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Understanding the properties of airflow in the nasal cavity is very important in 

determining the nasal physiology and in diagnosis of various anomalies associated 

with the nose. The complex anatomy of the nasal cavity has proven to be a significant 

obstacle in the understanding of nasal obstructive disorders. Due to their non-

invasiveness, Computational Fluid Dynamics (CFD) has now been utilized to assess 

the effects of surgical interventions on nasal morphological changes as well as local 

breathing airflow characteristics through the upper airway of individual patients.

Furthermore, nasal inhalation is a major route of entry into body for airborne pollutions. 

Therefore, the function of the upper airway to filter out the inhaled toxic particles is 

considered important. The determination of the total particle filtering efficiency and 

the precise location of the induced lesion in the upper airway is the first step in 

understanding the critical factors involved in the pathogenesis of the upper airway 

injury. The present work involved development of three-dimensional diseased upper 

airway models from Computed Tomographic (CT) scan images derived from a nasal 

airway without any nasal diseased and an upper airway which was diagnosed with 

chronic nasal obstruction and obstructive sleep apnea. Numerical simulation of airflow 

and transport and deposition of inhaled pollutant through chronic diseased nasal 

airway, constricted pharyngeal representing Obstructive Sleep Apnea (OSA) and

diseased upper airway with OSA for pre- and post-operative cases have been studied. 

Detailed flow pattern and characteristics for inspiratory airflow for various breathing 

rates (7.5-40 L/min) were evaluated. Simulation of the particle transport and 
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deposition of micro-sized particles with particle diameter ranging from 1-40 µm were 

also investigated. In the first part of this study, the surgical treatment performed in the 

nasal cavity which include septoplasty, inferior turbinate reduction and partial concha 

bullosa resection substantially increased nasal volume, which influenced flow 

partitioning and decreases the pressure drop and flow resistance of the nasal passage. 

The removal of the obstruction in the nasal airway significantly improve the breathing 

quality. However, the nasal airway experienced approximately about a 50 % decrease 

in total particle filtering efficiency after surgery. Therefore, careful consideration 

should be given to this matter before nasal operation especially for a patient with 

breathing allergic history. In the second part of this study, the morphology of the 

constricted pharyngeal representing OSA was found to significantly affect the airflow 

pattern and the deposition fraction of microparticles. The morphology of the upper 

airway, the size of the inhaled particle and breathing rate was found significantly affect 

the total particle deposition efficiency and local deposition fraction in the upper airway. 

The presented regional deposition fraction may be used in specifying the site of highest 

possibility for respiratory lesions according to the breathing rate and the size of the 

inhaled toxic particles. Results obtained from this study can be also used to estimate 

the location of airway obstruction in upper airway of patient with sleep apnea symptom. 

In the third part of this study, the surgical conducted procedure has cleared out the 

obstructions in the nasal airway hence improve the airflow distribution through the 

upper airway during inhalation process. This study shows that the nasal surgery alone 

can help improve the breathing quality in the upper airway with OSA. The reduction 

of the airflow resistance in the nasal cavity affect the pressure distribution in the lower 

part of the upper airway. Obstruction in the nasal passage and sudden airway expansion 

in the upper airway increased number of particles trap, recirculated and finally 
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deposited in the airway. Finally, the experimental data obtained from the experimental 

study utilizing the developed pharyngeal airway further validate the result obtained 

from the numerical study. 
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Upper airway which consisted of nasal cavity and pharynx is one of the most 

important components of human respiratory system. It provides the first line protection 

for lung by warming and humidifying the inspired air. Upper airway plays an important 

role to filter out the inhaled air from airborne contaminated particles, bacteria and 

pathogen. However, the success of upper airway physiological function is highly 

dependent on the fluid dynamics characteristic of airflow through the airway passage. 

Hence, better understanding of airflow characteristic and transport and deposition of 

inhaled particle through the upper airway is essential to understand the physiology of 

upper airway breathing pattern. 

During inhalation, upper airway also plays an important role to filter out the 

inhaled toxic and contaminated particles from the polluted atmospheric air. Both the 

fine and coarse particles which enter the breathing airway during inhalation, not only 

can induce  irritation, moreover, with extensive exposure and high concentration of 

inhaled airborne toxic and infectious particle, the airway is susceptible to chronic 

injury and could further aggravate upper airway disorder (Harkema et al., 2006).

Harkema et al., (2006) and Grotberg (2001) also reported that the determination of the 

precise location of the induced lesion in the upper airway is the first step in 

understanding the critical factors involved in the pathogenesis of the upper airway 
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injury. As we already know that the toxic and contaminated particles could harm and 

affect the health of the human population. Hence it is important to investigate and 

improve understanding of the airflow distribution and particle transport and deposition 

in the human nasal airway. The location of the particle deposition in an airway is 

important information for correlating inhaled toxins or carcinogens to disease locations 

and for developing potential therapies.  

Airflow through human upper airway has been studied numerically and 

experimentally by a number researchers (Garcia et al., 2007; Kim & Chung, 2004; 

Mylavarapu et al., 2009; Segal et al., 2008; Weinhold & Mlynski, 2004; Wen et al., 

2008; Xiong et al., 2008). Furthermore, several researchers have undertaken studies 

pertaining to airflow through nasal cavity using measuring devices such as 

rhinomanometry and acoustic rhinometry (Hilberg et al., 1989; Jones & Lancer, 1987; 

Shelton & Eiser, 1992; Sipila & Suonpaa, 1997; Suzina et al., 2003). 

Rhinomanometry is used to measure the pressure required to produce airflow 

through the nasal airway and acoustic rhinometry is used to measure the cross-

sectional area of the airway at various nasal planes. However, measuring the precise 

velocity of airflow and evaluating the local nasal resistance in every portion of the 

nasal cavity have proven to be difficult (Ishikawa et al., 2009). The anatomical 

complexity of the nasal cavity makes it difficult for the measurement of nasal 

resistance. The small sizes of the nasal cavity and its narrow flow passage can cause 

perturbations in the airflow with any inserted probe. Moreover, the reliability of the 

result obtained using this device depends on optimal cooperation from the subject, 

correct instructions from the investigator, and standardized techniques (Kjaergaard et 
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al., 2009). There are reports of failure rates of between 25 % and 50 % in the subjects 

examined by rhinomanometry (Austin & Foreman, 1994). Furthermore, direct 

measurement of the total particle deposition efficiency and local deposition fraction of 

inhaled contaminated particle in the human upper airway are highly impossible. 

Due to the inherent limitations of the available measuring devices, 

Computational Fluid Dynamics (CFD) has been proposed as a viable alternative. CFD 

which refers to use of numerical methods to solve the partial differential equation 

governing the flow of a fluid, is becoming an increasingly popular research tool in 

fluid dynamics (Basri et al., 2016). The non-invasive CFD modelling allows 

investigation of a wide variety of flow situations and particle deposition through 

human upper airway. Several researchers have conducted studies on the airflow and 

particle transport and deposition through the human upper airway by using the CFD 

simulation technique (Abouali et al., 2012; Bahmanzadeh et al., 2015; Dastan et al.,

2014; Ghalati et al., 2012; Riazuddin et al., 2011). 

In the present study, initially the effect of nasal obstruction which include 

septum deviation, turbinate hypertrophy and concha bullosa were investigated. A

comparative study was made between the pre- and post-operative model. The effect of 

nasal surgery on inhaled particle filtering function was also investigated. In order to 

improve the understanding of the pathophysiology of the Obstructive Sleep Apnea 

(OSA) disease, numerical simulation of inspiratory airflow through a constricted 

pharyngeal section representing OSA symptom was conducted. Studies were carried 

out for various flow rates of 7.5 L/min, 10 L/min, 20 L/min, 30 L/min and 40 L/min 

suggesting various breathing rates. Lagrangian particle tracking approach was used to 
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investigate the effect of the constricted pharyngeal section on the deposition rate and 

deposition patterns of microparticles. Microparticles in the size range of 1-40 µm were 

injected at the nostril inlet and the particle trajectories and regional deposition fractions 

of the particles were analyzed.  

In order to investigate the effect of chronic nasal obstruction on the upper 

airway diagnosed with OSA disease, numerical simulation of airflow and aerosol 

deposition in a realistic human upper airway with chronic nasal airway and obstructive 

sleep apnea symptom for pre- and post-surgery were performed. Different inhalation 

rates of steady laminar airflows suggesting low breathing activity were simulated 

numerically through the upper airway models. The airflow characteristics and 

breathing resistance were analyzed. Lagrangian trajectory analysis approach was used 

to examine the transport and deposition of the inhaled microparticles through the upper 

airways before and after surgery. The focus of the final part of this study is to develop 

an experimental setup and perform experimental work on a pharyngeal airway model 

to compare and validate the results obtained from numerical study with that of 

experiment.

�

1>/� �% �"�����&����(��

Although treatment methods in upper airway surgery have constantly improved 

over time, due to the narrow and complicated structure of the human nasal airway and 

anatomical differences between each individual, the prediction of a successful 

individual therapy remains a challenging task. Hence, further studies are needed to 

improve the diagnosis method and the quality of the future upper airway surgical 

treatment. The highly detailed anatomy of the pre- and post-operative morphological 
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upper airway model and information derived from CFD analysis would be able to 

provide relevant information prior to a surgical intervention and medical treatment. 

The analyzed data of detailed aerodynamic behavior of the upper airways can be made 

available to the ENT surgeons so that it can be used to assist them in identifying 

possible sites of obstruction and direct toward the anatomic site of obstruction for 

surgical intervention. The location of the particle deposition in an airway can provide 

important information for correlating inhaled toxins or carcinogens to disease locations 

and for developing potential therapies. The main outcome will lead to the improvement 

of the diagnostics methodologies or even improved treatment strategies and outcome.   

1>6� ����&%!����A�!��)���

 The overall objective of the present study is focused on the investigation of the 

airflow characteristics and inhaled particle deposition in the diseased human upper 

airway. The main aims include:

i. To develop a three-dimensional computational model of human nasal airway 

for pre- and post-operative nasal computational models. 

ii. To perform CFD analysis on both the pre- and post-operative diseased nasal 

airway. 

iii. To analyze the impact of abnormal nasal passage on airflow characteristics 

and aerosol deposition. 

iv. To investigate the effect of deformation of the pharyngeal section on the 

airflow and particle deposition in the human upper airway. 
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v. To develop experimental setup and perform experimental study to validate 

the results obtained from the numerical study. 

1>8� �! .�� #�� %@�

This research work was first carried out by procuring Computed Tomography 

(CT) scan images of the normal and diseased human upper airway. For the normal 

nasal airway, the CT scan data was provided by a radiologist from the Advanced 

Medical and Dental Institute, Universiti Sains Malaysia. For the diseased upper airway, 

the CT scan data was provided by a Head and Neck Surgeon from Hospital Serdang, 

Malaysia. A research proposal was prepared and submitted to the committee of the 

Clinical Research Centre and the Medical Research and Ethics Committee, Ministry 

of Health Malaysia to obtained research approval. The ethical approval letter issued 

by the committees are as presented in Appendix I and II in this thesis.  

A normal nasal cavity of 39-year-old Malaysian female was selected for the 

normal nasal cavity model whereas a 38-year-old Malaysian male diagnosed with 

chronic nasal obstruction and prevalence of OSA were selected for this diseased upper 

airway study. The selected CT scan data were imported into an image processing 

software, Mimics in order to process the scan images and to generate a realistic three-

dimensional computational aided design CAD model of the upper airways. This was 

then followed by construction of three-dimensional surface geometry by using a 

Computer Aid Design (CAD) software CATIA.  
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The 3D surface geometries were imported into GAMBIT, ANSYS ICEM CFD 

and ANSYS FLUENT Meshing for unstructured and hybrid mesh generation. 

Numerical simulation of airflow and particle transport and deposition were further 

carried out by using the available CFD commercial software, ANSYS FLUENT. 

Numerical inspiratory airflow was simulated for various breathing rates which 

includes 4, 7.5, 10, 20, 30 and 40 L/min. Particles were injected into the upper airway 

from the nostril inlet to investigate the transport and deposition in the upper airway. 

The size of the injected particle includes 1, 5, 10, 20 and 40 µm. Experimental test rig 

was developed, pharynx experimental model was fabricated, and experimental 

investigation was conducted to compare and validate the results obtained from the 

numerical study with that of the experimental results. 

�

1>:� �%,&(�?&�� (� #������������

This thesis includes 9 chapters. The first chapter provides an introduction that 

review relevant research objectives, and related outlines of the purposes of this study. 

Chapter 2 presents an in-depth review of the background for the research. The chapter 

begins with an introduction to the anatomy and physiological function of the human 

upper airway and is followed by a review of previous studies related to the research. 

Chapter 3 presents the method used to construct and develop the three-dimensional 

realistic diseased human upper airway from the CT scan data. Chapter 4 presents the 

numerical method used to perform CFD simulation of airflow and particle transport 

and deposition in the upper airway computational model. Chapter 5 presents the 

numerical investigation on airflow characteristics and particle deposition in diseased 

nasal cavity having turbinate hypertrophy, concha bullosa, and septum deviation. A 

comparative study was made between pre- and post-operative model. Chapter 6 
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presents the computational fluid dynamics study of airflow and micro-particle 

deposition in a constricted pharyngeal section representing obstructive sleep apnea 

disease. Chapter 7 presents numerical simulation of airflow and aerosol deposition in 

realistic human upper airway with obstructive sleep apnea and chronic nasal 

obstruction for pre- and post-surgery. Chapter 8 presents the method used to develop 

the pharynx experimental model and the experiment test rig for both pre and post-

operative cases. The main aim of this study was to analyze and validate the solutions 

obtained from numerical study. Finally, Chapter 9 presents the summary of the majors 

research findings derived from the research studied. Suggestions for future works are 

also presented in this chapter.
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