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The disclosure of diacylglycerol (DAG) oil to replace the conventional edible oils 
has received increasing interest among researchers and food manufacturers 
owing to its anti-obesity properties. Distinct processing approaches have been 
proposed to produce DAG-enriched oil in which enzymatic partial hydrolysis 
outstands other methods due to its inexpensive raw materials and single-step 
hydrolytic reaction involved. In present work, single-factor optimization of partial 
hydrolysis for DAG production from refined, bleached, deodorized palm oil 
(RBDPO) catalysed by immobilized Rhizomucor miehei lipase (Lipozyme RMIM) 
was carried out in batch system. Effects of four operating parameters namely 
temperature, enzyme dosage, water content and agitation speed were 
investigated. Optimum production conditions for palm based-DAG are as follows: 
temperature = 55oC, enzyme dosage = 10-wt%, water content = 5-wt% and 
agitation speed = 500 rpm. A DAG yield of 31-wt% was obtained after 6 h of 
reaction. The partial hydrolysis reaction was found to conform to Ping-Pong Bi-Bi 
with substrate inhibition mechanism. The optimum operating conditions were 
then applied to the lab-scale packed bed system.  
 
 
Packed bed reactor (PBR) is an effective reactor configuration because it 
enables reusability of the enzyme particles besides enhancing its operational 
stability. However, mass transfer limitation remains a key challenge in packed 
bed column system, especially at large scale. A dimensionless mathematical 
mass transfer model of Colburn factor, JD, which is a function of Reynolds (Re) 
and Schmidt (Sc) numbers, was therefore developed to simulate mass transfer 
phenomena of the reaction mixture in PBR during enzymatic partial hydrolysis 
reaction. The results revealed that the mass transfer correlation of JD=0.92(Re)-

0.2 was able to predict the experimental data accurately. In addition, response 
surface methodology (RSM) was employed to optimize the process variables 
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namely packed bed height and substrate flow rates on DAG production in PBR. 
Quadratic models were successfully developed for both DAG and unhydrolyzed 
triacylglycerol (TAG) with insignificant lack of fit (P>0.05). Optimum conditions for 
DAG synthesis were evaluated to be 10 cm packed bed height and 3.8 ml/min 
flow rate with 29-wt% DAG being reported. Immobilized enzyme can be reused 
up to 10 times without significant loss in enzymatic activity. 
 
 
The present study also investigated the production efficiency using columns with 
different length-to-diameter ratios (L/D ratio) to determine the most potential 
process setup for industrial DAG manufacturing. Practical design issues such as 
operating temperature, substrate flow rate and reaction time were evaluated with 
respect to various packed bed column configurations. A column dimension with 
L/D ratio of two was determined to be the most suitable bed column design for 
lipase-mediated partial hydrolysis reaction. The optimal reaction temperature, 
substrate flow rate and residence time for the production of DAG in packed bed 
column dimension of two were found to be 55oC, 5 ml/min and 5.8 min, 
respectively. Under these operating conditions, a maximal DAG content of 35-
wt% was obtained within the first 2 h. Since scientific knowledge is lacking in the 
employment of PBR for the production of DAG-enriched oil via enzyme-catalysed 
partial hydrolysis, the findings of the study would facilitate the design of a pilot-
scale fixed bed reactor system for lipase-mediated partial hydrolysis to obtain 
DAG-enriched oil as functional oil without constraints.  
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Pengerusi: Lai Oi-Ming, PhD 
Fakulti: Institut Biosains 
 
Penemuan minyak diasilgliserida (DAG) untuk menggantikan minyak makan 
konvensional telah mendapatkan perhatian di kalangan penyelidik dan 
pengeluar makanan disebabkan oleh sifat-sifat anti-obesiti minyak tersebut. 
Pelbagai kaedah pemprosesan telah dicadangkan untuk menghasilkan minyak 
DAG di mana kaedah hidrolisis separa dengan menggunakan enzim lipase 
bersetanding dengan cara-cara pemprosesan lain kerana kaedah tersebut 
melibatkan bahan-bahan mentah yang murah dan memerlukan satu langkah 
hidrolisis sahaja. Dalam projek ini, kaedah hidrolisis separa dioptimumkan 
dalam sistem batch bagi menghasilkan DAG daripada minyak kelapa sawit 
yang telah ditapis, diluntur warna dan dinyahbau (RBDPO) dengan 
menggunakan lipase tersekat-gerak daripada Rhizomucor miehei (Lipozyme 
RMIM). Kesan empat parameter operasi iaitu suhu, dos enzim, kandungan air 
dan kelajuan pergolakan telah dikajikan. Keadaan penghasilan DAG yang 
optimum adalah seperti berikut: suhu = 55oC, dos enzim = 10-wt%, kandungan 
air = 5-wt% and kelajuan pergolakan = 500 rpm. Sebanyak 31-wt% DAG dapat 
dihasilkan selepas 6 jam. Tindak balas hidrolisis separa didapati mematuhi 
mekanisme Ping-Pong Bi-Bi dengan perencatan substrat. Keadaan operasi 
optimum kemudiannya digunakan dalam reaktor lapisan terpadat berskala 
makmal. 
 
 
Reaktor lapisan terpadat (PBR) merupakan reaktor yang efisien kerana reaktor 
tersebut membolehkan kebolehgunaan enzim lipase selain meningkatkan 
kestabilan operasinya. Walau bagaimanapun, fenomena pemindahan jisim 
dalam PBR telah menjadi cabaran utama terutamanya dalam reaktor berskala 
besar. Oleh itu, model matematik tidak berdimensi bagi pemindahan jisim iaitu 
faktor Colburn, JD yang merupakan gabungan nombor Reynolds (Re) dan 
nombor Schmidt (Sc) telah dicadangkan bagi mensimulasikan pemindahan 
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jisim dalam sistem PBR semasa reaksi hidrolisis separa berlaku. Model ini 
telah diperiksa dengan pelbagai nilai n dan keputusan menunjukkan bahawa 
korelasi pemindahan jisim JD=0.92(Re)-0.2 dapat meramalkan data eksperimen 
dengan tepat. Di samping itu, kaedah gerak balas permukaan (RSM) telah 
digunakan untuk mengoptimumkan kedua-dua pembolehubah tidak bersandar 
iaitu ketinggian lapisan turus dan kadar aliran substrat bagi memaksimumkan 
hasil DAG dalam sistem PBR. Model kuadratik digunakan untuk mewakili 
kedua-dua pembolehubah bergerak balas iaitu DAG(y) dan triasilgliserida 
(TAG) yang tidak bertindak balas ((un)TAG) dengan kekurangan penyesuaian 
yang tidak ketara (P>0.05). Keadaan optimum untuk mensintesis DAG adalah 
10 cm ketinggian lapisan turus dan 3.8 ml/min kadar aliran substrat dengan 29-
wt% DAG dilaporkan. Lipase tersekat-gerak boleh digunakan semula sehingga 
10 kali tanpa kehilangan aktiviti enzim yang ketara. 
 
 
Selain itu, kecekapan penghasilan DAG degan menggunakan ruangan lapisan 
turus berbeza yang mempunyai nisbah tinggi lapisan turus kepada diameter 
dalaman ruangan lapisan turus (nisbah L/D) yang berbeza telah dikajikan bagi 
menentukan ruangan lapisan turus yang paling berpotensi untuk menghasilkan 
DAG di industri. Isu-isu praktikal seperti suhu operasi, kadar aliran substrat dan 
masa tindak balas telah dinilaikan bagi setiap konfigurasi ruang padat. Dimensi 
ruangan dengan L/D nisbah dua merupakan reka bentuk ruang lapisan turus 
yang paling sesuai untuk reaksi hidrolisis separa yang dimangkinkan olen 
enzim lipase. Keadaan optimum bagi menghasilkan DAG adalah 55oC suhu 
operasi, 5.0 ml/min kadar aliran substrat dan 5.8 min masa kediaman dalam 
PBR. Di bawah keadaan operasi tersebut, sebanyak 35-wt% DAG dapat 
diperolehi dalam tempoh 2 jam pertama. Oleh kerana pengetahuan saintifik 
tentang penggunaan sistem PBR untuk menghasilkan minyak DAG melalui 
hidrolisis separa dengan bantuan enzim masih kurang, hasil penyelidikan ini 
dipercayai akan memudahkan kerja perekabentuk reaktor berskala besar untuk 
pemprosesan minyak DAG melalui kaedah hidrolisis separa tanpa kekangan. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
Dietary fats and oils are known to be the key nutrients essential for sustaining 
life. In addition to providing energy for daily activities, the roles of lipids as 
fundamental building blocks for healthy cells, carriers for fat soluble vitamins, 
organ protector and body insulator are well documented. Moreover, the 
incorporation of dietary fats into food enhances its sensory and textural 
properties. However, strong evidence demonstrates that increased dietary 
energy intake especially fat-dense food coupled with inadequate physical 
activities is the main culprit that leads to the overwhelming incidences of 
obesity (Golay & Bobbioni, 1997; Astrup, 2005). Recent reports reveal that 
obesity prevalence rates are rising at an alarming rate and remain to be a 
critical global epidemic (WHO 2014). Tremendous research studies indicate a 
strong positive correlation between obesity and adverse health effects such as 
heart disease, cancer, diabetes mellitus, hypertension besides mental trauma 
and physical discomfort (Lavie et al. 2009; Artham et al. 2011; Louie et al. 
2013). The consequences are potential decline in life expectancy, early 
retirement, widespread discrimination and increased cost of health care system 
that burdens the government and economic growth. In United States, obesity-
related medical expenses have seen a drastic increase over the years with 
USD 86 billion of aggregate health care cost being recorded in year 2008 
(Finkelstein et al. 2009). A recent published research report also indicates that 
the prevalence of obesity is rather severe in Malaysia as compared to other 
Asian countries with 45.3% of its population being overweight and the obese 
population is forecasted to skyrocket in the next decade (Ng et al. 2014). 
Although World Health Organization (WHO) advises and limits the dietary fats 
consumption to 30% of the total calorie intake in order to impart positive effects 
on human health, the recommended action may sacrifice the mouthfeel quality 
in fat-based food.   
 
 
With heightened health consciousness, the disclosure of functional 
diacylglycerol (DAG)-oil has therefore drawn increasing attention of 
researchers and food manufacturers to replace the conventional edible oil or 
triacylglycerol (TAG) oil. Previous literatures clearly pointed out that DAG-
enriched oil is capable of inhibiting the accumulation of visceral fat and 
suppressing the blood serum TAG besides increasing the rate of β-oxidation of 
fatty acids which translates into potent anti-obesity properties (Flickinger & 
Matsuo, 2003; Teramoto et al., 2004). Apart from that, DAG with exposing 
hydrophilic group within the molecular structure, exhibits excellent emulsifying 
capability and has been widely used as emulsifier together with 
monoacylglycerol (MAG) in food, cosmetic and pharmaceutical products 
(Shimada & Ohashi, 2003; Masui et al., 2001; Nakajima, 2004). Foreseeing the 
increasing demand for DAG-oil, Kao Corporation (Japan) began 
commercializing the functional edible oil under product name of “Healthy Econa 
Cooking Oil” in early 1999. Sales of this functional edible oil accounts for 80% 
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of premium oil which constitute around 14% of the total Japanese edible oil 
market worth ¥10 billion (Sakaguchi, 2001).   
 
 
Strategy for DAG-oil production includes both chemical and enzyme-assisted 
approaches, in which the latter exhibits several advantages over chemical 
method namely, reduced energy consumption, improved selectivity and yield. 
Enzymatic partial hydrolysis reaction outperforms other methods because of 
the low cost reactants and single hydrolytic step involved (Lai et al. 2006; 
Cheong et al. 2007; Lo et al, 2008). Malaysia, being one of the largest palm oil 
producer and exporter, contributes nearly 17.7 million tonnes, accounting for 
11% of the global fats and oils production and becomes a dominant player in 
the palm oil trade with 44% of the market share (MPOC 2014). To broaden the 
commercial use and functionality of palm oil in order to stay competitive in 
edible oils and fats market, production of DAG-enriched oil from conventional 
palm oil via lipase-catalysed partial hydrolysis is indeed a necessity.  
 
 
To date, literature on the kinetic study of partial hydrolysis reaction and 
production of palm-based DAG is limited. As such, various operating 
parameters namely temperature, agitation speed, water content and enzyme 
load for the production of palm-based DAG in batch stirred reactor system were 
investigated in present work. In addition, this work aimed to develop a kinetic 
model to describe the reaction mechanism of partial hydrolysis as well as to 
provide information on the optimum processing conditions. Analysis of reaction 
kinetics has great potential because the mathematical model generated are 
capable of simulating the complex reaction under different conditions and 
thereby improving the reaction conditions (Fedosov et al. 2013).  Although 
batch stirred reactor could be used to produce DAG via enzyme-catalysed 
partial hydrolysis, abrasion of the matrix particles under mechanical stirring 
force should be paid attention. The optimum conditions determined were then 
applied to packed bed reactor (PBR) system owing to its higher reaction rate 
and enhanced stability of particulate catalysts in PBR system (Phuah et al. 
2015). Two important operating variables namely packed bed height and 
substrate flow rate were evaluated and optimized by response surface 
methodology (RSM). The application of RSM as a statistical techniques based 
on the fit of a polynomial model to the experimental data enables evaluation of 
the effects of multiple operating parameters, alone or in combination, on 
response variables and prediction of reaction performance accurately (Xu et al. 
1998).  
 
 
Although PBR is a preferred bioreactor configuration, dominance of external 
mass transfer resistance during enzymatic reaction remains to be major 
hindrance for fixed bed system especially at large scale. External mass 
transport limitation exists when the rate of diffusional transport of substrate 
through the external film of the enzyme particles is the rate determining step 
which is caused by low substrate flow rate (Chew et al. 2008; McCabe et al. 
2005; Kasaini & Mbaya 2009; Murty et al. 2005). Therefore, the mass transfer 
phenomena in PBR were investigated and represented with external mass 
transfer model. The development of the mathematical model would enable 
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evaluation of mass transfer coefficients in fixed bed system under different 
operating conditions. The effects of different bed column designs with distinct 
column length-to-inner diameter ratios (L/D ratio) were also studied as the 
column dimensions determine both linear fluid flow rate and external mass 
transfer coefficient even with constant residence time and substrate flow rate, 
thereby affecting the efficiency of the packed bed system. In summary, the 
objectives of this study were as follows: 
     
1. To optimize the reaction parameters for the production of DAG-oil in batch 

reactor and to evaluate its kinetic mechanism. 
 

2. To optimize the operating parameters on the production yield of DAG in 
packed bed reactor.  

 
3. To develop a mass transfer model to predict the reactor performance and 

to simulate the partial hydrolysis reaction in packed bed system.  
 

4. To evaluate the effects of different bed column designs on the production 
efficiency of DAG.  
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