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Flood inundation mapping is one of the efficient methods for prediction of flood hazard 
and risk areas for emergency response and city development planning. River discharge 
and flood depth are critical parameters in hydraulic modelling for accurate flood hazard 
estimation. However, limited availability of observed discharge and river morphologies 
data results in the erroneous calculation and imprecise flood simulation and forecasting. 
Several empirical equations have been developed in order to predict the discharge. But,
the impact of flood inundation mapping via minimum hydraulic variables has not been 
widely investigated. In addition, resampling techniques have been applied in order to 
increase the flood prediction; however, studies on the effect of resampled data with 
respect to the elevation of different land-use categories are limited.   

This study attempts to determine a suitable discharge equation and assess the errors of 
flood inundation mapping at the ungauged station. The study was carried out along 
Padang Terap River, Kedah Malaysia using Interferometric Synthetic Aperture Radar 
(IFSAR) and light detection and ranging (LiDAR) DEMs. Through utilisation of this 
dataset water surface elevation (WSE) was delineated via Manning, Dingman and 
Sharma, and Bjerklie’s equations. The Dingman and Sharma’s equation which employs 
observed data presented a significantly noble agreement with measured and predicted 
WSE, followed by Manning and Bjerklie equations with the similarity of 80%, RMSE 
value of 2% and relative error of around 13%.   

Next, the uncertainty of hydraulic variables was investigated via Bjerklie’s equation, 
while the sensitivity analysis was evaluated through Monte Carlo simulation. 
Furthermore, a method for calculation of discharge without ground data via GIS 
technique was proposed. In addition, the effect of applying normal depth and known 
water surface (W.S.) boundary conditions were examined and the flood extent was 
verified with TerraSAR-X and historical flood marks. The F-statistics value was found 
to be 0.64-0.66 for normal depth and known W.S. boundary condition, respectively. By 
utilising modified IFSAR and known W.S. boundary condition, the mean absolute error 
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(MAE), root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE) were 
found to be 0.261, 0.365 and 0.808.  

Quality of the IFSAR elevation data was assessed by comparing the output with observed 
Global Positioning System (GPS) and 15 cm resolution LiDAR on different land-use 
types. Results indicated that the LiDAR, original and the resampled IFSAR DEMs are 
correlated in elevation value about 90%. The equation was interpolated on the original 
and resampled IFSAR DEMs to improve the medium-resolution data for WSE 
delineation. Then, an additional sensitivity analysis was carried out at 95% confidence 
interval. The findings revealed that the optimize IFSAR5m is superior to the original DEM 
based on the MAE and RMSE values of 0.785 m and 1.071 m, respectively. WSE 
generated in HEC-RAS via different cross-section intervals (50, 100, 150 and 200 m) 
revealed that 100 m cross-section of the modified IFSAR DEM (MID1m) is the most 
suitable for flood extent mapping with MAE of 1.053 m.   

Overall, the novelty of this is attributed to its evaluation of the performance discharge 
equations for flood mapping, especially in a spatial context. Furthermore, the 
uncertainties obtained from the hydraulic variables utilised in the discharge equation 
should be recognized. Consequently, by considering that these errors contributed to the 
flood hazard maps, the prediction of the inundated area and water depth could be 
produced accurately, especially at the data-scarce areas. Moreover, this study contributes 
to development of novel methodological approach by estimating discharge without 
ground data observation on optimized DEM with limited data available. The outcome of 
this research may support the current flood modelling in mitigation planning and 
strategies.     



© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMETAAN GENANGAN BANJIR TEROPTIMUM MENGGUNAKAN 
INTEGRASI GIS DAN MODEL HIDRAULIK UNTUK LEMBANGAN SUNGAI 

TANPA TOLOK 

Oleh 

ERNIEZA SUHANA BINTI MOKHTAR 

Mei 2018 

Pengerusi: Biswajeet Pradhan, PhD 
Fakulti: Kejuruteraan 

Pemetaan banjir adalah salah satu cara yang berkesan untuk meramalkan bahaya banjir 
dan kawasan berisiko untuk tindak balas kecemasan dan perancangan pembangunan 
bandar. Pelepasan sungai dan kedalaman banjir adalah parameter penting dalam 
pemodelan hidraulik bagi membuat anggaran bahaya banjir dengan tepat. Walau 
bagaimanapun, pengehadan pelepasan air yang dicerap dan data morfologi sungai 
menyebabkan pengiraan yang salah dan simulasi banjir dan peramalan tidak tepat. 
Beberapa persamaan empirikal telah dibangunkan untuk meramal pelepasan air. Walau 
bagaimanapun, kesan pemetaan banjir menggunakan pembolehubah hidraulik secara 
minimum tidak diselidik dengan meluas. Di samping itu, teknik resampling telah 
digunakan untuk meningkatkan ramalan banjir, namun, kajian mengenai kesan data 
resampled berkenaan dengan ketinggian jenis penggunaan tanah berbeza adalah terhad.  

Kajian ini dijalankan untuk memastikan pemodelan pelepasan air yang sesuai dengan 
menilai kesilapan dalam menganggarkan aliran air di kawasan tanpa stesen cerapan. 
Kajian ini dijalankan di sepanjang Sungai Padang Terap, Kedah Malaysia menggunakan 
Interferometric Synthetic Aperture Radar (IFSAR) dan light detection and ranging
(LiDAR). Dengan ketinggian permukaan air dataset ini (WSE) telah digambarkan 
menggunakan persamaan Manning, Dingman dan Sharma, dan Bjerklie. Persamaan 
Dingman dan Sharma yang menggunakan data yang dicerap menunjukkan persetujuan 
yang sangat baik diikuti Manning dan Bjerklie dimana WSE yang diukur dan diramalkan 
mempunyai persamaan 80%, RMSE 2% dan ralat relatif sekitar 13%. 

Seterusnya, Untuk menyiasat ketidakpastian mengenai pembolehubah gabungan 
hidraulik yang digunakan dalam persamaan Bjerklie, simulasi Monte Carlo telah 
dilaksanakan. Tambahan lagi, kaedah untuk mengira pelepasan air tanpa data cerapan 
menggunakan teknik GIS dicadangkan. Selain itu, kesan penggunaan kedalaman biasa 
dan permukaan sempadan air yang diketahui (WS) diperiksa dan tahap banjir telah 
disahkan dengan TerraSAR-X dan tanda banjir bersejarah. Nilai F-statistik didapati 0.64-
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0.66 bagi kedalaman biasa dan permukaan sempadan air yang diketahui (W.S.) masing-
masing. Menggunakan IFSAR yang diubahsuai dan keadaan sempadan WS yang 
diketahui, kesilapan mutlak bermakna (MAE), kesilapan akar min kesilapan (RMSE) 
dan kecekapan Nash-Sutcliffe (NSE) didapati 0.261, 0.365 dan 0.808. 

Kualiti data ketinggian IFSAR dinilai dengan membandingkan output dengan sistem 
kedudukan global (GPS) bersama LiDAR resolusi 15 cm pada jenis guna tanah yang 
berlainan. Hasilnya menunjukkan bahawa LiDAR asal dan resampled IFSAR DEMs 
mempunyai korelasi dalam nilai ketinggian kira-kira 90%. Persamaan itu diinterpolasi 
pada data asal dan resampled IFSAR DEMs untuk memperbaiki data resolusi sederhana 
untuk penentuan WSE. Kemudian, analisis sensitiviti lain dilakukan pada selang 
keyakinan 95%. Penemuan menunjukkan bahawa pengoptimuman IFSAR5m lebih baik 
daripada DEM asal berdasarkan MAE dan RMSE masing-masing sebanyak 0.785 m dan 
1.071 m. WSE yang dijana di HEC-RAS menggunakan selang rentas (50, 100, 150 dan 
200 m) yang berlainan yang mendedahkan bahawa keratan rentas 100 m dari IFSAR 
DEM (MID1m) yang diubahsuai adalah yang paling sesuai untuk pemetaan luas banjir 
dengan MAE sebanyak 1.053 m. Hasil kajian ini dapat menyokong pemodelan banjir 
semasa dalam perancangan dan strategi mitigasi. 

Keseluruhan, novelti bagi tesis ini adalah kajian komparatif untuk menilai prestasi model 
pelepasan untuk pemodelan banjir, terutama dalam konteks spatial. Selain itu, dengan 
menentukan ketidakpastian pemboleh ubah hidraulik yang digunakan dalam persamaan 
pelepasan, kesilapan dalam menyediakan peta bahaya banjir di kawasan yang terhad 
mungkin dikurangkan. Selain itu, tesis ini menyumbang pendekatan metodologi baru 
dengan menganggarkan pelepasan tanpa pemerhatian data tanah pada DEM yang 
dioptimumkan dengan data terhad yang tersedia. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

At the present time, natural disasters such as landslides, earthquakes, drought, and floods 
have turn into catastrophic phenomena in different parts of the world, resulting in
causalities and property damages. These events are unpredictable since they occur 
unexpectedly. According to Pradhan and Youssef (2011), floods are the most devastating 
disasters occurring in rural and urban areas, typically with severe damages. A flood 
occurs when riverbanks are over-spilled and the water diverted to the floodplain zones 
in residence area, which is known to be damaging for public facilities and agricultural 
lands. Flood is categorised into three main types: coastal flood, flash flood, and river 
flood. Differentiating the type of flood depends on the rainfall, duration, and size of flood 
extent (Opolot, 2013). It is on record that floods in India occurred continuously with 
magnitude of more than 35,000 m3/s due to extreme precipitation, resulting in economic 
losses of over US$ 400 million in 2008 and 2011 (Jena et al., 2016). Due to the heavy 
rainfall and inadequate drainage design for the purpose of holding water in high volume, 
the water overflow from channel to dry surface was submerges underwater (Kaveckis 
and Bechtel, 2014). 

Common triggering factors such as storm surge, typhoon and tropical low pressure result 
in intense rainfall in the central and south region of Vietnam (Ho et al., 2010). In addition, 
it has been reported that sea levels are rising due to global warming (Obanawa et al., 
2010), climate change, uncontrolled human activities such as deforestation, while rapid 
development  escalates the flood risk and coastal erosion due to the rise of discharge and 
surface runoff (Chen et al., 2016; Tehrany et al., 2015; Wu et al., 2015). Every year, 
natural disasters lead to hundreds of deaths and cost billions of dollars in disaster aid, 
disruption of socioeconomic activities, and damages the buildings and critical 
infrastructure. According to the Malaysian Department of Irrigation and Drainage (DID), 
it has been estimated that more than 2.7 million people live in flood-prone areas while 
the average annual flood damages amount to RM200 to RM300 million per year 
(Pradhan et al., 2009). In addition, DID reports that in 2010 most of the flood events in 
Kedah were attributed to water overflowing from Padang Terap River. For instance, 
around 5,615 residents and a large expanse of paddy fields and cultivated land were 
affected by a flood event in the state of Kedah between 2005 and 2010 (Said et al., 2013).
The property loss was also estimated to be around RM17.81 million in 2010, in 
comparison to RM3.126 million in 2009 (DID, 2009, 2010). 

Although the damages produced by the flood have reduced to about RM12.685 million 
in 2014, however, flood continues to wreak havoc on the communities along Padang 
Terap River annually, arising from heavy rainfall and water overflowing of the river 
banks. Several efforts have been executed by the Ministry of Natural Resources and 
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Environment Malaysia (2011) towards enhancing flood mapping and forecasting by 
utilising structural methods such as flood protection and nonstructural methods which 
include preparation of hazard maps, flood warning, and forecasting systems. Between 
2010 and 2012 alone, about 25 flood hazard maps were produced to assist the state 
government in flood mitigation planning. 

Flood inundation maps are important for flood hazard and risk assessment (Merwade et 
al. 2008a). Several attempts have been performed in order to improve and produce 
accurate flood hazard maps (Getahun and Gebre, 2015; Nor Aizam et al., 2014; Pradhan 
et al., 2014; Turner et al., 2013); via different hydraulic models such as Hydrologic 
Engineering Centre River Analysis System (HEC-RAS) (Brandimarte and Di 
Baldassarre, 2012; Getahun and Gebre, 2015; Knebl et al., 2005; Salimi et al., 2008),
Hydrologic Modelling System (HEC-HMS) (Tripathi et al., 2014), Natural Resources 
Conservation Service Curve Number (NRCS-CN) (Gholami et al., 2010; Ibrahim et al., 
2014), MIKE 11 (Alam et al., 2014) and Soil & Water Assessment Tool (SWAT) (Ahn 
and Merwade, 2017; Wu et al., 2015). These hydraulic models are integrated with GIS 
and remote-sensing datasets where river discharge is vital for water inundation 
extraction, flood risk, hazard mapping, and surface runoff monitoring (Alaghmand et al., 
2010; Ali et al., 2011; Ibrahim et al., 2014; Jung et al., 2014; Jung et al., 2012; Tarpanelli 
et al., 2013a). River discharge can be obtained from gauge station (Jung et al., 2014; 
Salimi et al., 2008; Tarpanelli et al., 2013a) or by empirical equation (Bjerklie, 2007; 
Dingman and Sharma, 1997; Riggs and Reston, 1976; Robert, 1897). Other parameters 
such as surface roughness, cross-section depth, boundary condition and river width are 
required as well for simulation of inundated area and flood depth (Brunner, 2010; USDA, 
2007). For this purpose, low-high resolution DEM, optical and SAR imageries have been 
widely utilised to enhance the flood inundation mapping. GIS and remote-sensing data 
integrated with hydraulic models have been resourcefully employed in hydrology and 
hydraulic modeling for estimation of discharge, model calibration, and surface runoff 
characteristic based on land-use variations, uncertainties of hydraulic variables, flood 
hazard, flood risk, flood susceptibility and land-use. 

Enhancement of flood inundation mapping is essential for assessing and accurately 
locating potential areas at risk of flooding. However, uncertainties in hydraulic variables 
and geospatial data are required to be eliminated for accurate deriviation offlood hazard 
maps. Therefore, this study aims to enhance the current methods and identify 
uncertainties in flood hazard mapping by optimizing IFSAR dataset to derive flood 
extent and water surface elevation accurately. This study is of importance to government 
agencies such as DID and the Department of Town and Country Planning for effective 
flood monitoring and management.  

1.2 Research Questions 

Related research questions that will be answered in this research are: 

i. How discharge value could be obtained for the area of the ungauged station? 
ii. Which statistical equation is appropriate for river discharge estimation? 
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iii. What are the uncertainties in the proposed equation and how could utilised 
hydraulic variables be minimized at the ungauged station in flood modeling? 

iv. Is it possible to forecast the flood extent and water surface elevation without 
ground data observation? 

v. How IFSAR DEM could predict water surface elevation more accurately? 
vi. What is the most suitable cross-section interval to delineate the water surface 

elevation? 

1.3 Research Hypothesis 

This research tests the following hypothesis: 

i. Estimating flood extent and depth at the ungauged station can be determined 
precisely by reducing observed hydraulic parameters and minimizing geospatial 
data available. 

ii. Optimization medium-resolution DEM can determine flood hazard area as 
provided by high-resolution DEM 

1.4 The Motivation behind the Thesis 

Recognition of error contributions in flood inundation mapping processes is the main 
consideration in this research. Due to the existence of uncertainties in different 
parameters in hydraulic variables on discharge prediction and geospatial data, the 
inundated area and flood depth cannot be predicted accurately. Considering the absence 
of the observed discharge data and river geometric, it is vital to make certain that the 
existing discharge equation is carefully selected in order to obtain the minimum error. 
Especially for areas that cannot be accessed due to unfavorable factors such as 
topography, weather condition, high cost, and non-availability or incomplete ground data 
observation. Hence, obtaining several variables such as wetted perimeter, cross-section 
depth, and the cross-section area of the river is known to be challenging. It is, therefore, 
necessary to improve the quality of IFSAR DEM. This research was performed in order 
to reduce the uncertainties that occurred due to selection of suitable values for the 
hydraulic variables, land-use surface roughness, which proposes the appropriate DEM 
data characteristic for flood modeling. Flood hazard maps could be precisely produced 
even for areas with limited data availability.  

1.5 Problem Statement 

The northern state of Kedah has been suffering from flooding, while approximately 5,615 
residents and a massive portion of paddy field areas of 8,500 (2007) and 49,529 (2010) 
hectares were badly affected by flood. In 2010, severe flooding submerged the lands with 
flood depth in average 1 to 2 m in the catchment of Padang Terap River for five to six 
days due to overspill of the river’s bank in 2005 and 2010. In the context of flood 
incidents, a loss of RM 3.126 million was reported in 2009, which pales in comparison 
to another major flood disaster in 2010, which disclosed an estimated staggering property 
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loss of RM17.81 million. Specifically, during the major floods in 2010, an hourly record 
of the water level was captured by Muda Agriculture Development Authority (MADA) 
automatic telemetry station located at Kuala Nerang. The telemetry data indicated that 
the water level reached about 4 - 9 m from 31st October to 4th November.   

Recently, Ministry of Natural Resources and Environment Malaysia (2011) has 
improvised several flood hazard maps as a reference for effective development planning 
which propagates the information regarding the inundated area for authorities 
responsible for flood operation (Jung et al., 2012; Merwade et al., 2008b). However, 
discharge data was unavailable in a certain area, which makes it difficult to map the 
inundated area accurately in hydraulic perspectives to prevent or at least minimise the 
damages to people and properties. According to Grimaldi et al. (2016), limited gauge 
stations are accessible in the developing countries, while the traditional methods labor
intensive as well as being costly. In addition, it is challenging to quantify an accurate 
estimation of discharge at ungauged sites (Jung et al., 2013). Therefore, empirical 
equations have been developed to overcome the challenges with discharge data 
measurement (Barnes, 1969; Bjerklie et al., 2003; Brunner, 2016; Dingman and Sharma, 
1997; Jarret and Asce, 1984). Furthermore, due to problems associated with observation 
of water discharge during unfavorable weather conditions, estimation of river flow via 
remote-sensing based techniques has attracted the attention of researchers (Birkinshaw 
et al., 2014). Therefore, the main goal of this study was to identify the existing discharge 
equation that could be appropriately utilised on the natural river in the Malaysian
environment. In addition, based on the previous studies, no comparative study has been 
performed to evaluate the performance of the discharge equation for flood modeling,
especially in a spatial context. Consequently, the selected discharge equations are
proposed by considering the limited observed hydraulic data.

Flood inundation mapping can be provided accurately if the observed hydraulic data are 
available. Unfortunately, due to non-existence of ground observation data and difficulties 
in obtaining the high-flow condition, it can contribute to uncertainties in discharge and 
boundary condition, which leads to major challenge in prediction of inundated areas and 
flood depths (Bjerklie, 2007; Grimaldi et al., 2016; Jung et al., 2012; Pappenberger et 
al., 2006; Pappenberger et al., 2005). Furthermore, uncertainties are contributed by the 
complexity of flow equations, input flow values, model parameters, boundary condition, 
and river profile (Mason et al., 2015; Pappenberger et al., 2006; Yan et al., 2013). In 
addition, errors arise from model parameters assumption, uncertainties in Manning-n and 
wrong calibration due to assignment of a constant value as the roughness coefficient 
(Merwade et al., 2008a; 2008b; Pappenberger et al. 2005; Di Baldassarre et al., 2010).
The uncertainties of the parameters may lead to inaccurate flood inundation mapping. 
Elimination or identification of the impact of uncertainties could significantly enhance 
the decision-making for present and future forecasting (Savage et al., 2016). Although 
several studies (Grimaldi et al., 2016; Lin et al., 2013; Merwade et al., 2008b; Tarpanelli 
et al. 2013b; Xie and Lian, 2013; Yan et al., 2013) have investigated the uncertainties of 
some parameters such as hydraulic model, discharge equation, and digital elevation 
model (DEM) on flood mapping, however, the existing uncertainties of the hydraulic 
variable utilised in the discharge equation at data-scarce area for flood inundation 
mapping require further exploration. Furthermore, evaluation of the impact of flood 
extent and depth with or without observed hydraulic variables by means of existing 
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discharge equation requires to be performed in order to overcome the non-availability of 
data.

Additionally, uncertainties could be found in GIS-based mapping in terms of horizontal 
and vertical resolution, topographic data, interpolation algorithm,  classification method, 
satellite equipment, surface roughness and image quality (Casas et al., 2006; Eleuterio, 
2012; Jung, 2011; Md Ali, 2018). Quality of elevation data, cross-section  extraction and 
integrating of surveyed and existing DEM data may influence the flood mapping, as it is 
the main concern which may affect the prediction of inundated area and flood depth (Ahn 
and Merwade, 2017; Md Ali, 2018; Md Ali et al., 2015; Merwade et al., 2008b).
Merwade et al. (2008a) and Yan et al. (2013) reported that the performance of the 
integration of two different data format is necessary for reliable hydraulic modeling in 
flood profiles simulation. Although few researchers (Brandimarte and Di Baldassarre, 
2012; Lin et al., 2013; Lumbroso and Gaume, 2012; Teng et al., 2017) have discussed 
the uncertainties of elevation data in hydraulic approach, the capability of the IFSAR
DEM for flood modeling has not been widely explored. Therefore, this study examines
the effects of resampled DEM data, establishes the relationship between LiDAR and 
IFSAR DEMs and enhances the quality of IFSAR DEM. 

In this study, flood hazard map for Padang Terap River was enhanced to present the 
estimated inundated area and flood depth by minimizing errors that contributed to 
hydraulic variables utilised in the discharge equation and geospatial data. Then, the 
hazard area could be determined accurately to address the aforementioned gaps. 
Furthermore, several standards and the most relevant practices for data acquisition and 
processing were performed in order to improve the data quality for enhanced flood 
hazard mapping. 

1.6 Aim and Objectives 

The main aim of the study is to estimate the uncertainties in flood inundation mapping 
based on hydraulic characteristics and land-use via GIS techniques. 

To achieve this aim, the specific objectives are:  

i. To determine suitable discharge equations and assess errors in estimating water 
flow at the ungauged station on flood inundation mapping. 

ii. To investigate uncertainties of hydraulic variables and influences of inundation 
areas delineated from estimated discharge without ground observation data and 
different boundary conditions. 

iii. To examine the accuracy of DEM for different land-use types and optimize 
IFSAR DEM with various vertical resolutions and cross-section intervals. 
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1.7 The scope of the research 

This study focuses on Padang Terap River, which connects three major areas, Kuala 
Nerang, Kampung Kubu and Kampung Kuala Pai, Kedah, Malaysia. Historically, 
communities along this river are known for frequent flooding, while one of the worst 
occurred in 2010. These areas are selected mainly due to their location which is in the 
low land area and are typically submerged due to the river overflow of channel. This 
study is purely data-driven, while several remote-sensing data including TerraSAR-X, 
and historical flood marks were utilised in order to analyse and verify the efficiency of 
the proposed method for flood inundation prediction and to enhance flood detection 
without hydraulic data. In this study, flow hydrograph was not considered; therefore, the 
new empirical equation for discharge estimation was not of importance. Furthermore, 
dam operation and the river sub-tributaries were not considered in the analysis.   

1.8 Thesis Outline 

This thesis is divided into five chapters. Chapter 1 explains, in brief, the introductory 
part, which includes the background of the study, problem statement, research 
motivation, research question, aim and objectives as well as scope of work. The Chapter 
2 highlights the definition of flood inundation mapping, description of hydraulic 
variables and land-use concept. Furthermore, a thorough discussion of existing discharge 
models and the effect of uncertainties on water surface elevation and flood depth are 
presented. The chapter concludes with DEM quality assessment and the current trend in 
flood modeling using GIS and Remote Sensing techniques. The detailed methodology 
utilised in this study is presented in Chapter 3. The chapter describes the study area, gives 
details of the data used and methodology employed. In Chapter 4, the results are 
presented with elaborate discussion and implications of the findings according to the 
sequence of the methodological workflow. Issues of importance include discharge model 
assessment, determination of uncertainties of inundation area. Also a proposed approach 
to cross-section depth measurement, DEM quality assessment and appropriate cross-
section intervals for forecasting inundated area is presented and discussed. Finally, the 
thesis concludes with Chapter 5, which summarizes the overall findings and suggests 
recommendations for future research.
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