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Road traffic accidents are global concerns since they affect human life, economy, and 

road transportation systems. Rapid information acquisition and insight discovery are 

key tasks in transportation management. Specifically, extraction of geometric road 

features such as slopes and superelevation are essential information to understand the 

effects of road geometry on road traffic accidents. However, to understand these 

effects clearly and accurately, proper modeling techniques should be used. This study 

aims to develop methods to extract geometric road features (e.g., vertical gradients, 

superelevation, width, design speed) and establish associations between those features 

and road traffic accidents including frequency and accident severity. There was a need 

for efficient segmentation algorithm, optimization strategy, feature extraction and 

classification, and robust statistical and computational intelligence models to 

accomplish the set aims. Experimental results regarding road geometry extraction 

indicated that the proposed methods could achieve relatively high accuracy (~ 85% - 

User’s Accuracy) of road detection from airborne laser scanning data. Our method 

improved the overall accuracy of classification by 7% outperforming the supervised 

𝑘 nearest neighbour method. In addition, the results also showed that the proposed 

hierarchical classification method could extract geometric road elements with an 

average error rate of 6.25% for slope parameter and 6.65% for superelevation 

parameter, and it is transferable to other regions of similar environments. On the other 

hand, the geometric regression model predicted the number of accidents in the North-

South Expressway with a reasonable accuracy (R2 = 0.64). This model also could 

identify the most influential factors contributing to the number of accidents. 

Experiments on deep learning models showed that the recurrent neural network 

performs better than the feedforward neural networks, statistical bayesian logistic 

regression, and convolutional neural networks. This study also suggests that transfer 

learning could improve the forecasting accuracy of the injury severity by nearly 10%. 
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PERMODELAN GEOMETRI JALAN DAN KEMALANGAN LALULINTAS 
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Kemalangan jalan raya adalah kebimbangan global kerana ia mempengaruhi 

kehidupan manusia, ekonomi, dan sistem pengangkutan jalan raya. Pemerolehan 

maklumat yang cepat dan penemuan wawasan adalah tugas utama dalam pengurusan 

pengangkutan. Khususnya, pengekstrakan ciri-ciri jalan geometri seperti cerun dan 

penyempurnaan adalah maklumat penting untuk memahami kesan geometri jalan raya 

pada kemalangan jalan raya. Walau bagaimanapun, untuk memahami kesan-kesan ini 

dengan jelas dan tepat, teknik pemodelan yang betul harus digunakan. Kajian ini 

bertujuan untuk membangunkan kaedah untuk mengekstrak ciri-ciri jalan geometri 

(cth., Kecerunan menegak, superelevasi, lebar, kelajuan reka bentuk) dan 

mewujudkan persatuan antara ciri-ciri dan kemalangan jalan raya termasuk kekerapan 

dan keterukan kemalangan. Terdapat keperluan untuk algoritma segmentasi yang 

berkesan, strategi pengoptimuman, pengekstrakan dan klasifikasi ciri, dan model 

perisikan statistik dan komputasi yang mantap untuk mencapai matlamat yang 

ditetapkan. Hasil eksperimen mengenai pengekstrakan geometri jalan menunjukkan 

bahawa kaedah yang dicadangkan dapat mencapai ketepatan yang agak tinggi (~ 85% 

- Akurasi Pengguna) pengesanan jalan dari data pengimbasan laser udara. Kaedah 

kami meningkatkan ketepatan keseluruhan klasifikasi sebanyak 7% yang melebihi 

kaedah jiran terdekat yang diselia. Di samping itu, keputusan juga menunjukkan 

bahawa kaedah klasifikasi hierarki yang dicadangkan dapat mengekstrak unsur jalan 

geometri dengan kadar kesilapan purata 6.25% untuk parameter cerun dan 6.65% 

untuk parameter superelevasi, dan ia boleh dipindahkan ke kawasan lain yang serupa 

persekitaran. Sebaliknya, model regresi geometri meramalkan bilangan kemalangan 

di Lebuhraya Utara-Selatan dengan ketepatan yang munasabah (R2 = 0.64). Model ini 

juga dapat mengenal pasti faktor-faktor yang paling berpengaruh yang menyumbang 

kepada bilangan kemalangan. Eksperimen dalam model pembelajaran mendalam 

menunjukkan bahawa rangkaian neural berulang lebih baik daripada rangkaian saraf 
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feedforward, regresi logistik bayesian statistik, dan rangkaian saraf convolutional. 

Kajian ini juga menunjukkan bahawa pemindahan pembelajaran dapat meningkatkan 

ketepatan ramalan keterukan cedera oleh hampir 10%. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

Transportation systems specifically road transport are highly essential to economic 

activities. They play a vital role in marketing products and providing citizens with ease 

of access to points of contact for business activities, health, education, and agriculture. 

Road transportation systems must be safe and efficient to keep the above services 

active. However, almost every road section has a significant risk of traffic accidents—

a primary global concern due to many fatalities and economic losses every year. For 

example in Malaysia, the recent statistics show that deaths per 100,000 people are 

nearly 24 for all road users (Global Status Report on Road Safety 2015). Mainly, 

expressways and highways in urban areas are potential sites of fatal traffic accidents. 

On an average, 18 people are killed daily nationwide in road accidents as per a survey 

conducted in 2015. In 2016, the number of fatalities jumped to 7,152 from 6,706 

deaths in the earlier year (Malaysian Road Transport Department, 2017). In addition, 

Malaysia had the highest fatality risk (per 100,000 population) among the Asian 

countries. The majority of road accident fatalities involve motorcyclists, making up 

50% of the total number of accidents (Manan and Várhelyi, 2012). Unless action is 

taken, the number of deaths is expected to increase in the coming years.   

Given all above, recent developments in laser scanning technology have improved 

spatial data acquisition in road environments. These developments have helped to 

build geometric road models that can help assessing road safety and make accurate 

and valid predictions on road traffic accidents. Laser scanning systems or LiDAR 

(Light Detection And Ranging) are the latest technology to capture the 3D geometry 

of various objects such as 3D point clouds on large surfaces accurately and densely.  

Furthermore, they offer rapid and cost-effective data acquisition about road corridors 

and surrounding environments.  Most of the road inventory information can be 

extracted from the original design of the roads. However, road geometric elements 

such as pavement roughness, vertical gradients, and horizontal curves change over 

time due to construction, degradation in road conditions, and vegetation growth 

(Shamayleh and Khattak, 2003). Apart from that, collecting data by conventional 

measurement methods are not safe, and the surveyor may not find safe sight distances 

to get readings necessary to calculate vertical grades and side slopes of the road 

(Uddin, 2008). The conventional measurement methods are relatively expensive to 

produce detailed topographic models and time-consuming. On the other hand, 

photogrammetry and optical satellite imagery have the disadvantages of poor 

visibility/ cloudy daytime, the relatively low accuracy of required topographic models, 

and computationally are not efficient to generate topographic maps due to the 
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requirements of collecting dense points distributed uniformly in the focus area (Uddin, 

2008).  

Therefore, LiDAR technology is a promising method for acquiring data about road 

corridors. In general, LiDAR sensors have higher spatial resolution than satellite-

based sensors, wider Field of View (FOV), and lower cost than traditional aerial 

photogrammetric and surveying methods for right projects. By evaluating specific 

height information in LiDAR data, along with high-resolution orthophotos, objects 

such as road can be distinguished efficiently from other objects. Overall, LiDAR data 

is practical for extracting road geometry and roadside features that many applications 

including traffic accident modeling can benefit (Lee and Mannering, 2002). Thus, 

developing methods that can extract accurately and rapidly road information from 

LiDAR data to improve road safety is highly crucial.  

One way to improve road safety is by developing accurate prediction models of traffic 

accidents using road geometry and sophisticated Machine Learning (ML) and 

statistical techniques. However, development of such models is not straightforward 

and needs careful analysis and optimization to be practical for transportation agencies.  

The research of geometric road modeling from LiDAR data has progressed a lot since 

the development of advanced LiDAR systems. Various algorithms, data processing 

workflows, and practical guidelines have been proposed by different researchers and 

showed a significant performance compared to the traditional methods (Poullis and 

You, 2010; Fix et al., 2016). The latest methods combine LiDAR data with other 

ancillary information (e.g., road centerline, road attributes, knowledge about road 

shape and geometry) in hierarchical forms to create accurate three-dimensional (3D) 

models of road sections (Holgado‐ Barco et al., 2015). A hierarchical model (or a 

model with multiple levels of processing) is defined as a data processing model that 

combines sub-models (usually different algorithms) at several processing stages to 

solve specific problems. For instance, in a study by Holgado‐ Barco et al. (2015), a 

hierarchical model was developed by combining segmentation algorithms and 

Principal Component Analysis (PCA) to model road geometry from mobile LiDAR 

data. These methods have shown promising advantages over traditional methods. 

However, their main limitation is the dependency on the accuracy and the 

completeness of the ancillary information used to obtain the road features. Thus, 

progress should be made to overcome such limitations and advance the road extraction 

algorithms, and such developments will open up new areas for transportation 

applications.  

The literature shows the momentous development of modeling approaches for 

predicting road traffic accidents including statistical and soft computing algorithms 

(Hosseinpour et al., 2014; Karlaftis and Vlahogianni, 2011; Pei et al., 2011). The 

traditional methods significantly focused on hand-crafted features identified by 

experts in the transportation field and used to model accident frequency and injury 

severity using statistical techniques such as Logistic Regression (LR) and Support 
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Vector Machine (SVM). However, as generating handcrafted features requires experts 

and time, researchers thought about alternatives such as Neural Networks (NN), 

Evolutionary Algorithms (EA) and developing powerful statistical models that can 

better handle accident data without expensive feature engineering (Yu et al ., 2014). 

A part of these developments, the availability of data and having powerful computing 

resources such as processing on GPUs (Graphical Processing Units) have led to 

rethinking about NN methods. Deep Learning (DL), a recent groundbreaking 

development in ML community, has shed light on using NN models more efficiently 

than before. DL allows computational models to learn hierarchal representations of 

data with multiple levels of abstraction at different processing layers. In addition, in 

limited data situations, Transfer Learning (TL) can be used in DL models to overcome 

over-fitting problems.  Overall, combining DL and TL with careful fine-tuning in a 

single workflow is expected to provide sufficient prediction power for models 

designed to simulate traffic accidents based on historical records.  

Since the above shows the importance of having robust tools to model road geometry 

for road safety assessment, the primary goal of this thesis is to investigate issues 

surrounding the development of methods that can accurately and efficiently model 

road geometry and make predictions on road traffic accidents at high-speed 

expressways. This first chapter serves as an overview of the entire thesis.  

Besides the state of the general topic and background of the study, it provides the 

statement of the problem, the gap of knowledge. The importance of the proposed 

research, the research questions, aims and research objectives, the thesis contribution, 

the scope of the topic, and outlines the order of information in the rest of this thesis. 

1.2 The Statement of Problem  

Everyone in this world wants to have safe transportation systems to travel from a place 

to another easily and securely.  However, today there are many issues and challenges 

making transportation systems less safe than they should be. Among these issues, rapid 

urbanization over various landscape forms, population growth and migration of people 

from rural to urban areas. Other challenges include lack of technical tools that can 

support road safety managers to simulate future scenarios and make better plans to 

solve problems related to road safety efficiently. If these problems continue, failure of 

transportation systems would significantly affect the stability and development of 

modern cities as transportation systems are the heart of the cities.  

Specifically, there are a need to construct 3D models for highways and establish 

relationships among road geometry features (e.g., vertical and horizontal curves, side 

slopes) and road traffic accidents to improve safety assessments for road 

transportation.   Research shows that using object-based methods (or OBIA—Object-

Based Image Analysis) which take into consideration not only the spectral 

information, but also other geometric, textural, and contextual information for 
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extracting features from data is more powerful than pixel-based methods (Gudex-

Cross et al., 2017). However, OBIA methods need careful optimization of the 

segmentation process and the choice of relevant features as well as rule sets that are 

transferable to other areas without significant loss of accuracy (Robb et al., 2015). 

Although many optimization methods have been proposed for OBIA, the proposed 

methods lack optimization of the two main steps of OBIA, segmentation, and 

classification at the same time. Choosing segmentation parameters that can produce 

the best the possible segmentation quality and classification accuracy will help 

producing more accurate and complete road features.  

On the other hand, technical tools are essential to make predictions for future scenarios 

of road safety. There are two main groups of predictive models namely, statistical 

(e.g., LR) and computational intelligence (e.g., NN). The former requires extensive 

engineering works and significant efforts to extract relevant features for accident 

frequency and injury severity predictions. The latter requires relatively large datasets 

for training and careful optimization of model’s hyper-parameters. NN due to limited 

data suffers from over-fitting, lack of generalization and computing the importance of 

accident predictors and modeling the temporal/contextual structures inherent in the 

accident data. The traditional feed-forward NN does not allow compositionality with 

the adequate flexibility to improve the generalization and predictive ability of the 

model. However, the recent DL methods allow compositionality and using accident 

data as sequential data allowing modeling their inherent temporal and contextual 

structures. With additional information such as spatial-temporal relationships among 

accident events, it is expected to improve the accuracy and generalization of the 

models. Additionally, the volume of traffic accident data usually plays a significant 

role in deciding a proper prediction modeling approach. With limited data (i.e., <500 

records), simple models (i.e., statistical models with fixed parameters) are often 

preferred. However, some sophisticated modeling approaches such as DL models have 

higher prediction capabilities and attract many attentions in recent years. Their 

implementation with limited data requires the development of sophisticated models 

with TL methods, which the traffic accident literature lacks.  

1.3 Research Objectives 

The master goal of this thesis is to contribute to the efficient road geometric modeling 

from LiDAR data and to the prediction of traffic accidents on highways. For being 

practical, this objective has to be split up into smaller and more specific goals, which 

may be organized into methodological aims as follows: 

1. To delineate road geometry in two dimensions (2D) using an integrated ACO 

and OBIA methods with a novel two-stage optimization strategy for the 

segmentation step.  

2. To extract road geometry (i.e., 3D) from mobile LiDAR data using a hierarchal 

classification technique that combines Mean Shift (MS) segmentation, SVM, 

and PCA.  
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3. To develop and validate a Geometric Regression (GR) model for predicting 

the frequency of traffic accidents using road geometry information.  

4. And, to develop and validate a Deep Learning approach using TL for 

forecasting the injury severity of road traffic accidents using historical accident 

records. 

 

 

1.4 Research Questions 

This thesis comprehensively addresses the following research questions: 

1. OBIA based requires optimizing segmentation parameters (e.g., scale, shape, 

compactness). In this step, an objective function is designed to judge a sub-

optimal combination of parameters that can achieve an accurate segmentation 

process as possible.  

 

 

However, it is not known if optimization of segmentation and classification 

processes at the same time will improve the performance of feature extraction or 

not? 

 

 

2. To what extent the integration of meta-heuristic optimization methods such as 

ACO and OBIA can improve modeling of road geometry. 

3. Can hierarchical classification (combination of several algorithms) process 

mobile LiDAR data efficiently for delineating 3D road geometric features such 

as vertical gradients and superelevation? 

4. GR is one of the modeling methods that can be used to model the frequency of 

traffic accidents. How efficient is this model for processing traffic accident 

data for the Malaysian context? 

5. DL due to data availability and improvements in computing power is getting 

popular for many applications. How much is the prediction power of DL for 

modeling road traffic accidents? In addition, can new NN architectures such 

as RNN and Convolutional Neural Networks (CNN) outperform the traditional 

feed-forward NN?   

6. Is TL an efficient method for modeling injury severity of traffic accidents of a 

limited volume data in the context of DL architectures or not? 

 

 

1.5 Thesis Contributions 

Significant efforts have been made in the literature on pursuing solutions for geometric 

modeling of roads from LiDAR data and advancing prediction models of road traffic 

accidents using both statistical and soft computing techniques. However, the existing 

studies still have some major concerns as discussed in Section 1.1 and Section 1.2. As 

a result, there is a need to develop new techniques or making improvements on the 



© C
OPYRIG

HT U
PM

 

6 

 

existing techniques to provide better solutions for road safety assessment based on 

road geometry.  

This thesis mainly contributes to the development of new methods for image 

segmentation, extracting road features in 2D and 3D from Airborne and Mobile 

LiDAR data, modeling accident frequency and injury severity using DL-based 

methods.  First, it develops a new optimization strategy for OBIA classification based 

on a two-stage optimization approach. The method optimizes the two basic steps of 

OBIA, namely, segmentation and classification, to realize accurate road extraction 

from LiDAR data. This is achieved by selecting an optimal scale parameter first to 

maximize class separability and optimal shape and compactness parameters to 

optimize the final image segments. 

The second contribution of this thesis is the development of a hybrid approach that 

combines ACO and OBIA-based feature extraction for LiDAR data classification and 

road geometry extraction. In this approach, ACO is used to find the best combination 

of features to use in OBIA for road extraction. In addition, since this approach only 

extracts 2D information of a road, it was necessary to develop a semi-automated 

approach for delineating 3D road geometry from mobile LiDAR data without 

information about vehicle trajectory, which the state-of-the-art methods lack. 

Third, this thesis then goes beyond just extracting information about roads from 

LiDAR data but further uses that information with some additional data about road 

traffics and environment to make predictions on traffic accidents. In particular, it 

develops a model based on GR for predicting traffic accident frequency. Furthermore, 

it also designs and implements models based on DL such as RNN and CNN to simulate 

the injury severity of traffic accidents utilizing the temporal structure of accident data. 

Finally, when data on traffic accidents are scarce, this thesis provides a model that can 

work based on TL concept to overcome the need for DL models for large datasets and 

to avoid overfitting problems. 

1.6 Scope of Study  

This study has three main scopes as follows:  

1. Only two types of LiDAR systems, airborne and mobile-based were studied 

for road geometry modeling, and other systems (e.g., terrestrial) were not 

investigated. The latter systems are efficient for detailed assessments of 

transportation assists (e.g., bridge, culvert, and tunnel) which is not the case of 

the current study.  

2. The validations of these models in this thesis were based on an area in 

Malaysia. No transferability to other countries has been investigated due to the 

non-availability of data and permission to access to police reports on traffic 

accidents elsewhere. However, various experiments and evaluations were 
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conducted, analyzed and discussed on a comprehensive data that have more 

than a thousand of historical records of traffic accidents.  

3. The data duration was from 2009 to 2015 due to the availability of the relevant 

data. 

 

 

1.7 Thesis Organization 

The thesis is split into five chapters.  

The first chapter introduces the research topic and gives a brief background of the 

study, the statement of the problem, research questions and objectives, thesis 

contribution and significance of the study. 

 

   

The second chapter provides an overview of the available models and discusses 

several important and relevant studies. It provides a cohesive review on several topics 

such as LiDAR, geometric road modeling, and traffic accident modeling.  

 

 

The third chapter explains the various steps of data processing and analysis, which 

makes up the newly proposed models for geometric road modeling and analyzing road 

traffic accident data.  

 

 

The fourth chapter discusses the results of the experiments and simulations 

conducted in the current research and presents evaluations of the proposed models on 

real datasets.  

 

 

The last chapter summarizes the main findings of the research and offers 

recommendations for future work.  
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