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This research was carried out to produce a composite material from sugar palm 

(Arengga Pinnata) yarn fibre as fibre reinforcement onto unsaturated polyester 

composites. Analysis of the curing characteristic of unsaturated polyester resin, the 

structural and morphological characteristics of sugar palm fibre, tensile strength of 

single sugar palm fibre and interfacial shear stress (IFSS) were studied. The gel time 

was decreased by up to 36% when 0.05% cobalt solution was used. Alkaline treatment 

using sodium hydroxide (NaOH) led to the enhancement of the single fibre tensile 

strength and the IFSS due to the internal morphological changes of the sugar palm 

fibres. The physical properties (water absorption, density and void content 

determination), mechanical properties (tensile, flexural, impact and compression), 

thermal (DMA and TGA) and morphological (SEM) properties of different sugar palm 

yarn fibre loadings from 10 to 50 wt.% composites was studied, followed by different 

orientations of fibres (45° and 90°) reinforced composites. From the experiment 

results, the percentage of water absorption increased as the sugar palm yarn fibre 

loading increased and reached the equilibrium of absorption on day 12. Increasing 

trends in the performance of tensile strength and flexural properties were shown for 

the yarn fibre loadings of up to 30 wt.%. However, a maximum impact strength and 

compression properties were achieved at 40 wt.% fibre loading. The thermal stability 

of the composites decreased as the fibre loading increased. The composites with 30 

wt.% of fibre loading and 0° fibre orientation exhibited maximum tensile and flexural 

properties, respectively. While maximum impact and compression properties found at 

40 wt.%, respectively. The experiment found the effect of treated sugar palm yarn 

fibre loading reinforced unsaturated polyester composites with 1% alkaline solutions 

decreased the physical, mechanical and thermal properties compared to the composites 

reinforced with untreated sugar palm yarn fibre. This is due to different interaction of 

single fibre and yarn fibre which affects the interfacial adhesion between the fibre with 

the matrix. The final 30 wt.% and 40 wt.% of fibres as reinforcement were chosen for 
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the hybridisation studies. Then, the ratio of reinforcement between the sugar palm yarn 

fibre and woven glass fibre was selected at 70/30, 60/40 and 50/50 wt.%, respectively, 

which equal to the volume of the mould. The physical, mechanical and thermal 

properties of the treated sugar palm yarn fibre hybrid composites were found to 

increase as the glass fibre loading increased up to 50/50 wt.% of fibre ratio for both 

30 wt.% and 40 wt.% of fibre loadings. This is due to better interfacial bonding and 

better chemical interaction between the sugar palm fibre, glass fibre and unsaturated 

polyester resin as matrix. The improvement on the mechanical and thermal properties 

also contributed by the synergistic effect from the addition of glass fibre loadings. 

Hence, the study findings will pave the way towards a greater usage of sugar yarn 

fibre as a reinforcement for the structural applications such as anti-roll bar in 

automotive industry, bicycle frame and furniture. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN KOMPOSIT POLIESTER TAK TEPU BERTETULANG 
GENTIAN SERABUT ENAU DAN KACA TENUNAN

Oleh 

MOHD NURAZZI BIN NORIZAN 

Julai 2018 

Pengerusi : Profesor Madya Khalina Abdan, PhD 
Fakulti : Kejuruteraan 

Penyelidikan ini dijalankan untuk menghasilkan bahan komposit daripada gentian 

serabut enau (Arengga Pinnata) sebagai tetulang gentian kepada komposit poliester 

tak tepu. Analisis ciri-ciri pengerasan resin poliester tak tepu, ciri-ciri struktur dan 

morfologi gentian enau, kekuatan tegangan serat enau, dan tegasan ricih antara muka 

(IFSS) telah dikaji. Tempoh pengegelan telah berkurang sehingga 36% apabila larutan 

kobalt 0.05% digunakan. Rawatan alkali dengan menggunakan natrium hidroksida 

(NaOH) telah membawa kepada peningkatan kekuatan tegangan serat dan IFSS yang 

disebabkan oleh perubahan morfologi dalaman gentian enau. Sifat-sifat fizikal 

(penyerapan air, ketumpatan, penentuan kandungan lowong), sifat-sifat mekanikal 

(kekuatan tegangan, lenturan, hentaman dan mampatan), sifat-sifat terma (DMA dan

TGA) dan sifat-sifat morfologi (SEM) pada gentian serabut enau yang berbeza muatan 

daripada 10 hingga 50 peratusan berat (% berat) komposit telah dikaji, diikuti dengan 

orientasi komposit bertetulang gentian yang berbeza (45° dan 90°). Daripada hasil 

eksperimen, peratusan penyerapan air meningkat apabila muatan gentian serabut enau 

meningkat dan mencapai keseimbangan penyerapan pada hari ke-12. Peningkatan 

trend dalam prestasi kekuatan tegangan dan sifat lenturan telah dicerap bagi muatan 

gentian serabut sehingga 30 % berat. Namun, kekuatan hentaman dan mampatan yang 

maksimum telah dicapai pada muatan gentian 40 % berat. Kestabilan terma komposit 

telah berkurang apabila muatan gentian meningkat. Komposit dengan muatan gentian 

sebanyak 30 % berat dan orientasi gentian 0° telah menunjukkan sifat tegangan dan 

lenturan yang maksimum. Manakala kekuatan hentaman dan mampatan yang 

maksimum didapati berada pada 40 % berat. Eksperimen mendapati kesan rawatan 

komposit poliester tak tepu bertetulang gentian muatan serabut enau dengan 1% 

larutan beralkali mengurangkan sifat-sifat fizikal, mekanikal dan terma berbanding 

komposit yang bertetulang gentian serabut enau tak terawat. Ini adalah disebabkan 

perbezaan interaksi oleh gentian tunggal dan tetulang gentian dimana memberi kesan 

terhadap tegasan ricih antara muka di antara gentian dan matriks. Peratusan berat yang 
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terakhir sebanyak 30 % berat dan 40 % berat telah dipilih untuk kajian penghibridan. 

Nisbah tetulang antara gentian enau dan gentian kaca tenunan yang dipilih adalah 

70/30, 60/40 dan 50/50 % berat, yang bersamaan dengan isipadu acuan pembentuk. 

Sifat-sifat fizikal, mekanikal dan terma komposit hibrid gentian enau terawat telah 

didapati meningkat apabila muatan gentian kaca ditingkatkan sehingga 50/50 % berat 

daripada nisbah gentian untuk kedua-dua muatan gentian sebanyak 30 % berat dan 40 

% berat. Ini disebabkan pengikatan antara muka dan saling tindak balas kimia yang 

lebih baik antara gentian enau, gentian kaca, dan resin poliester tak tepu yang 

bertindak sebagai matriks. Penambahbaikan sifat-sifat mekanikal dan terma juga 

disumbangkan oleh kesan bersinergi daripada penambahan muatan gentian kaca. Oleh 

itu, hasil kajian akan dapat membuka jalan ke arah penggunaan gentian enau yang 

lebih meluas sebagai tetulang untuk aplikasi struktur sebagai contoh kit bar antigelong 

didalam industri automotif, kerangka basikal dan juga perabot.
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       CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

A composite is the combination of two or more elements in any form and for a variety 

of uses. The concept of composite materials is based on combining different materials 

for a new material with superior performance beyond that exhibited by their individual 

constituents. As a result, their high strength-to-weight and high stiffness-to-weight 

ratios can be tailored towards specific applications. Applications for composite 

materials have grown steadily throughout the years, penetrating and conquering newer 

markets.  

Modern established composite materials constitute a significant proportion of these 

engineered material markets, ranging from daily products to sophisticated niche 

applications. These advanced materials see use in construction, military, automotive 

and aerospace industries. Their technologies are especially attractive due to their 

advantages over legacy materials such as metal, as composites offer high specific 

strength, low density, light weight, enhanced corrosion and temperature capability. An 

added advantage would be their biodegradability (Ishak et al., 2013; Nair et al., 1996). 

In recent years, natural fibres have attracted interest for the reinforcement of polymer 

composites in low-cost engineering materials. The use of natural fibres as a potential 

replacement for synthetic fibres such as glass and carbon fibres in composites 

materials has intensified research recently due to environmental and economic factors. 

The primary advantages of natural fibres over synthetic fibres include abundance and 

relatively low cost, low mass and specific density, high specific strength and 

renewability and biodegradability (Mohanty et al., 2002). In the meantime, the present 

use of the term ‘biodegradable’ in natural fibre composites actually refers to the 
utilization of natural sources in the polymer industry, which could reduce dependence 

on petroleum resources and decrease industrial carbon dioxide (CO2) emissions 

(Sahari et al., 2013a). 

Natural fibres, when compared to synthetic fibres, generally have lower mechanical 

properties. These low mechanical properties are a major inhibitory when trying to 

develop high performance products. A few methods for increasing mechanical 

performance is to modify the interfacial adhesion, chemical structure of natural fibres 

and hybridise the natural fibres with synthetic fibres. One benefit of hybridisation is 

that the advantage of one type of fibre can overcome the disadvantages of the other 

one type of fibre.  
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A viable compromise between the higher material properties of synthetic fibres and 

the environmental benefits of natural fibres is found by utilizing both synthetic and 

natural fibres to create a hybrid fibre reinforced composite system. Material properties 

are also improved by the efficient arrangement of the structural numbers. The use of 

hybrid natural and synthetic fibre reinforced composites for structural applications has 

been shown to be feasible alternative to traditional synthetic structural materials. 

(Musch, 2008). As a result, a balance in cost, performance and sustainability may be 

reached through a proper composite material design.  

Natural fibre composites are essentially a plant fibre embedded within a thermoplastic 

or thermoset polymer. The density of these natural fibres is similar as their plastic 

counterparts, which are usually 40 to 50% lower than the density of glass fibre (Rajan 

and Curtin, 2015; Saba et al., 2014). Therefore, polymeric materials could be 

reinforced or filled without having significant effects on their density. Several types 

of natural fibres, such as kenaf fibre, oil palm fibre, sugar palm fibre, pineapple leaf 

fibre, banana fibre, flax, hemp, sisal, coir and jute fibre, have attracted the attention of 

scientists and technologists for their widespread applications.  

These fibres are used to reinforce thermoplastic polymer matrices such as polystyrene 

(PS), polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyurethane 

(PU) and so on. Phenolic, unsaturated polyester, vinyl ester and epoxy resin are for 

thermosetting polymer matrices.  

1.2 Problem statement 

Unsaturated polyester resins are an important class of high-performance engineering 

polymers used in numerous structural applications, primarily compression moulding 

(sheet moulding compounds), injection moulding (bulk moulding compounds), resin 

transfer moulding (RTM), pultrusion, filament winding and hand lay-up process 

(Vilas et al., 2001). To produce unsaturated polyester composite product, the 

determination of gel and curing time is a very important stage in the processing of 

unsaturated polyester resins, as in order to achieve a good quality of product, the 

curing reaction should occur in a controllable way (Jansen and Kraeger 2018). This is 

especially vital when using RTM or another complex shape is to be produced, as resin 

must be in working fluidic flow and unwanted fast cure must be observed in the 

equipment. Other than that, it is also important to take precautionary steps, especially 

in the estimation of mixing time, from the start of the initial mix until the resin is fully 

injected into the mould. These crucial steps include determining the right formulation 

mix of initiator and accelerator required to optimize the time needed before the resin 

starts to gel and harden within the required time.  

Furthermore, since the structural performance of natural fibre reinforced composites 

is dependent on the performance of fibres itself to maximize the efficiencies of stress 

transfer mechanism from the matrix to the fibres. The challenge of raw sugar palm 
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fibres is that it is randomly wrapped along with palm leaf ribs. If directly used, this 

may affect interaction with the chain of the matrix of composites. The tangling nature 

of sugar palm fibre itself becoming harder to be ignored. When the long fibres are in 

a tangling form, the possibility of the fibres to become randomly oriented is high 

especially after the infusion of resin into the mould and during the lay-up process. 

According to Miao and Shan (2011), short and randomly oriented fibre reinforced 

composite structures possess much lower mechanical properties than those made with 

oriented structures. Therefore, they are not suitable for use in structural applications 

in which mechanical performance is of primary importance.  

Composite materials using natural fibres which are environmentally friendly, 

biodegradable, reasonably strong, lightweight, hazard-free and abundant have 

potential for use in reinforcement materials. Despite the advantages listed, the main 

limitation of natural fibres, their hydrophilicity properties, potentially leads to 

deterioration of the physical, mechanical and thermal properties of the composites due 

to worst in the interfacial adhesion of natural fibres with the hydrophobic nature of 

synthetic fibres and matrix. Hydrophilic properties are a major drawback in terms of 

incompatibility between synthetic fibres and polymer matrices, which are 

hydrophobic in nature. Incompatibility will substantially affect the efficiency of 

applied stress between matrix and fibres.  

Synthetic fibres like glass, aramid and carbon fibre are widely used as reinforcement 

fibres in composites, which have been proven to be a good mechanical strength 

enhancer. The desired tensile strengths and modulus of glass fibres are visibly much 

higher than natural fibres. The disadvantages of synthetic fibre are that without proper 

handling, it may cause skin irritation, causing it to be dangerous to human health, and 

its lack of biodegradability (Van de Velde and Kiekens, 2001). However, differences 

in the characteristics of glass and natural fibres are important when their applications 

and costs are taken into account (Bledzki and Gassan, 1999). Synthetic and natural 

fibres have been used in reinforcing polymers in such a way that fibres with a 

promising strength and matrix will convey the applied stress to the fibre structures. 

This combination is called hybridisation of composite materials, which refers to two 

materials with different properties being combined to produce new materials with 

novel properties. 

1.3 Significance of Study 

1- Development of novel composites from sugar palm yarn fibre. 

2- A novel study on the interaction of untreated and treated sugar palm yarn fibre 

reinforced unsaturated polyester composites. 

3- A novel study on the interaction of the hybridisation mechanism involved 

with sugar palm yarn fibre with woven glass fibre reinforced unsaturated 

polyester composites.
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1.4 Objectives 

The specific objectives of this research are: 

1- To determine the curing characteristic of unsaturated polyester resin, chemical 

compositions and structural changes of untreated and treated sugar palm fibre, 

single fibre tensile and interfacial shear stress properties of untreated and 

treated single sugar palm fibre properties.  

2- To determine the effects of sugar palm yarn fibre loading reinforced 

unsaturated polyester composites on its physical, mechanical, thermal, and 

morphological properties with different fibre orientations (0°, 45° and 90°).   

3- To determine the effects of alkaline treatment of sugar palm yarn fibre 

reinforced unsaturated polyester composites on its physical, mechanical, 

thermal, and morphological properties.  

4- To determine the effects of hybridisation of sugar palm yarn/woven glass

fibres reinforced unsaturated polyester composites on its physical, mechanical, 

thermal, and morphological properties.  

1.5 Scope and limitations 

The fibre used is sugar palm fibre purchased from Hafiz Adha Enterprise at Kampung 

Kuala Jempol, Negeri Sembilan, and the thermosetting polymer used is unsaturated 

polyester resin purchased from CCP Composites Resins Malaysia Sdn. Bhd. The sugar 

palm fibre was yarned using a manual hand spinning machine with 2500 tex of 

twisting. The limitation of the machine on its capability to produce other than 2500 

tex because this machine was design specifically for 2500 tex due to physical 

characteristic of sugar palm fibre that has spike and very coarse to be twisted in lower 

tex. Unsaturated polyester was reinforced with sugar palm yarn fibre with various fibre 

loadings. Different fibre loadings that were prepared are 10 wt.%, 20 wt.%, 30 wt.%, 

40 wt.% and 50 wt.%. Sugar palm yarn fibre at 2500 tex needs better penetration of 

matrix in composite systems. Hence in this study was limited on using low viscosity 

of unsaturated polyester resin due to its ability to penetrate yarn’s internal structure. 

1.6 Thesis outline  

This thesis is structured into five chapters. The first chapter contains an overview of 

natural and synthetic fibres composites, the significance of research, highlights of the 

research problems, and finally the objectives, scope, and limitations of the research. 

Chapter two is an overview of the literature on natural fibres reinforced composites 

with focusing on sugar palm composites. Chapter three presents the overall research 

methodology for the overall structure of the research work. This chapter describes the 

materials, a specific approach in designing and planning the experimental design, 

experimental test procedures and standards. The following chapter four presents the 

results and discussion of the research works. Chapter four is divided into four sections, 
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covering the analysis on the properties of unsaturated polyester resin and sugar palm 

fibre, the effects of untreated sugar palm yarn fibre reinforced unsaturated polyester 

composites, the effects of fibre orientation, the effects of alkaline treatment to the fibre 

reinforced composites, and lastly the effects of hybridisation of sugar palm yarn fibre 

and woven glass fibre reinforced unsaturated polyester composites on the physical, 

mechanical, thermal and morphological properties. Finally, chapter five presents a 

summary of the research findings and recommendations for future works. 
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