UNIVERSITI PUTRA MALAYSIA

BIOLOGY AND POPULATION DYNAMICS OF RAINBOW PRAWN, Parapenaeopsis sculptilis (HELLER, 1862), IN COASTAL WATERS OF TERONG, PERAK, MALAYSIA

ALSAYED, AMANI ABDULAZIZ A

IB 2015 35
BIOLOGY AND POPULATION DYNAMICS OF RAINBOW PRAWN, 
Parapenaeopsis sculpitis (HELLER, 1862), IN COASTAL WATERS OF 
TERONG, PERAK, MALAYSIA

By

ALSAIYED, AMANI ABDULAZIZ A

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in 
Fulfilment of the Requirements for the Degree of Doctor of Philosophy

December 2015
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

BIOLOGY AND POPULATION DYNAMICS OF RAINBOW PRAWN, *Parapenaeopsis sculptilis* (HELLER, 1862), IN COASTAL WATERS OF TERONG, PERAK, MALAYSIA

By

ALSAYED, AMANI ABDULAZIZ A

December 2015

Chairman: Professor Aziz Arshad, PhD

Faculty: Institute of Bioscience

Taxonomy, morphometry, food and feeding habits, reproduction and population parameters of *Parapenaeopsis sculptilis* Heller 1862 in the coastal waters of Terong, Perak, Peninsular Malaysia were studied between February 2012 and January 2013. A total of 120 specimens of *P. sculptilis* were used for morphometric studies and they were collected from four different locations viz Perak, Penang, Port Dickson and Malacca. The morphometric characteristics investigated include the total length, standard length, carapace length, carapace height, rostral length, second pleon segment height, sixth pleon segment length, telson length, telson width, eye wide and eye length. The morphometric study is aimed to investigate on the possibility of differences in body morphometric characteristics amongst the different *P. sculptilis* populations in Peninsular Malaysia waters. The result showed that all morphometric characters of *P. sculptilis* from four different areas in the west coast of Peninsular Malaysia were significantly (P < 0.05) different at 5% level except for CL, CH, RL and TEW (P > 0.50) not significant at 5% level. Feeding process particularly feeding items is one of the important biological characteristics for species that has aquaculture potential. The observation of the stomach contents of 360 specimens from coastal waters of Terong Perak, found only 10.14% of empty stomachs of the *P. sculptilis* while 89.84% of the stomachs filled up with foods. The highest percentages of full stomachs, 3/4 full, 1/2 full and 1/4 full were found in January, June, May and March respectively. The diet compositions of *P. sculptilis* were grouped into nine different categories viz. phytoplankton, zooplankton, mollusca, fish scales, polychaetes, appendages of crustacean, detritus, sand and unidentified items. According to the Index of Relative Importance (%IRI), the main food items of *P. sculptilis* graded as first rank was molluscs (64.73%), and this was followed by appendages of crustacean (17.88%), zooplankton (7.49%), detritus (2.64%), sand (2.27 %), phytoplankton (2.20%), fish scales (1.84 %), unidentified items (1.19 %) and polychaetes (0.69%). The various
composition of food items proved that the *P. sculptilis* is an omnivorous bottom feeder. A study was also included to examine the sex ratio in the population of Terong coastal waters and the annual results for the ratio was found to be 1:3.4 (Males: Females). Consecutively, a study on the reproductive biology was carried out on 50 female individuals each month. Samples were examined monthly and the peak Gonadosomatic Index (GSI) of female *P. sculptilis* was very apparent during the months of April, August and October in the study area. The first sexual maturity of female was attained at a total length of 9.30 cm. The highest GSI value (5.89) was observed in April, where the females were a mature stage. The lowest GSI (0.63) was obtained in November, where the females were at an early active and immature phase. Relative condition factor (Kₐ) values ranged from 0.99 to 1.064 (1.013±0.005, mean ±SD). Kₐ values changes in various months: the highest peak was in March-April indicating the spawning period and small peaks indicated the cycle of gonadal development. A total of 3110 specimens of prawn were used for the works on the population dynamics of *P. sculptilis*. The estimated mean total lengths for males and females were 9.13(±0.83) and 11.96 (±2.2) cm. Length-weight relationship (LWR) parameters of both sexes was estimated at W = 0.00027TL².80. The estimated relative growth coefficient (b) was 2.80 for the both sexes which indicated that growth pattern of *P. sculptilis* was negative allometric in the investigated area. Monthly length–frequency data were analysed by using FiSAT (FAO ICLARM Stock Assessment Tools) software. The von Bertalanffy growth (VBGF) parameters were estimated as asymptotic length (L∞) = 17.69 cm and growth coefficient (K) = 2 yr⁻¹. The total mortality (Z), natural mortality (M) and fishing mortality (F) were found to be 6.71, 1.77 and 4.94 yr⁻¹ respectively. The exploitation (E) rate was calculated as E = 0.74 which is higher than optimum level of exploitation (E= 0.50). It is revealed that the status of the stock of *P. sculptilis* is over exploited the in the coastal waters of Terong, Perak, Peninsular Malaysia.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

BIOLOGI DAN POPULASI DINAMIKA UDANG KULIT KERAS,
Parapenaeopsis sculptilis (HELLER, 1862), DI PERAIRAN PANTAI TERONG, PERAK, MALAYSIA

Oleh

ALsayed, amani abdulaziz a

Disember 2015

Pengerusi: Profesor Aziz Arshad, PhD

Fakulti: institut biosains

Taksonomi, morfometri, makanan dan tabiat pemakanan, pembiakan dan parameter populasi Parapenaeopsis sculptilis Heller 1862 telah dikaji di antara Februari 2012 hingga Januari 2013 di kawasan perairan Terong, Perak, Semenanjung Malaysia. Sejumlah 120 spesimen P. sculptilis telah digunakan untuk kajian morfometrik dan ianya telah dikumpulkan dari empat lokasi yang berbeza iaitu Perak, Pulau Pinang, Port Dickson dan Melaka. Ciri morfometrik yang telah disiasat meliputi panjang keseluruhan, panjang piawai, panjang karapas, tinggi karapas, panjang rostrum, tinggi segmen kedua pleon, panjang segmen pleon keenam, panjang telson, lebar telson, lebar mata dan panjang mata. Kajian morfometrik adalah bertujuan untuk menyiasat mengenai kemungkinan perbezaan bererti dalam ciri morfometrik badan di kalangan populasi P. sculptilis yang berbeza di perairan Semenanjung Malaysia. Hasil kajian menunjukkan bahawa semua ciri morfometrik P. sculptilis dari empat kawasan yang berlainan di perairan pantai barat Semenanjung Malaysia telah berbeza dengan bererti (P ≤0.05) pada paras 5%. Pemerhatian kandungan isi perut bagi 360 spesimen dari perairan pantai Perak, mendapati hanya 10.14% P. sculptilis adalah pada tahap perut kosong manakala 89.84% menunjukkan perut yang berisi makanan. Peratusan tertinggi adalah perut penuh, 3/4 penuh, 1/2 penuh dan 1/4 penuh dijumpai masing-masing pada bulan Januari, Jun, Mei dan Mac. Komposisi makanan P. sculptilis telah dikumpulkan ke dalam sembilan kategori iaitu fitoplankton, zooplankton, siput, sisik ikan, cacing, apendej bagi krustasea, detritus, pasir dan bahan yang tidak dikenali. Menurut Indeks Kepentingan Relatif (%IRI), bahan makanan utama P. sculptilis yaitu moluska telah digredkan sebagai tahap pertama (64.73%), ini diikuti dengan apendej krustasea (17.88%), zooplankton (7.49%), detritus (2.64%), pasir (2.27%), fitoplankton (2.02%), sisik ikan (1.84%), bahan yang tidak dikenali (1.19%) dan cacing (0.69%). Pelbagai
komposisi makanan mengunjurkan yang *P. sculptilis* adalah jenis omnivor pemakan dasar. Kajian juga dijalankan untuk meneliti nisbah jantina dalam populasi perairan pantai Terong dan keputusan tahunan bagi nisbah ditemui adalah 1: 3.4 (Jantan: Betina). Seterusnya, satu kajian mengenai biologi pembiakan telah dijalankan ke atas 50 individu betina bagi setiap bulan selama setahun. Sampel telah diperiksa setiap bulan dan punca Indeks Gonadosomatik (GSI) *P. sculptilis* betina adalah sangat ketara pada bulan April, Ogos dan Oktober di kawasan kajian ini. Kematangan seks pertama bagi betina ialah apabila mencapai panjang keseluruhan 9.30 cm. Nilai GSI tertinggi (5.89) diperhatikan pada bulan April, di mana betina berada di peringkat matang. Nilai GSI paling rendah (0.63) telah diperolehi pada bulan November, di mana betina berada di fasa permulaan aktif dan tidak matang. Nilai Faktor Keadaan Relatif (*K*<sub>n</sub>) adalah berjulat dari 0.99 ke 1.064 (1.013 ± 0.005, min ± SD). Nilai *K*<sub>n</sub> berubah mengikut bulan di mana puncak tertinggi ialah pada Mac-April yang menunjukkan tempoh masa bertelur dan puncak kecil menunjukkan kitaran perkembangan gonad. Proses pemakanan terutamanya bahan makanan adalah salah satu ciri biologi yang penting untuk spesies yang berpotensi dalam akuakultur. Sejumlah 3110 spesimen udang telah digunakan untuk kajian populasi dinamik *P. sculptilis*. Anggaran purata jumlah panjang bagi jantan dan betina ialah 9.13 (± 0.83) dan 11.96 (± 2.2) cm. Parameter hubungan panjang-berat (LWR) kedua-dua jantina dianggarkan *W* = 0.00027TL<sup>2.80</sup>. Anggaran pertumbuhan pekali relatif (b) ialah 2.80 bagi kedua-dua jantina telah menunjukkan bahawa corak pertumbuhan *P. sculptilis* adalah alometrik negatif di kawasan yang disiasat. Data panjang frekuensi bulanan telah dianalisis dengan menggunakan perisian FiSAT (FAO ICLARM Alat Penilaian Stok). Parameter pertumbuhan von Bertalanffy (VBGF) telah dianggarkan sebagai panjang asimptot (*L*<sub>∞</sub>) = 17.69 dan pekali pertumbuhan (*K*) = 2 tahun<sup>-1</sup>. Jumlah kematian (Z), kematian semula jadi (M) dan kematian tangkap ikan (F) didapati masing-masing pada tahap 6.71, 1.77 dan 4.94 tahun<sup>-1</sup>. Kadar eksploitasi (E) dikira sebagai E = 0.74 iaitu lebih tinggi daripada tahap eksploitasi optimum (E = 0.50). Ia mendedahkan bahawa status stok udang *P. sculptilis* telah mencapai tahap eksploitasi yang berlebihan di kawasan perairan pantai Terong, Perak, Semenanjung Malaysia.
ACKNOWLEDGEMENTS

All praise is due to Allah, Lord of the worlds the Almighty for giving me the strengths; guidance and patience in completing and submitting this thesis. I would also like to thank my government, Saudi Arabia, for giving me the opportunity to complete my postgraduate study in UPM. Special thank is due to The King Abdullah Scholarship Program (KASP) of the Saudi Arabia government.

I would like express my sincere gratitude to my research supervisor, Prof. Dr. Aziz Arshad, the Chairman of my supervisory committee for the consistent support, continuous guidance and valuable discussions during the entire research period in UPM. Without his quality and friendly supervision; this work would not have come to completion. I am profoundly indebted to thank my co-supervisors, Prof. Dr. Fatimah Md Yusoff and Dr. S.M. Nurul Amin for their academic advice, critical thinking, thoroughness in thesis preparation and for the constructive discussions and suggestion.

I would also like to express my sincere gratitude to my father who has been accompanying me throughout the period of my higher study in Malaysia. My special appreciation goes to my mother and the rest of my family members and friends for all their undying encouragement and support. Finally, I would like to thank all UPM staff for their cooperation and support especially administrative staffs, lab technicians and not to forget my lab mates and graduate friends whom in many ways assisted me with my research activities throughout the period.
I certify that a Thesis Examination Committee has met on 17th December 2015 to conduct the final examination of ALSAYED, AMANI ABDULAZIZ A on her Doctor of Philosophy thesis entitled “Biology and Population Dynamics of Rainbow Prawn, Parapenaeopsis sculpltilis (Heller, 1862), in the Coastal Waters of Terong, Perak, Malaysia” in accordance with the Universities and University colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the examination committee are as follows:

**Chairman, PhD**
Title
Faculty
Universiti Putra Malaysia
(Chairman)

**Examiner 1, PhD**
Title
Faculty
Universiti Putra Malaysia
(Internal Examiner)

**Examiner 2, PhD**
Title
Faculty
Universiti Putra Malaysia
(Internal Examiner)

**External Examiner, PhD**
Title
Faculty
University
Country
(External Examiner)

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Doctor of Philosophy. The members of Supervisory Committee were as follows:

**Aziz Arshad, PhD**  
Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Chairman)

**Fatimah Md Yusoff, PhD**  
Professor  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

**S.M Nurul Amin, PhD**  
Senior Lecturer  
Faculty of Agriculture  
Universiti Putra Malaysia  
(Member)

---

**BUJANG KIM HUAT, PhD**  
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________      Date: __________________

Name and Matric No.: _________________________________________
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
</tbody>
</table>

## CHAPTER

### 1 INTRODUCTION

1.1 Background of the study  
1.2 Statement of the problems  
1.3 Objectives of the study

### 2 LITERATURE REVIEW

2.1 Fisheries of *P. sculptilis*  
2.2 Taxonomy of *Parapenaeopsis*  
2.2.1 The family of Penaeidae adopted from Dall (1957) and Hall (1962)  
2.3 Geographical distribution of *P. sculptilis*  
2.4 Morphometric characteristics  
2.4.1 External morphology of *Parapenaeopsis*  
2.4.2 Distinguishing characters of similar species  
2.5 Food and feeding habits  
2.6 Reproductive biology  
2.7 Population dynamics  
2.7.1 Length-weight relationship

### 3 GENERAL METHODOLOGY

3.1 Introduction  
3.2 Study area and sampling  
3.2.1 Sample identification  
3.4 Morphometric characteristics  
3.5 Food and feeding habits  
3.6 Reproductive biology  
3.7 Population dynamics

### 4 MORPHOMETRIC VARIATION OF *Parapenaeopsis sculptilis* (Heller, 1862) FROM SEVERAL LANDING SITES OF THE WEST COAST OF PENINSULAR MALAYSIA

4.1 Introduction  
4.2 Materials and Methods
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Results</td>
<td>59</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Length-weight relationships</td>
<td>59</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Relative condition factor</td>
<td>61</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Size frequency distribution</td>
<td>62</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Growth parameters</td>
<td>63</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Recruitment pattern</td>
<td>65</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Mortality and exploitation rate</td>
<td>66</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Length at first capture (L_c)</td>
<td>67</td>
</tr>
<tr>
<td>7.3.8</td>
<td>Virtual population analysis</td>
<td>67</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>68</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusion</td>
<td>71</td>
</tr>
<tr>
<td>8</td>
<td>GENERAL DISCUSSION AND CONCLUSION</td>
<td>72</td>
</tr>
<tr>
<td>8.1</td>
<td>Discussion</td>
<td>72</td>
</tr>
<tr>
<td>8.2</td>
<td>General Conclusion</td>
<td>74</td>
</tr>
</tbody>
</table>

REFERENCES 75
APPENDICES
BIODATA OF STUDENT 87
LIST OF PUBLICATIONS 89
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Distribution and occurrence of <em>P. sculptilis</em> in different countries</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Characteristics of <em>P. sculptilis</em> males and fema</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Population parameters of <em>Parapenaeopsis</em> species from different countries</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Sampling sites from the west coast of Peninsular Malaysia and dates of sampling of <em>P. sculptilis</em></td>
<td>21</td>
</tr>
<tr>
<td>4.1 Details of morphometric characters and meristic parameter of <em>P. sculptilis</em> used in the study</td>
<td>26</td>
</tr>
<tr>
<td>4.2 Mean ± standard deviation and f-value (derived from analysis of variance) of each morphometric character (mm) and meristic characteristics from different population of <em>P. sculptilis</em> in the west coast of Peninsular Malaysia</td>
<td>28</td>
</tr>
<tr>
<td>4.3 Percentage of similarity among four population of <em>P. sculptilis</em> in the west coast of Peninsular Malaysia</td>
<td>30</td>
</tr>
<tr>
<td>5.1 Empirical scale of <em>P. sculptilis</em> stomach fullness divided into five categories as defined for this study</td>
<td>33</td>
</tr>
<tr>
<td>5.2 Percentage of fullness of guts of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>35</td>
</tr>
<tr>
<td>5.3 Major food items observed in the stomachs of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>36</td>
</tr>
<tr>
<td>5.4 Overall diet composition of <em>P. sculptilis</em> ranked by Index of Relative Importance (IRI) in the coastal waters of Terong, Perak</td>
<td>38</td>
</tr>
<tr>
<td>5.5 Percentage frequency of occurrence (F) of food items from <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>40</td>
</tr>
<tr>
<td>5.6 Percentage of numerical abundance (N) of food items from <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>41</td>
</tr>
<tr>
<td>5.7 Percentage of points (PTS) of food items from <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>42</td>
</tr>
<tr>
<td>6.1 Summary of mean ova diameter, containing number of ova (n), mean size of the cells, standard deviation (SD) and confidence intervals of means (CI 95%)</td>
<td>49</td>
</tr>
<tr>
<td>5.2 Percentage of ovarian maturity stage of <em>P. sculptilis</em> collected in the coastal waters of Terong, Perak</td>
<td>51</td>
</tr>
<tr>
<td>7.1 Monthly length frequency data of both <em>P. sculptilis</em> sexes from the coastal waters of Terong, Perak, Peninsular Malaysia</td>
<td>57</td>
</tr>
<tr>
<td>7.2 Monthly descriptive statistic and length-weight relationship parameters for both sexes of <em>P. sculptilis</em> in the coastal waters of Terong, Perak, Peninsular Malaysia</td>
<td>60</td>
</tr>
<tr>
<td>7.3 Estimated population parameters of <em>P. sculptilis</em> in the coastal waters of Terong, Perak during February 2012-January 2013</td>
<td>64</td>
</tr>
<tr>
<td>7.4 Parameters of length-weight relationships (a and b) for the genus <em>Parapenaeopsis</em> from various locations in the world</td>
<td>68</td>
</tr>
</tbody>
</table>
7.5 Population parameters and exploitation rate of the genus *Parapenaeopsis* from various locations in the world
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The annual landing of <em>P. sculptilis</em> in Malaysian waters (DOF, 2013)</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td><em>Parapeneaepsis sculptilis</em> (Heller, 1862)</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Distribution of <em>P. sculptilis</em> in the world (adapted from aquamaps.org, 2013)</td>
<td>8</td>
</tr>
<tr>
<td>2.4</td>
<td><em>Parapeneaepsis sculptilis</em> adult, rostrum, petasma and thelycum (Fischer and Bianchi, 1984)</td>
<td>9</td>
</tr>
<tr>
<td>3.1</td>
<td>Geographical location of the study site in Terong, Perak, Peninsular Malaysia (Googel map)</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>Boat push net is used for catching <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Map showing the Peninsular states where samples were obtained in the west coast of Peninsular Malaysia</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Sample is measured using a digital sliding calliper to the nearest 0.01 mm</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Morphometric (a; b; c) measurements and meristic (d) counting of <em>P. sculptilis</em> (Kirkegaard and Walker, 1970)</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>Dendrogram of four populations of <em>P. sculptilis</em> based on morphometric characteristics collected from the west coast of Peninsular Malaysia</td>
<td>29</td>
</tr>
<tr>
<td>5.1</td>
<td>Percentage occurrence of each fullness guts against size class total length from <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>35</td>
</tr>
<tr>
<td>5.2</td>
<td>Some food items found in the guts of <em>P. sculptilis</em>: a, Phytoplankton (40X); b, polychaetes (40X); c-d, mollusca (40X); e, crustacean parts (40X); f, appendage of crustacean (40X)</td>
<td>37</td>
</tr>
<tr>
<td>5.3</td>
<td>Some food items found in the guts of <em>P. sculptilis</em>: a, zooplankton antenna; b, chela of crustacean; c, phytoplankton; d, appendages of crustacean (40X); e, mollusca (40X); f, fish scales (40X)</td>
<td>38</td>
</tr>
<tr>
<td>5.4</td>
<td>Percentage frequency of occurrence, numerical abundance and points of food items</td>
<td>43</td>
</tr>
<tr>
<td>6.1</td>
<td>Ovary maturation stages of female <em>P. sculptilis</em></td>
<td>46</td>
</tr>
<tr>
<td>6.2</td>
<td>Ovary of <em>P. sculptilis</em></td>
<td>47</td>
</tr>
<tr>
<td>6.3</td>
<td>Sex ratio of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>48</td>
</tr>
<tr>
<td>6.4</td>
<td>Monthly changes in gonadosomatic index (GSI) of female <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>50</td>
</tr>
<tr>
<td>6.5</td>
<td>Monthly changes in percentage occurrences of each ovarian maturity stage of <em>P. sculptilis</em> collected in the coastal waters of Terong, Perak</td>
<td>51</td>
</tr>
<tr>
<td>6.6</td>
<td>Monthly changes in percentage occurrence of each ovarian maturity stage against total length class for <em>P. sculptilis</em> collected in the coastal waters of Terong, Perak</td>
<td>52</td>
</tr>
<tr>
<td>7.1</td>
<td>Total length of <em>P. sculptilis</em> measured to the nearest 0.1 cm</td>
<td>56</td>
</tr>
<tr>
<td>7.2</td>
<td>Length weight relationship of both sexes <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>59</td>
</tr>
<tr>
<td>7.3</td>
<td>Monthly variation of $K_n$ for female <em>P. sculptilis</em></td>
<td>61</td>
</tr>
<tr>
<td>7.4</td>
<td>Mean $K_n$ values for each female <em>P. sculptilis</em> that were at 0.5 cm length</td>
<td>62</td>
</tr>
<tr>
<td>7.5</td>
<td>Annual length-frequency distribution of <em>P. sculptilis</em> males and females collected from the coastal waters of Terong, Perak, Peninsular Malaysia</td>
<td>63</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>7.6</td>
<td>Estimation of K of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>64</td>
</tr>
<tr>
<td>7.7</td>
<td>von Bertalanffy growth curves of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>65</td>
</tr>
<tr>
<td>7.8</td>
<td>Estimation of maximum length of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>65</td>
</tr>
<tr>
<td>7.9</td>
<td>Recruitment pattern of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>66</td>
</tr>
<tr>
<td>7.10</td>
<td>Length converted catch curve of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>67</td>
</tr>
<tr>
<td>7.11</td>
<td>Length-structured Virtual Population Analysis of <em>P. sculptilis</em> in the coastal waters of Terong, Perak</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ANOVA  Analysis of variance
A  Condition factor
B  Growth coefficient of length-weight relationship
Cm  Centimeter
DOF  Department of Fisheries
E  Exploitation rate
E_{max}  Maximum allowable limit of exploitation
EPN  Estuarine Push Net
ELEFAN  Electronic Length Frequency Analysis
FiSAT  FAO ICLARM Stock Assessment Tools
FAO  Food and Agriculture Organization
g  Grams
GSI  Gonadosomatic index
IRI  Index of Relative Importance
K  Growth co-efficient of VBGF
K_n  Relative condition factor
L_{\infty}  Asymptotic length
L_{max}  Predicted extreme length
LWR  Length-weight relationships
M  Natural mortality
mm  Millimetre
N  Sample size
r^2  Coefficient of determination
R_n  Response surface
SBN  Set Bag Net
SD  Standard deviation
Sp.  Species
\text{t}_{max}  Maximum life span
TL  Total length
TW  Total weight
UPM  Universiti Putra Malaysia
VBGF  von Bertalanffy growth function
Z  Total mortality
\phi'  Growth performance index
\alpha^0  Degree Celsius
\%  Percentage
<  Less than
>  More than
CHAPTER 1

GENERAL INTRODUCTION

1.1 Background of the study

Prawns from the genus *Parapenaeopsis*, family of Penaeidae, are decapods and have a wide distribution, but the majority of species that comprise this genus are restricted to tropical and warm temperate shallow seas (Lee, 1972). Moreover, most occur throughout the Indo-Pacific region, from Persian Gulf Indian region and east coast of Africa to Japan and Australia while only a few species are found in Eastern Atlantic and Pacific America (Rao, 1969).

The most commonly studied species are from the Indian region and they include *P. uncta, P. cornutra maxillipeda, P. nana, P. acclivirostris, P. hardwickii, P. stylifera* and *P. sculptilis*. *Parapenaeopsis sculptilis* is unknown commercial species in Peninsular Malaysia and comprises about 27% of the total prawn catch in Malaysia. This species of shrimp is abundant in the western coast of Peninsular Malaysia. *Parapenaeopsis sculptilis* is known by the common name ‘rainbow prawn’ and is locally known as ‘Udang Kulit Keras’ in Peninsular Malaysia and are commercially important to many locals although it is sold as the at lower price than other top commercial species such as banana prawn (Ong and Weber, 1977; Bejie, 1985a, 1985b).

The commercial size of *P. sculptilis* range from 11-15 cm and a total length (TL) of 17 cm. Female *P. sculptilis* grow faster than males and the length of males at sexual maturity is 7.5 cm (Amin and Zafar, 2003). Moreover, *P. sculptilis* has a large body, but a comparatively small tail with a small yield (Dore and Frimodt, 1987).

On the west coast of Peninsular Malaysia, the straits of Malacca are very important areas for harvesting prawns in general and species of *P. sculptilis*, even though marine prawns are caught by a variety of fishing gears found at depths of 35-90 m (Lovett, 1981). The latest data information on annual landing of *P. sculptilis* in Malaysia was 3.526 tonnes during 2012 (DOF, 2013).

*Parapenaeopsis* is one of the most important fisheries in Malaysia although, since food is a main factor, it is critical to obtain information on their growth, abundance and migration, information on feeding habits and ecology to better understand the dynamics of this resource. It is known that *P. sculptilis* is a marine species that are mainly fished in shallow inshore waters where spawning adults are often found. The young live mainly in coastal mud flats or sand flats near to mangroves. Smaller individuals belonging to 0-1 year class contribute to the fishery of less saline areas and the larger sizes (1 & II year’s class) support the inshore fishery (Kirkegaard and Walker, 1970).
These important commercial fisheries are being marketed fresh, frozen, peeled and cooked or canned, as well as being used as shrimp meal or shrimp paste in Malaysia and Singapore (Marsitah and Chong, 2002; Tham, 1968; Kubo, 1949). In Bangladesh, *P. sculptilis* are abundantly found in various estuaries and provides a lucrative fisheries industry (Kamal and Khan, 2009; Ahmad, 1957). Also, in Australia this species is of particular commercial value in the North of Cape Moreton, Queensland (Racek, 1959) as well as being a popular bait species on the Central Queensland coast (Grant, 1965). In addition, in the Pakistan coast and India this species often occurs in commercial catches off Bombay and the Ganges delta, respectively (Jones, 1967). There is also a small fishery in the northern east and west coasts of India (Kurian and Sebastian, 1976).

1.2 Statement of the problems

There are several accounts of *Parapenaeopsis* fisheries from West Malaysia or Malay Peninsula (Tham, 1968; Rao, 1969; Lee, 1972; Chong, 1984; Chong et al., 1994). All are very brief except those of Kirkegaard and Walker (1970), Holthuis (1980), and Marsitah and Chong (2002). However, most of these works focused on taxonomic diagnosis, and currently there is a lack of basic biological information, especially regarding the population biology, stock assessment and genetic structure of *P. sculptilis*.

Moreover, there is no report available regarding the feeding habits, spawning season and sex ratio of *P. sculptilis* in the Perak coastal waters, which are areas that local heavily harvest this prawn species. Such information is important for their potential aquaculture development as well as the formation of fisheries management policies. In terms of management, it is essential to evaluate their ecological role as well as the understanding its position in the food web structure in the ecosystem.

The population dynamics, such as asymptotic length ($L_\infty$), growth co-efficient ($K$), fishing mortality ($F$), natural mortality ($M$), recruitment pattern and exploitation rate of *P. sculptilis* is also necessary to understand since, without such knowledge, it is impossible to undertake sound and effective management programs on *Parapenaeopsis* spp. Therefore, such information will help provide advice to the fishing industry, fishermen, fisheries managers as well as planners and policy makers on the optimum level of exploitation of *Parapenaeopsis* spp. fisheries and to provide possible management options. In view of the national importance of *Parapenaeopsis* spp., studies on their biology, genetic variation, population dynamics and stock assessment from the west coast of Peninsular Malaysia are very important.

Thus, if no attempt to properly manage the *Parapenaeopsis* fishery resource in the west coast of Peninsular Malaysia, then the abundance of these resources could be lost and livelihood of numerous fishermen will be adversely affected. Some studies have been carried out in terms of population dynamic of *Parapenaeopsis* spp. in other countries or areas (e.g. Bhimachar, 1963; Zafar et al., 1997; Amin and Zafar, 2003), despite it is a
commercial and exploited species, there is no detail study on biology and population of Parapenaeopsis spp. in Malaysia. Therefore this study is carried out to address this lack of biological and population characteristics information. For management purpose, it is necessary to understand some of the important biological characteristics and population parameters of P. sculptilis (i.e., spawning season, growth, mortality, recruitment, and exploitation). Some reports are available on food and feeding habits of Parapenaeopsis in other countries (Hall, 1962; Rajyalakshmi, 1966; Sukumaran and Rajan, 1986; Sarada, 2002), as stated there are limited information on feeding habits, reproductive and population dynamics of Parapenaeopsis sculptilis from Malaysia (Hall, 1962; Marsitah and Chong, 2002).

The present study was undertaken to examine the feeding habits, reproductive biology and population dynamics of P. sculptilis in the waters of Terong, Perak, Peninsular Malaysia.

1.3 Objectives of the study

The main objectives of research were:

1. To identify the morphometric variation P. sculptilis in several landing sites in the west coast of Peninsular Malaysia.
2. To investigate the food habits and annual temporal diet variation of P. sculptilis.
3. To determine the spawning season and sex ratio of P. sculptilis populations in the coastal waters of Terong, Perak.
4. To estimate the population parameters, such as asymptotic length (L∞), growth coefficient (K), natural mortality (M), fishing mortality (F) and exploitation level (E) of P. sculptilis from Terong, Perak coastal waters.
REFERENCES


Pauly, D. and David, N., 1981. ELEFAN-I basic program for the objective extraction of growth parameters from length frequency data. Meeresforsch, 28(4): 205-211.


Pillay, K.K. and Nair, N.B., 1971. The annual reproductive cycles of *Uca annulipes*, *Portunus pelagicus* and *Metapenaeus affins* (Decapod a, Crustacea) from the South-west of coast Indian, Marine Biology, 11: 152-166.


85


