cutting plant operation	191
	C10	Distribution of human labour work rate based operations, MJ/ ha	192
	C11	Distribution of fuel use rate based operations, MJ/ ha	193
	C12	Distribution of machinery use rate based operations, MJ/ ha	194
	C13	Distribution of fertiliser use rate by type, kg/ ha	195
	C14	Distribution of chemical use rate by type, kg/ ha	196
	C15	Conventional versus polar measured human energy expenditure for tillage	197
	C16	Conventional versus polar measured human energy expenditure for planting operation with seeds	197
	C17	Conventional versus polar measured human energy expenditure for planting operation with seedling	198
	C18	Conventional versus polar measured human energy expenditure for fertilising operation	199
	C19	Conventional versus polar measured human energy expenditure for fertilising operation	200
	C20	Conventional versus polar measured human energy expenditure for spraying operation using a blower	200
	C21	Conventional versus polar measured human energy expenditure for harvesting operation with a wheelbarrow	201
	C22	Conventional vs. polar measured human energy expenditure for harvesting operation with bags	201
	C23	Conventional vs. polar measured human energy expenditure for cutting plants operation	202
	D	Cost Result Tables	203
	D1	Cost distributions for tillage operation, RM/ha	203

D2	Cost distributions for planting operation with seeds, RM/ha	203
D3	Cost distributions for planting operation with seedling, RM/ha	204
D4	Cost distributions for fertilising operation, RM/ha	205
D5	Cost distributions for spraying operation using a knapsack, RM/ha	206
D6	Cost distributions for spraying operation using a blower, RM/ha	206
D7	Cost distributions for harvesting operation with a wheelbarrow, RM/ha	207
D8	Cost distributions for harvesting operation with bags, RM/ha	207
D9	Cost distributions for cutting plants operation, RM/ha	208
Е	Time Motion Result Tables	209
E1	Time motion for tillage operation	209
E2	Time motion for planting operation with seeds	209
E3	Time motion for planting operation with seedling	210
E4	Time motion for fertilising operation	211
E5	Time motion for spraying operation using a knapsack	212
E6	Time motion for spraying operation using a blower	213
E7	Time motion for harvesting operation with a wheelbarrow	214
E8	Time motion for harvesting operation with bags	215
E9	Time motion for cutting plants operation	216
E10	Distribution of mean increase in heart rate for individual field operations in the sweet corn cultivation, beats/min	217
F	Data Used In The Predictive Models Result Tables	218
F1	Data used in the predictive models; Basic energy inputs and sweet corn yield and biomass yield data	218
F2	Validation data for yield predictive models	220
G	MATLAB codes used in ANN-PSO modelling	221

LIST OF ABBREVIATIONS

А	Area		
ANN	Artificial Neural Networks		
ASABE	American Society of Agricultural and Biological Engineers		
ASAE	American Society of Agricultural Engineers		
ASTM	American Society for Testing and Materials		
BCR	Benefit-Cost Ratio		
CE	Chemical Energy		
CF	Conversion Factor		
CI	Coefficient Interval		
DMRT	Duncan's Multiple Range Test		
EGL	Energy Level		
El	Energy intensity		
EP	Energy Productivity		
FAO	Food and Agricultural Organization		
FE	Fuel Energy		
FTE	Fertiliser Energy		
IADA	Integrated Agricultural Development Authority		
IUTM	Instron Universal Test Machine		
GHG	Greenhouse Gas		
GM	Gross margin		
h	Hour		
ha	Hectare		
HE	human energy		

	hp	Horsepower
	HRL	Heart Rate Level
	Κ	Potassium
	Kcal	Kilocalorie
	Kg	Kilogram
	1	Liter
	L	economic life
	MAE	Mean Absolute Error
	MAPE	Mean Absolute Percentage Error
	ME	Machinery Energy
	MI	Mechanisation index
	MJ	Mega Joule
	MLR	Multiple linear regression
	MPa	Mega Pascal
	MPP	Marginal Physical Productivity
	MSE	Mean square error
	MSW	Municipal Solid Waste
	Mt	Million tons
	MOA	Ministry of Agriculture
	Ν	Nitrogen
	NA	Not Available
	NEG	Net Energy Gain
	REBA	Rapid Entire Body Assessment
	RM (MYR)	Ringgit Malaysian

RMSE	Root Mean Square Error
RULA	Rapid Upper Limb Assessment
Р	Phosphorus
PCL	Production Capacity Level
PER	Percent Energy Use
PSO	Particle Swarm Optimisation
SE	Seed Energy
SSC	Soluble Solid Content
TC	Total Cost
TEI	Total Energy Input
TOE	Total Energy Output
USA	United States America
W	Weight
уг	year

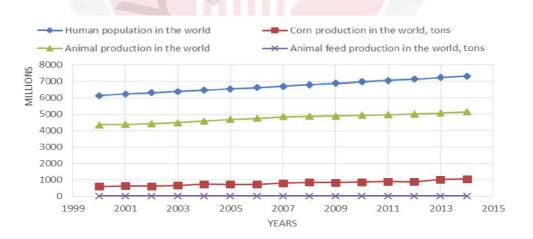
CHAPTER 1

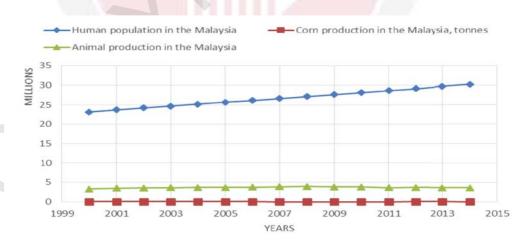
INTRODUCTION

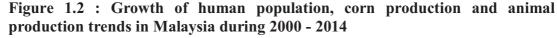
1.1 Background of the study

Corn (*Zea mays L.*) ranks as the third most important cereals in the world. Asian countries are significant producers of sweet corn and more than 62% of their corn production is consumed in the form of animal feed, while the balance is for human consumption. While sweet corn has been traditionally a popular vegetable in the USA, China and Brazil, it has in recently gained popularity in many other Asian countries including Malaysia. Corn is the staple food of a large population of the world's communities and one of the most economically principal food crops in the world. According to FAOSTAT (2017), total world production of corn in the year 2014 was at 1,037,791,518 tons, grown over 184,800,969 ha of farmlands. The world average corn yield for the year was estimated at 6.08 t/ha. By 2025, corn is expected to be the world's most cultivated cereal crop and between now and 2050, the demand for corn in the developing world is expected to be doubled (Rosegrant et al., 2009).

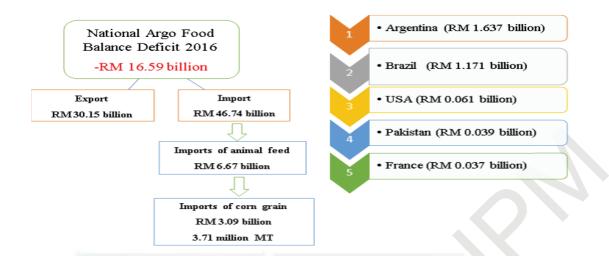
This is a realistic estimate as the total population of the world during the period from 2000-2014, increased 18.77 %, which was about 7,298,450,000 people in 2014. According to FAOSTAT (2017) human consumption of corn was about 1,037,791,518 tons in 2014, indicating a 75.16 % increase during the same 2000-2014 period. Corn production has increased progressively with the high increase of the world's human population as shown in Figure 1.1.




Figure 1.1 : Growth of human population, animal production, corn production, animal feed production trends in the world during 2000 - 2014


(Source : FAOSTAT 2017, animal production includes asses, beehives, buffaloes, camelids, camels, cattle, chickens, ducks, geese, goats, horses, mules, pigs, rabbits, rodents, sheep and turkeys)

In light of the above, more attention needs to be given to corn crop and to increase corn production in order to provide food security to people as the third crop in the world. While, the total animal production in the world was about 5,117,487,369 in 2014 it has increased year by year with 17.37 % during the 2000-2014 period but, this increase has been offset by the growth of feed production at a negligible 4.06 % during 2000-2014. Thus, this gap between the large increase in animal production and the feed production is noteworthy because they threaten food security.


Human population increase, animal production, and corn production in Malaysia are shown in Figure 1.2. From the figure, it can be seen that the world's human population showed an increasing trend during 2000-2014 with a 30.37 % increase or an addition of 30,228,000 people in 2014. Corn production however stayed basically constant and in fact dipped slightly by 9.82 % during the 2000-2014 period to 59,188 tons in 2014. It is therefore imperative that the Ministry of Agriculture and Agro-based Industry in Malaysia take care of this vital crop and encourage its cultivation on a large scale to increase production to address the gap between human population increase and the less than corresponding increase in corn production. (See Figure 1.2.)

On the other hand, livestock production showed a marked increase of 12.07 % during the 2000 to 2014 period in Malaysia, indicating the interest of the government in the livestock production sector in the early decades of the new millennium. Animal production touched a peak of 3,856,917 animals in 2008 as shown in Figure 1.2, which included buffaloes, cattle, chickens, ducks, goats, horses, pigs, and sheep. Animal feed takes up 60 to 70% of livestock production cost and four to seven million tons of feeds are required annually, with chicken consuming 4%, pig 27%, ruminants 21% and others 8%.

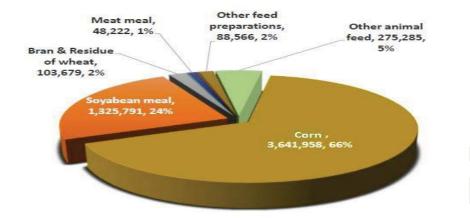

(Source : FAOSTAT 2017), animal production includes (buffaloes, cattle, chickens, ducks, goats, horses, pigs, and sheep)

Figure 1.3 : Malaysian corn imports (Source : MOA, 2017)

However, there are no official statistics on the production of animal feed in Malaysia, especially the corn feed production but it has been admitted that there is a deficit which has required the import of animal feed from various countries. The MOA (2017) admits that national agro-food balance deficit in 2016 was RM -16.59 billion which comes from an import bill of RM46.74 billion and export RM30.15 billion). Malaysia imports for corn were 3.71 million tons in 2016, up by 22.44 % from 3.03 million tons in 2012. The import of animal feed was RM6.67 billion while the import of corn grain was RM 3.09 billion for 3.71 million tons. Argentina is one of the main sources of Malaysia's corn imports whereas the total imports to Malaysia were RM1.637 billion. Other sources were Brazil, USA, Pakistan and France (RM 1.171billion, RM 0.061 billion, RM 0.039 billion and RM 0.037 billion respectively) as shown in Figure 1.3.

Despite the government's efforts to be self-sufficient in the supply of animal feed, Malaysia still relies on substantial imports to meet domestic demand. More than half (66%) of the imported food materials were from corn and about 7% of the imported food materials were for feed as shown in Figure 1.4. All of these imported food materials were used either for the human food production or the animal feed production industries in the country.

Figure 1.4 : Malaysian imports of food material (mt and %) (Source : MOA, 2017)

The Malaysian government had now formulated a corn crop production development plan for the country. A roadmap was set to cultivate a total of 20,000 hectares for corn grain production in Malaysia by 2020. This is being done through the development of a realistic and sustainable business model for various categories of industry players in the production and supply chain of corn in Malaysia. The Malaysian government seeks to modernise the agriculture sector with the objective of increasing food production. This is important for stabilising the economy. In general, agriculture has been identified as the third engine of economic growth in Malaysia, resulting in large-scale farming projects being implemented throughout the country (Mahmood 2006). According to FAOSTAT (2017), Malaysia with a total corn production of 59,188 tons in 2014 was ranked 117th among the world's producers, led by the United States of America with a total production of over 360 million tons. Malaysia's contribution to the world corn production in 2015 was 61,473.44 tons cultivated on 9,480 ha of land and the country's mean yield for the year was 6.49 t/ha. Major states producing corn in Malaysia are Johor, Kelantan, and Pahang. To better understand why corn is such an important crop, the following paragraphs describe the nutrition vales of the cereal and its impressive versatility in many applications.

Capper et. al, (2013) and Orhun (2013) concluded that the corn grain gives the highest nutritional value compared to other grains as livestock feed. This is due to its high starch and low fibre content which makes it a very concentrated source of energy for livestock production. This was confirmed by Kataria (2014) who reported that the nutritional content of corn was 1.49% ash, 6.8% moisture, 8.9% crude protein, 4.47% crude fat, 1.38% crude fibre while the nutritional content of rice was 0.67% ash, 11.8% moisture, 7.2% crude protein, 0.9% crude fat, and 0.5% crude fibre. Furthermore, corn has a number of advantages as a feed grain such as relatively high digestibility, high energy source, and high palatability (Olaniyan 2015; Senti & Schaefer 1972). In addition, corn is used as a main feed source by many livestock producers. The grain or the whole plant is harvested to feed the animals; sometimes it is made into silage to become another source of feed for dairy and beef production (Nieuwenhof, 2003).

On the industrial front, corn is the most important raw material for industrial starch. Corn starch is a corn product much used in manufacturing ceramics, dyes, plastics, oil, paper, textiles, cosmetics, and pharmaceutical products (Orhun 2013; Senti & Schaefer, 1972).

1.2 Problem Statement

There is no commercial corn production for animal feed in Malaysia during the period from 2000-2014. Most corn produced in this country is sweet corn for human consumption. For animal consumption, Malaysia needs to import the corn grains from other producing countries such as the Argentina, Brazil, United States, Pakistan and France (FAOSTAT, 2017). Roth and Heinrichs (2001) reported that silage corn is an important animal feed in most of the world's livestock farms. The silage offers livestock farmers a high-quality product, a comparatively stable and palatable material of animal feed which is also readily digestible. Corn silage produces more energy per hectare than any other feed crops and its high energy as an animal feed is particularly beneficial for dairy cows. This is most critical for herds of cattle with a high yield and for companies that have problems in producing or purchasing a high-value silage crop. Corn silage with elevated energy content is also suitable for use in low-cost rations for fattening livestock. Production wise, it requires the involvement of fewer workers per ton compared to many other crops. It can extend the harvest time for the whole corn area and give the chance to save corn fields from damage. According to FAOSTAT (2017), corn is the highest component of Malaysia's corn imports compared to other goods and the importance of corn as a source of animal feed ingredient has been increasing year by year.

In adopting a zero-waste concept in sweet corn fields in Malaysia, the country's annual animal feed import bill of more than RM6.67 billion could be dramatically reduced (MOA, 2017). By exploiting the potential use of crop residues, especially those of animal feed crops, the post-harvest practice of burning the crop residues can also be avoided. It has been found that the plant biomass in the field after harvesting the corn cobs with the husk together and the cobs from the kernel shelling operation could be used as animal feed. The reason why corn can be categorised as a high-value crop is simply that the corn biomass can be profitably used for animal feed while the corn cob can be for human consumption as reported by (Olaniyan 2015; Nieuwenhof, 2003; Senti & Schaefer 1972).

To fully exploit the many potential derivative uses if corn, there is a need to create a database on the crop, particularly the physical and mechanical properties of sweet corn plant as such knowledge would be required to facilitate design engineers to create machines and equipment that are operationally more efficient and effective. Knowledge of all the mechanical properties of biological materials is necessary for the design of technological processes as mentioned by Szymanek. et. al. (2006). At the same time, there is a need to analyse the current status because corn has been planted in Malaysia for quite some time, but not on a large scale. Therefore, if

Malaysia is to embark on the cultivation of corn on a large scale, there is a need to consider the methods to be used, the terms of energy use in order to focus correctly on critical operations and the necessary tasks to ensure success. There is also the need to study options for mechanisation, which would be required for large scale cultivation of the corn crop.

Currently, there are no documented studies on the mechanisation index in typical sweet corn cultivation systems in Malaysia. Agriculture policy makers can use information on the level of machinery used at each level of sweet corn cultivation cycle in their task. Developing a comprehensive agricultural mechanisation plan for the country would be in line with the rapid modernisation and industrialisation of the country. These developments will be crucial for the success of large scale cultivation of corn in Malaysia. Most of the available harvesting machinery available in Malaysia from abroad for corn cobs are quite standard but the ones that are more critical is for both corn cobs and the animal feed at the same time. There is need a combine harvester that can collect the corn cobs and at the same time take biomass and then separate that during harvesting.

On the other hand, many energy expenditures will be involved, including selection, seed purchase, preparation of soil, planting, fertilisation, control, and removal of weeds, pest control, harvesting, irrigation, and post-harvest operations such as cutting and removing the remnants of the previous crop, transport, and marketing. These operations are managed using energy from various sources including human labour, machinery, fuel, fertiliser, chemical applications, and seeds. Essentially, the production capacity of crops is directly consumed in the operation of machinery and equipment, and indirectly through the application of fertilisers and chemicals used in agriculture. The timely availability of adequate energy is a prerequisite for timely completion of sweet corn production, which is essential to ensure maximum yield (Beckingham, 2007; Muazu et al., (2015). In order to maximise benefits, farmers must have the right mix of energy sources in time. Much of the energy inputs indicate noneconomic production and thus waste, which may lead to a reduction or loss of utility, an increase in global warming and some stress on the environment. In reality, very little energy (i.e fertiliser, and chemical applications) is required to reach the maximum level of productivity and ensure the required level of food sufficiency (Muazu et al., 2015).

Abadi et al., (2015), Ajabshirchi (2013), Abdi et al., (2012a,b), Banaeian and Zangeneh (2011), and Canakci et al., (2005) studied on energy in crop production are available that link energy flows to crop yields. However, the models currently available do not predict the maximum yield the farmer should expect from a given level of energy inputs. It is therefore desirable that the farmer has a user-friendly model that can predict the maximum expected yield from a given level of primary energy inputs (human labour, machinery, fuel, fertilisers, chemical applications, and seeds). This model can serve as a tool to assess the performance of previous corn cultivation and assess the level of underperformance so that appropriate remedial action can be taken to improve corn productivity in the future. To the best knowledge

of this research, to date, there has not been any study of energy that has achieved optimal energy input in the sweet corn cultivation system and is correlated to crop yields. As such, there should be particular application of intelligent models with high resolution such as Artificial Neural Network (ANN) model and Particle Swarm Optimisation (PSO).

In view of all these challenges, a comprehensive study on agricultural energy in the field of sweet corn cultivation to optimise the use of agricultural inputs would be beneficial for farmers as well as agricultural policy makers in the country. The results of the study when integrated into a computer programme will not only enhance our understanding of the potential impact of changes in the energy mix on sweet corn productivity but still, also give farmers the opportunity to make informed decisions in choosing the energy mix for maximum productivity of crops and ensure food security and poverty eradication among corn farmers. Sweet corn productivity should be significantly increased and costs lowered. Therefore, a user-friendly computing system is required to serve as a decision support system for farmers in their quest to achieve higher yield with less use of agricultural inputs.

1.3 Purpose and objectives of the Study

The goal of this research is about the development of an energy model for sweet corn cultivation system i.e. suitability of mechanized sweet corn cultivation in Malaysia. Therefore, the specific objectives of the current study are:

- 1. To determine the physical and mechanical properties of the whole sweet corn plant and its respective components.
- 2. To quantify the biomass potential of the cultivation and nutrition value of sweet corn in Malaysia
- 3. To determine the energy inputs and mechanisation status as well as production cost of sweet corn cultivation in Malaysia.
- 4. To develop model for predicting the product yield by using inputs energy consumption, and optimisation of results by using numerical methods.

1.4 Scope and limitation of the study

In Malaysia, there is no specific season for cultivating sweet corn look like rice but sweet corn cultivation takes place in cropping periods during the year. In addition, most of the researchers were collecting data on energy expenditures in fields using the questionnaire method (i.e. Pishgar Komleh et al., 2011a; Canakci, et al., 2005; Ozkan et al., 2004). While in this study, energy expenditures were collected based on direct measurement using Polar S810M Heart Rate Monitor which require great effort and high cost to measure energy expenditures. As a result, the data was collecting for three cropping periods during this study.

Sekinchan was selected as the place of commercial corn production in Malaysia. The selected farms in Sekinchan were based on a recommendation from the Integrated Agricultural Development Authority (IADA) North-West Selangor for being among the most productive areas in the irrigation scheme and having dedicated practicing in sweet corn cultivation.

In this study was quantified the performance of ANN-PSO models to estimate the potential sweet corn yield based on energy inputs in cultivating the crop due to a high accuracy in relation to prediction (Farjam et al., 2014; Lazzús, (2010); Lazzús, (2013). The best structures (5-15-15-1) and (5-10-8-1) of ANN-PSO model for predicted sweet corn cobs yield and biomass yield respectively were selected based on the highest coefficient of determination and the lowest value of the error (Farjam et al., 2014).

1.5 Contributions of research work

This study has succeeded in adding to the existing body of knowledge pertaining to the cultivation of sweet corn in Malaysia in particular and in other countries in general. The major contributions are as follows:

- 1. Highlight the importance of a holistic scientific approach in cultivating sweet corn for human food and animal feed production.
- 2. Provide detail and complete information and specifications on the plant physical and mechanical properties that are required in the design of agricultural field or processing machineries for sweet corn cultivation.
- 3. Provide detail and complete information on the potential feed value based on the caloric value and sugar content of the various components of a sweet corn plant.
- 4. Show holistically the extent of the use of energy in sweet corn cultivation and provide the possibility of optimising the energy usage in the respective field operation in order to maximise the cost benefit ratio.
- 5. Quantified the current mechanisation status in sweet corn cultivation in Malaysia and rank all the field operations according to their priorities for mechanisation based on Mechanisation Index and PCL-HRL-EGL Cartesian plot.
- 6. Development of models to predict sweet corn or biomass yields based on the use of farm inputs that will enable the farmers to predict potential yield they ought to achieve by using the inputs optimally.

1.6 Thesis layout

The thesis was divided into five chapters. Chapter one – Introduction, discusses the background of the corn crop, its production and importance. It discusses the problem statement and the gap in knowledge from previous works on the corn crop, why this research was important for Malaysia, purpose and objectives then, scope and limitation of the study. Chapter two presents literature reviewed on corn crop in terms of physical and mechanical properties, biomass material of sweet corn, energy analysis and cost, and yield modelling and energy inputs in sweet corn production. Chapter three discussed the experiments, materials and methods used in the conduct of the research from measure physical and mechanical properties, biomass material of sweet corn, energy analysis and cost, determination of mechanisation index for the cultivation, and development of sweet corn yield predictive model. Chapter four present results and discussions on experiments conducted from physical and mechanical properties, biomass material of sweet corn, energy analysis and cost, determination of mechanisation index for the cultivation, time and motion analysis of field operations, development of sweet corn yield predictive model, validation data, and sensitivity analysis of energy inputs on products yield. Chapter five presented conclusions and recommendations for further works on the sweet corn cultivation.

REFERENCES

- Abadi, S. A., Damghani, A. M., Aghayari, F., and Rezaee, M., (2015). Optimization of energy consumption in canola production using linear programming "A Case study in Kangavar county ", Iran. *International Journal of Farming and Allied Sciences*, 4(7), 564–570.
- Abdi, R., Hematian A., Shahamat, E. Z., and Bakhtiari, A. A., (2012a). Optimization of Energy Consumption Pattern in the Maize Production System in Kermanshah Province of Iran, *Research Journal of Applied Sciences, Engineering and Technology*, 4(15), 2548–2554.
- Abdi R., Taki, M., and Akbarpour, M., (2012b). An Analysis of Energy input-output and Emissions of Greenhouse Gases from *Agricultural*. *International Journal of Natural and Engineering Sciences*, 6(3), 73–79.
- Ajabshirchi, Y. (2013). Energy Input-Output, Optimization of Energy Consumption with DEA Approach for Corn Silage Production in Iran, *International Journal of Agriculture and Crop Sciences*, 5(1), 80-88.
- Akbar H., Miftahullah, Jan M., Jan A., and Ihsannullah (2002). Yeild Potential of Sweet Corn as Influenced by Different Levels of Nitrogen and Plant Population. *Asian Journal of Plant Sciences*. 1(6), 631-633.
- Akritidis, C. B. (1974). The mechanical characteristics of maize stalks in relation to the characteristics of cutting blade. *Journal of Agricultural Engineering Research*, 19(1), 1-12.
- Alan, H., (2000) RULA Employee Assessment Worksheet. Cornell University.
- Anderson, G. A. and Bern, C. J. (1984). Dynamic Angle of Repose of Corncobs Placed by Three Mechanical Means. *Transactions of the ASAE*, 27(3), 935–936.
- Asgharipour, M. R., Mondani, F., and Riahinia, S. (2012). Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province. *Energy*, 44(1), 1078–1084.
- Assareh, E., Behrang, M. A., Assari, M. R., and Ghanbarzadeh, A. (2010). Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. *Energy*, 35(12), 5223–5229.
- Aviara, N.A., Power, P. P., & Abbas, T. (2013). Moisture-dependent physical properties of Moringa oleifera seed relevant in bulk handling and mechanical processing. Industrial Crops & Products, 42, 96–104.
- Banaeian, N., and Zangeneh, M. (2011). Study on energy efficiency in corn production of Iran. *Energy*, 36(8), 5394–5402.

- Barak, S., Yousefi, M., Maghsoudlou, H., and Jahangiri, S. (2016). Energy and GHG emissions management of agricultural systems using multi objective particle swarm optimization algorithm: a case study. *Stochastic Environmental Research* and Risk Assessment, 30(4), 1167–1187.
- Barros-Rios, J., Romaní, A., Garrote, G., and Ordas, B. (2015). Biomass, sugar, and bioethanol potential of sweet corn. *GCB Bioenergy*, 7(1), 153–160.
- Batos, A., Ruepp, M., Jahr, A., Corves, B. (2015). Determination of the properties of cereal stalks when being bent and cut with the aid of a universal test bench. *landtechnik* 70(4), 84–96
- Beckingham, C. (2007) *Sweet corn growing*. NSW Government, Department Primary Industries. Albury, Australia.
- Börjesson, P. and Tufvesson, L.M. (2011). Agricultural crop-based biofuels resource efficiency and environmental performance including direct land use changes. *Journal of Cleaner Production*, 19(2–3), 108–120.
- Brown W., Zuber, M.S., Darrah, L. L. and Glover, D. V. (2001). National corn handbook, Origin, Adaptation, and Types of Corn, July(A publication of the National Corn Handbook Project Cooperative Extension Service, Iowa State University of Science and Technology and the United States Department of Agriculture cooperating.), Iowa, USA, 1–7.
- Burgess, M. H., Miller, P. R., and Jones, C. A. (2012). Pulse Crops Improve Energy Intensity and Productivity of Cereal Production in Montana, USA, *Journal of Sustainable Agriculture*, 36: 699–718.
- Canakci, M., M. Topakci, I. Akinci and A. Ozmerzi (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management, 46(4), 655–666.
- Capper, J. L., Berger, L., and Brashears, M. M. (2013). Animal Feed vs. Human Food: Challenges and Opportunities in Sustaining Animal Agriculture Toward 2050. Council for Agricultural Science and Technology, 53(53), 1–16.
- Coşkun, M. B., Yalçin, I., and Özarslan, C. (2006). Physical properties of sweet corn seed (Zea mays saccharata Sturt.). *Journal of Food Engineering*, 74(4), 523–528.
- Demirbas, M. F., Balat, M., and Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. *Energy Conversion and Management*, 50(7), 1746–1760.
- Demircan, V., Ekinci, K., Keener, H. M., Akbolat, D., and Ekinci, C. (2006). Energy and economic analysis of sweet cherry production in Turkey: A case study from Isparta province. *Energy Conversion and Management*, 47(13–14), 1761–1769.

- Dixon, J., Gulliver, A, and Gibbon, D. (2001). Chapter 2: Global Factors Influencing the Evolution of Farming Systems. Global Farming Systems Study: Challenges and Priorites to 2030, Sustainable Development Department, Food and Agriculture Organization (FAO), 10–17.
- Eberhart, R., and Kennedy, J. (1995). A New Optimizer Using Particle Swarm Theory, Sixth International Symposium on Micro Machine and Human Science, *IEEE*, 39 -43.
- Elhami, B., Akram, A., and Khanali, M. (2016). Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. *Information Processing in Agriculture*, 3(3), 190–205.
- Ertek, a., and Kara, B. (2013). Yield and quality of sweet corn under deficit irrigation. *Agricultural Water Management*, 129, 138–144.
- Esehaghbeygi, A., Hoseinzadeh, B., Khazaei, M., and Masoumi, A. (2009). Bending and Shearing Properties of Wheat Stem of Alvand Variety. *Applied Sciences*, 6(8), 1028–1032.
- Esengun, K., Gündüz, O., and Erdal, G. (2007). Input-output energy analysis in dry apricot production of Turkey. *Energy Conversion and Management*, 48(2), 592–598.
- Esfandiary, F., Aghaie, G., and Mehr, A. D. (2009). Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District, *World Academy of Science, Engineering and Technology*, 37(January), 32–35.
- Fang, X., Qun-jing, W., and Guo-li, L. (2012). Optimization Research of FOC based on PSO of Induction Motors. 15th International Conference on Electrical Machines and Systems (ICEMS), *IEEE Conference Publications*, Sapporo, Japan, 1-4.
- Farjam, A., Omid, M., Akram, A., and Fazel Niari, Z. (2014). A neural network based modeling and sensitivity analysis of energy inputs for predicting seed and grain corn yields. *Journal of Agricultural Science and Technology*, 16(4), 767–778.
- Fletcher, A., Moot, D. J., Stone, P., Box, P. O., Canterbury, L., and Fletchalincolnacnz, N. Z. E. (2016). Fertiliser P effects on biomass partitioning and quality of sweet corn in a cool temperate environment, *Proceedings of the 4th International Crop Science Congress*. Brisbane, Australia, 3–7.
- Flores, E. D., Cruz, R. S. M. Dela, and Antolin, M. C. R. (2016). Environmental performance of farmer-level corn production systems in the Philippines. *Agricultural Engineering International: CIGR Journal*, 18(2), 133–143.
- Food and Agriculture Organization Statistices (FAOSTAT) 2014, Retrived online @ http://www.faostat.fao.org/on 20 July 2017.

- Galedar, M. N., Tabatabaeefar, A., Jafari, A., Sharifi, A., and Rafiee, S. (2008). Bending and Shearing Characteristics of Alfalfa Stems. *Agricultural Engineering International: the CIGR Journal*, X, 1-9.
- Ghorbani, R., Mondani, F., Amirmoradi, S., Feizi, H., Khorramdel, S., Teimouri, M. and Aghel, H. (2011). A case study of energy use and economical analysis of irrigated and dryland wheat production systems. *Applied Energy*, 88(1), 283–288.
- Gregg, J. S., and Smith, S. J. (2010). Global and regional potential for bioenergy from agricultural and forestry residue biomass. *Mitigation and Adaptation Strategies for Global Change*, 15(3), 241–262.
- Gupta, R.A., Singh S., Sharda V., (2008). Study on Pull Force for Cotton Stalk and its Relation with Crop and Soil Parameters. *Journal of the Institution of Engineers* (*India*): Agricultural Engineering Division 89:35-39.
- Heinzowa T., and R. S. J. Tol (2003). Prediction of crop yields accross four climmate zones in Germany: an artificial neural network approach, (October 2003). Retrieved from hamburg: Centre for Marine and Climate Research/Hamburg University.
- Hematian A., A.A. Bakhtiari, O. Yaghubi and E. Zarei-shahamat. (2013). Optimization of Energy Consumption in Sugar-Beet Production Using Genetic Algorithm "A Case study in Kermanshah Province, Iran", International journal of Agronomy and Plant Production, 4(6), 1351–1356.
- Hignett, S., and McAtamney, L. (2000) Rapid Entire Body Assessment (REBA). *Applied Ergonomics*, Vol 31(2), 201-205.
- Hua, F., Yangyang, L., Cong, F., Peishu, H., and Kaiyong, W. (2016). Energy-Use Efficiency and Economic Analysis of Sugar Beet Production in China: A Case Study in Xinjiang Province. *Sugar Tech*, 18(3), 309–316.
- Igathinathane, C., Womac, A. R., Sokhansanj, S., and Pordesimo, L. O. (2004). Vertical mass and moisture distribution in standing corn stalks. *ASAE Annual International Meeting 2004*, 300(4).
- Igathinathane, C., Womac, A. R., Sokhansanj, S., and Pordesimo, L. O. (2006). Mass and Moisture Distribution in Above-ground Components in Standing Corn Plants, *Transactions of the ASABE*, 49(2006), 97–106.
- Javad T., Asghar M., and Naser Al. (2011). Some mechanical and physical properties of corn seed. *African Journal of Agricultural Research*, 6(16), 3691–3699.
- Jebaraj, S., and Iniyan, S. (2006). A review of energy models. *Renewable and Sustainable Energy Reviews*, 10(4), 281–311.

- Ji, B., Sun, Y., Yang, S., and Wan, J. (2007). Artificial neural networks for rice yield prediction in mountainous regions. *Journal of Agricultural Science*, 145, 249– 261.
- Jiang X., Haifeng L., Jun Y., Bo Li, and Zhao L. (2013). Forecasting Electrical Energy Consumption of Equipment Maintenance Using Neural Network and Particle Swarm Optimization, Hindawi Publishing Corporation, *Mathematical Problems in Engineering*, Volume 2013, Article ID 194730, 8 pages.
- Johnston, R. (1922). The Importance and Uses of Corn, South Dakota State University, USA, *Extension Circulars*. Paper 93.,
- Jonathan R. (1998). Sweet Corn Production. Extension Horticultural Specialist, Department of Horticultural Science, North Carolina Cooperative Extension Service, North Carolina State University, USA.
- Karaağaç,H.A., Aykanat S., Çakir B., Eren Ö., Turgut M.M., Barut B.B., Özturk H.H., (2011). Energy Balance of Wheat and Maize Crops Production in Haciali Undertaking. 11th International Congress on Mechanization and Energy in Agriculture Congress Turkey. 388-391.
- Karababa, E., and Coşkuner, Y. (2007). Moisture Dependent Physical Properties of Dry Sweet Corn Kernels. *International Journal of Food Properties*, 10(February 2015), 549–560.
- Kataria, R. (2014). Proximate Nutritional Evaluation of Maize and Rice Gluten Free Cereal. *IOSR Journal of Nursing and Health Science*.3(2), 1-6.
- Kaul, M., Hill, R. L., and Walthall, C. (2005). Artificial neural networks for corn and soybean yield prediction. *Agricultural Systems*, 85(1), 1–18.
- Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., and Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. *Energy Policy*, 35(11), 5692–5701.
- Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. *IEEE International Conference on Particle Swarm Optimization*, V 4, 1942-1948.
- Khashei-Siuki A., M. Kouchakzadeh and B. Ghahraman (2011). Predicting Dryland Wheat Yield from Meteorological Data Using Expert System, Khorasan Province, Iran, J. Agr. Sci. Tech., 13, 627–640.
- Khosruzzaman, S., Asgar, M. A., Rahman, K. M. R., and Akbar, S. (2010). Energy Intensity and Productivity in Relation to Agriculture - Bangladesh Perspective. Journal of Bangladesh Academy of Sciences, 34(1), 59–70.
- Kizilaslan, H. (2009). Input-output energy analysis of cherries production in Tokat Province of Turkey. *Applied Energy*, 86(7–8), 1354–1358.

- Kulkarni, R. V, Member, S., and Kumar, G. (2011). Networks : A Brief Survey, IEEE Transactions on systems, man, and cybernetics part c: *Applications and Reviews*, 41(2), 262–267.
- Lazzús, J. A. (2010). Fluid Phase Equilibria Estimation of solid vapor pressures of pure compounds at different temperatures using a multilayer network with particle swarm algorithm, *Fluid Phase Equilibria*, 289, 176–184.
- Lazzús, J. A. (2013). Neural network-particle swarm modeling to predict thermal properties. *Mathematical and Computer Modelling*, 57(9–10), 2408–2418.
- Leong, C O., (2004). Comparative performance of two sweetcorn varieties Mas Madu and Taiwan Supersweet. *Journal of Tropical Agricultural and Food Science*, 32(2), 141–146.
- Lizotte, P.-L., Savoie, P., and De Champlain, A. (2015). Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada. *Energies*, 8(6), 4827– 4838.
- Lorzadeh Sh., A.Mahdavidamghani, M.R. Enayatgholizadeh and M. Yousefi. (2012). Reasearch of Energy use efficiency for maize production systems in Izeh, Iran. *Acta Agriculturae Slovenica*, 99(2), 137–142.
- Mahmood, W. J. W., (2006). Developing Malaysian seed industry: Prospects and challenges, *Economic and Technology Management Review*, 1(1), 51–59.
- Mandal, K. ., Saha, K. ., Ghosh, P. ., Hati, K. ., and Bandyopadhyay, K. . (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. *Biomass and Bioenergy*, 23(5), 337–345.
- Mani, I., P. Kumar, J. S. Panwar, and K. Kant (2007). Variation in energy consumption in production of wheat-maize with varying altitudes in hilly regions of Himachal Pradesh, India. *Energy*, 32(12), 2336–2339.
- Marrit Van den Berg M., H. Hengsdijk, J. Wolf, M.K. Van Ittersum, W. Guanghuo and R.P. Roetter. (2007). The impact of increasing farm size and mechanization on rural income and rice production in Zhejiang province, China. *Agricultural Systems*, 94(3), 841–850.
- Migliorini, M., C. Cherubini, M. Mugelli and G. Gianni (2011) Relationship between the oil and sugar content in olive oil fruits from Moraiolo and Leccino cultivars during ripening. *Scientia Horticulturae*. 129 (1) 919–921.
- Ministry of Agriculture (MOA) (2017). Department of statistics, Malaysia 2015 and 2016.
- Miu, P. (2016). *Combine Harvesters Theory, Modeling, and Design*. © by Taylor and Francis Group, LLC., New York, USA.

- Mobtaker, H. G., Keyhani, A., Mohammadi, A., Rafiee, S., and Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, *Ecosystems and Environment*, 137(3–4), 367–372.
- Mohammadi, A., Rafiee, S., Mohtasebi, S. S., and Rafiee, H. (2010). Energy inputs yield relationship and cost analysis of kiwifruit production in Iran. *Renewable Energy*, 35(5), 1071–1075.
- Mohammadi A., and M. Omid. (2010). Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. *Applied Energy*, 87(1), 191–196.
- Mohsenin, N. N. (1986). *Physical properties of plant and animal materials*. New York, USA, Gordon and Breach Science Publishers.
- Mousavi-Avval, S. H., Rafiee, S., Jafari, A., and Mohammadi, A. (2011a). Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. *Journal of Cleaner Production*, 19(13), 1464–1470.
- Mousavi-Avval, S. H., Rafiee, S., Jafari, A., and Mohammadi, A. (2011b). Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. *Applied Energy*, 88(11), 3765–3772.
- Muazu, A., A. Yahya, W.I.W. Ishak, S. Khairunniza-Bejo (2014) Yield Prediction Modeling Using Data Envelopment Analysis Methodology for Direct Seeding, Wetland Paddy Cultivation. Agriculture and Agricultural Science Procedia 2 (1) 181 – 190.
- Muazu, A., A. Yahya, W.I.W. Ishak, S. Khairunniza-Bejo (2015). Energy audit for sustainable wetland paddy cultivation in Malaysia. *Energy*. 87 (1) 182-191.
- Nabavi-Pelesaraei, A., Abdi, R., and Rafiee, S. (2016). Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. *Journal of the Saudi Society of Agricultural Sciences*, 15(1), 38–47.
- Nassiri, S. M., and Singh, S. (2009). Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique. *Applied Energy*, 86(7–8), 1320–1325.
- Nickabadi A., M. M. Ebadzadeh and R. Safabakhsh. (2011). A Novel Particle Swarm Optimization Algorithm with Adaptive Inertia Weight. *Applied Soft Computing Journal*, 11(4), 3658–3670.
- Nieuwenhof, P. (2003). Modeling of the energy requirements of a non-row sensitive corn header for a pull-type forage harvester.Unpublished PhD thesis, University of Saskatchewan, Saskatchewan, CANADA.

- Nkakini S.O., M.J. Ayotamuno, S.O.T. Ogaji and S.D. Probert (2006). Farm mechanization leading to more effective energy-utilization for cassava and yam cultivation in River State, Nigeria. *Applied Energy*, 83(12), 1317–1325.
- Odabas, M. S., Leelaruban, N., Simsek, H., and Padmanabhan, G. (2014). Quantifying impact of droughts on barley yield in North Dakota, USA using multiple linear regression and Artificial Neural Network. *Neural Network World*, 24(4), 343–355.
- Olaniyan, A. B. (2015). Maize : Panacea for hunger in Nigeria. *African Journal of Plant Science*, 9(March), 155–174.
- Omid, M., Ghojabeige, F., Delshad, M., and Ahmadi, H. (2011). Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis. *Energy Conversion and Management*, 52(1), 153–162.
- Ommani, A. R. (2011). Productivity of energy consumption in agricultural productions: A case study of corn farmers of Ahwaz Township, Iran. *African Journal of Agricultural Research*, 6(13), 2945–2949.
- Orhun, E. (2013). Maize for Life. *International Journal of Food Science and Nutrition Engineering*, 3(2), 13–16.
- Orłowski M .(2000). Field crop cultivation. Sweetcorn, Polish language, 383-386,.
- Ozkan, B., Akcaoz, H., and Karadeniz, F. (2004). Energy requirement and economic analysis of citrus production in Turkey. *Energy Conversion and Management*, 45(11–12), 1821–1830.
- Pachepsky, Y. a., Timlin, D., and Varallyay, G. (1996). Artificial Neural Networks to Estimate Soil Water Retention from Easily Measurable Data. *Soil Science Society of America Journal*, 60(3), 727.
- Pahlavan, R., Omid, M., and Akram, A. (2012). Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. *Energy*, 37(1), 171–176.
- Pathak, B.S., (1986). Energy demand growth in punjab agriculture and the changes in agricultural production. Energy in Agriculture, 4 (1) 67-78.
- Pham D. T., and Xing L. (1995). *Neural Networks for Identification; Prediction and Control*. British, London, Springer-Verlag London.
- Pimentel, D. (2009). Energy inputs in food crop production in developing and developed nations. *Energies*, 2(1), 1–24.
- Pishgar- Komleh, S. H., Ghahderijani, M., and Sefeedpari, P. (2012). Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. *Journal of Cleaner Production*, 33, 183–191.

- Pishgar Komleh, S.H., A. Keyhani, Sh. Rafiee and P. Sefeedpary (2011a). Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. *Energy*, 36(5), 3335–3341.
- Pishgar Komleh, S.H. Omid M and Keyhani A. (2011b). Study on Energy use Pattern and Efficiency of Corn Silage in Iran by using Data Envelopment Analysis (DEA) Technique, *International Journal of Environmental Sciences*, 1(6), 1094–1107.
- Pradhan, R. C., Naik, S. N., Bhatnagar, N., and Swain, S. K. (2008). Moisturedependent physical properties of Karanja (Pongamia pinnata) kernel. *Industrial Crops and Products*, 28(2), 155–161.
- Prasad, J., and Gupta, C. P. (1975). Mechanical properties of maize stalk as related to harvesting. *Journal of Agricultural Engineering Research*, 20(1), 79–87.
- Ranum, P., Peña-Rosas, J. P., and Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105–112.
- Rathke, G. W., Wienhold, B. J., Wilhelm, W. W., and Diepenbrock, W. (2007). Tillage and rotation effect on corn-soybean energy balances in eastern Nebraska. *Soil* and *Tillage Research*, 97(1), 60–70.
- Remison, S. U. (2005). Arable and vegetable crops, Nigeria, Benin City, Gift-Press Associates.
- Rogers, B. T., Stone, P. J., Shaw, S. R., and Sorensen, I. B. (2000). Effect of sowing time on sweet corn yield and quality. *Agronomy*, New Zealand, 30, 55–61.
- Roth, G. W., and Heinrichs A. J. (2001). Corn Silage Production and Management, Retrieved from https://extension.psu.edu/.
- Rosegrant, M.W., Fernandez, M., Sinha, A., Alder, J., Ahammad, H., de Fraiture, C., Eickhout, B., Fonseca, J., Huang, J., Koyama, O., Omezzine, A.M., P., P., Ramirez, R., Ringler, C., Robinson, S., T., and P., van Vuuren, D. and Yana-Shapiro, H. (2009). Looking into the future for agriculture and AKST (Agricultural Knowledge Science and Technology). In McIntyre, B.D., Herren, H.R., Wakhungu, J. and Watson, R.T. (eds). Agriculture at a Crossroads. pp.307–376. Washington, DC, Island Press.
- Safa. (2011). Determination and Modelling of Energy Consumption in Wheat Production Using Neural Networks. (PhD's thesis), Lincoln University, Canterbury, New Zealand.
- Safa, M., and Samarasinghe, S. (2011). Determination and modelling of energy consumption in wheat production using neural networks: "A case study in Canterbury province, New Zealand." *Energy*, 36(8), 5140–5147.

- Saleh, G. B., Alawi, S. A. S., and Panjaitan, K. (2002). Performance, correlation and heritability studies on selected sweet corn synthetic populations. *Pakistan Journal of Biological Sciences*, 5(3), 251-254.
- Samavatean N., S. Rafiee and H. Mobli (2011). An Analysis of Energy Use and Estimation of a Mechanization Index of Garlic Production in Iran. *Journal of Agricultural Science*, 3(2), 198–205.
- Sami M., M. Javad and M. Almassi (2014). Analysis of energy and greenhouse gas balance as indexes for environmental assessment of wheat and maize farming: a case study. *Acta Agriculturae Slovenica*, 103(2), 191–201.
- Sefeedpari P., S. Rafiee, S. H. Pishgar Komleha and M. Ghahderijani. (2012). A source-wise and operation-wise energy use analysis for corn silage production, a case study of Tehran province, Iran. *International Journal of Sustainable Built Environment*, 1(2), 158–166.
- Seifi, M. R., and Alimardani, R. (2010a). Comparison of moisture-dependent physical and mechanical properties of two varieties of corn (Sc 704 and Dc 370). *Australian Journal of Agricultural Engineering*, 1(5), 170–178.
- Seifi, M. R., and Alimardani, R. (2010b). The Moisture Content Effect on Some Physical and Mechanical Properties of Corn (Sc 704). *Journal of Agricultural Science*, 2(4), 125–134.
- Senti, F. R., and Schaefer, W. C. (1972). Corn its Importance in Food, Feed, and Industrial Uses, Illinois, USA, Presented at the Seventh International Working and Discussion Meetings of the International Association for Cereal Chemistry 17(11), 352–356.
- Shafique Q. M., N. Amjad, R.A. Dayo and G. Jarwar (2015). Energy Requirement and Energy Efficiency for Production of Maize Crop, *European Academic Research*, 2(11), 14609–14614.
- Shi, Y., and Eberhart, R. (1998). A Modified Particle Swarm Optimizer, *IEEE*, 69–73.
- Singh, G., Singh, S., and Singh, J. (2004). Optimization of energy inputs for wheat crop in Punjab. *Energy Conversion and Management*, 45(3), 453–465.
- Singh, H., Mishra, D., and Nahar, N. M. (2003). Energy use pattern in production agriculture of atypical village in arid zone, India - part II. *Energy Conversion and Management*, 44, 1053–1067.
- Singh H., D. Mishra, and N.M.Nahar (2004). Energy use pattern in production agriculture of a typical village in arid zone India: Part III. *Energy Conversion and Management*, 45, 2453–2472.

- Sobukola, O. P., Kajihausa, O. E., Onwuka, V. I. and Esan, T. A. (2013). Physical properties of high quality maize (Swam 1 variety) seeds (Zea mays) as affected by moisture levels. *African Journal of Food Science*, 7(1), 1–8.
- Stone, P. J., Sorensen, I. B., and Reid, J. B. (1998). Effect of plant population and nitrogen fertiliser on yield and quality of supersweet corn. *Proceedings of the 28th Annual Conference of the Agronomy Society of New Zealand*, 28, 1–5.
- Stone P., Pearson A., Sorensen I. and Rogers B. (2000). Effect of row spacing and plant population on maize yield and quality. *Agronomy N.Z.*, (30), 67–75.
- Sudheer, C., and Mathur, S. (2012). Particle swarm optimization trained neural network for aquifer parameter estimation. *KSCE Journal of Civil Engineering*, 16(3), 298–307.
- Sulzbacher L. and J. Rathbauer (2014). Maize cobs for energetic use Properties and challenges as fuel for small scale combustion, *International Conference of Agricultural Engineering, Zurich*, 6–10.
- Szymanek, M., Bohdan Dobrzański jr., Ignacy Niedziólka., Rafal Rybczyński. (2006). Sweet Corn Harvest and Technology Physical Properties and Quality (Lublin, Po). Lublin, Poland, B. Dobrzanski Institute of Agrophysics of Polish Academy of Sciences.
- Szymanek, M. (2009). Influence of sweet corn harvest date on kernels quality, *RES*. *AGR. ENG*.,55(1), 10–17.
- Szymanek, M., Tanaś, W., and Kassar, F. H. (2015). Kernel Carbohydrates Concentration in Sugary-1, Sugary Enhanced and Shrunken Sweet Corn Kernels. *Agriculture and Agricultural Science Procedia*, 7, 260–264.
- Taki M., H.G.Mobtaker and N. Monjezi (2012). Energy input output modeling and economical analyze for corn grain production in Iran, *Elixir Agriculture*, 52, 11500–11505.
- Ünler, A. (2008). Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025. *Energy Policy*, 36(6), 1937–1944.
- Warman, P. R., and Havard, K. A. (1998). Yield , vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. *Agriculture, Ecosystems and Environment*, 68, 207–216
- Xiong, S., Zhang, Y., Zhuo, Y., Lestander, T., and Geladi, P. (2010). Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties. *Renewable Energy*, 35(6), 1185–1191.

- Xu L., P. Binrong, Y. Gaohong, M. Xixue, L. Yongan, Z. Zongchen and Z. Zhou. (2014). Effects of Ridge-planting Pattern on Agronomic Traits, Quality and Yield of Sweet Corn in South China, *Bulgarian Journal of Agricultural Science*, 20(1), 145–149.
- Yadav S.N., R. Chandra, T. K. Khura and N. S. Chauhan (2013). Energy input-output analysis and mechanization status for cultivation of rice and maize crops in Sikkim. *Agricultural Engineering International: CIGR Journal*, 15(3), 108–116.
- Yousefi, M., Damghani, A. M., and Khoramivafa, M. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. *Science of the Total Environment*, 493, 330–335.
- Zhang, G., Eddy Patuwo, B., and Y. Hu, M. (1998). Forecasting with artificial neural networks:: The state of the art. *International Journal of Forecasting*, 14(1), 35– 62.
- Zhang, Y., Ghaly, E., and Li, B. (2012). Physical properties of corn residues, *American Journal of Biochemistry and Biotechnology*, 8(2), 44–53.
- Zhao, Z., Chow, T. L., Rees, H. W., Yang, Q., Xing, Z., and Meng, F. R. (2009). Predict soil texture distributions using an artificial neural network model. *Computers and Electronics in Agriculture*, 65(1), 36–48.