POLYMORPHISMS IN ESTROGEN RECEPTOR-α AND -β GENES
AND THEIR CORRELATIONS WITH RISK FACTORS IN IRANIAN
BREAST CANCER PATIENTS

SAKINEH ABBASI

FPSK(P) 2009 7
POLYMORPHISMS IN ESTROGEN RECEPTOR-α AND -β GENES AND THEIR CORRELATIONS WITH RISK FACTORS IN IRANIAN BREAST CANCER PATIENTS

By

SAKINEH ABBASI

Thesis Submitted to the school of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

February 2009
I would like to dedicate this thesis to:

My parents, I thank you for unconditional love and sacrifices you made for me.

To my husband, who has put up with me during working on this thesis.

And to my daughters, who bring joy and happiness to my heart.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

POLYMORPHISMS IN ESTROGEN RECEPTOR-α AND -β GENES AND THEIR CORRELATIONS WITH RISK FACTORS IN IRANIAN BREAST CANCER PATIENTS

By

SAKINEH ABBASI

February 2009

Chairman: Professor Dr. Patimah Ismail, PhD
Faculty: Medicine and Health Sciences

Receptor-mediated estrogen activation participates in the development and progression of breast cancer. Evidence suggests that alterations in estrogen signaling pathways, including estrogen receptor-α (ER-α) and estrogen receptor-β (ER-β) occur during breast cancer development. Estrogen receptor genes (ERs) polymorphism has been found to be associated with breast cancer and clinical features of the disease in Caucasians. In order to investigate whether polymorphisms in the ER-α and ER-β are associated with breast cancer risk in a case-control study was conducted with 150 Iranian patients newly diagnosed invasive Breast Ductal Carcinoma, and 147 healthy women. PCR single-strand conformation polymorphism method and direct sequencing screened the selected encoding regions exon 4 ER genes for mutation or variant sites were performed. Three silent single nucleotide polymorphisms (SNPs) were found in the ER-α gene
(exon 1, exon 4, exon 8 respectively), as reported previously in other studies, but at significantly different frequencies and one SNP was found in ER-β gene (exon 7). The statistical significance was achieved in the most of demographic characteristics. Age at menarche of less than or equal to twelve years old in codon 594 of ER-α gene and among the eight different races the race of Fars in all four polymorphic sites of ER-α and ER-β genes were revealed statistically significant differences between case and control groups ($p<0.05$). Furthermore, blood group B of all four ABO blood groups, was shown statistically significant differences between case and control groups ($p<0.05$) for all four polymorphic sites of codons 10, 325, 594 of ER-α and 392 in ER-β. The frequency of allele 1 in codon 594 exon 8 was significantly higher in breast cancer patients (48.0%) than in control individuals (1.4%; $P = 0.001$). The codon 392 polymorphisms were presented only in cases group, in genotypes of heterozygote with statistically significant frequency of 8.7% and in the genotypes of homozygote with statistically significant frequency of 1.3%. Furthermore, in the exon 4 we found a novel mutation at codon 323 in Iranian women, and the statistical significance was achieved for the presence and absence of LN metastases at this codon ($P = 0.017$). Combination of the three SNP markers in ER-α may increase the incidence of age at menarche of less than or equal twelve years old, which itself could increase accuracy in predicting developing breast cancer later in their lifetime. Moreover, SNP in codon 392 of ER-β gene is more effective than those SNPs in three polymorphic sites of ER-α gene, in developing familial breast cancer and LN metastases phenotype. This was the first systematic association study in ER-α and ER-β genes polymorphisms and demographic
characteristics for breast cancer risk in Iran. In conclusion, our data suggest that ER-α and ER-β genes polymorphisms are correlated with various aspects of breast cancer risk in Iranian women. Moreover, the greater the frequency of allele 1 in codon 10, codon 325 and codon 392 the lesser the likelihood of LN metastasis in the Iranian breast cancer patients. We also noted that greater the frequency of allele 1 in codon 10 in the form of 01, the more likely in patients with familial breast cancer. Our findings suggest that, SNP in codon 392 of estrogen receptor- β gene is much effective than those SNPs in codons 10, 325, 594, of estrogen receptor-α gene, in developing familial breast cancer. Therefore, ER-α and ER-β genotypes, as determined during pre-surgical evaluation, might represent a surrogate marker for predicting breast cancer in Iran.
POLIMORFISMA DALAM GEN ESTROGEN RESEPTOR-α DAN-β DAN PERKAITANNYA DENGAN FAKTOR RISIKO DI KALANGAN PESAKIT KANSER PAYUDARA PENDUDUK IRAN

Oleh

SAKINEH ABBASI

Febuari 2009

Pengerusi: Profesor Dr. Patimah Ismail, PhD

Fakulti: Perubatan dan Sains Kesihatan

Pengaktifan reseptor penerima estrogen memainkan peranan dalam pembentukan dan perkembangan kanser payudara. Bukti kajian mencadangkan terdapat perubahan dalam isyarat laluan estrogen, termasuk gen estrogen reseptor-α (ER-α) dan gen estrogen reseptor-β (ER-β) semasa pembentukan kanser payudara. Gen estrogen reseptor (ERs) polimorfisma didapati mempunyai kaitan dengan kanser payudara dan secara klinikalnya ciri ini sering berlaku pada masyarakat Kaukasia (Caucasians). Dengan itu, data genomik bagi gen ER sama ada dalam populasi menunjukkan nilai bagi set klinikal terhadap kumpulan etnik yang dikaji. Kami mengkaji satu kajian kes sama ada polimorfisma dalam ER-α dan ER-β mempengaruhi risiko kanser payudara, dilakukan. Kajian Gen ER-α dan ER-β dilakukan pada pesakit di Iran yang baru menerima dignosis serangan kanser payudara, (150 pesakit) dan penduduk yang sihat (147 orang sebagai
Pengesahan polimorfisma menggunakan kaedah tindakbalas berantai polimerase dan penjujukan terus terhadap bahagian hujung gen kod ekson 4 ER yang dipilih terlibat dalam mutasi atau bahagian yang berlainan dilakukan. Tiga gen senyap polimorfisma nukleotid (SNPs) telah ditemui dalam gen ER-α, (masing-masing pada ekson 1, ekson 4, ekson 8), seperti yang telah dilaporkan dalam kajian lain tetapi kekerapannya berbeza secara signikan dan satu SNP didapati dalam gen ER-β (ekson 7). Secara statistiknya nilai signifikan didapati dalam kebanyakan ciri-ciri demografik. Didapati pada umur bermulanya awal kematangan bagi perempuan kurang daripada atau bersamaan dengan 12 tahun dalam kodon gen 594 ER-α dan antara 8 perbezaan bangsa Fars dalam 4 bahagian polimorfik gen ER-α dan ER-β menunjukkan perbezaan statistik yang signifikan antara kajian kumpulan kes dan kawalan ($p<0.05$). Selain itu, antara kumpulan darah B dari 4 kumpulan darah menunjukkan perbezaan nilai statistik yang signifikan dibandingkan antara kumpulan kes dan kumpulan kawalan ($p<0.05$) untuk semua 4 bahagian kodon folimorfik pada 10, 325, 594 dari ER-α dan 392 dalam ER-β). Oleh itu, kami mendapati lebih besar kekerapan bagi alel 1 dalam kodon 325 dan 392, semakin lebih bersamaan kemungkinan berlakunya metastasis LN dalam pesakit kanser payudara penduduk Iran. Selain itu, nilai statististik yang signifikan menunjukkan kehadiran dan ketiadaan metastasis LN bagi kodon ($P=0.017$) Mutasi baru terdapat di kodon 323. Kekerapan bagi alel 1 dalam kodon 594, ekson 8 secara signifikannya lebih tinggi bagi pesakit kanser payudara (48.0%) berbanding dengan individu kawalan (1.4%; $P=0.001$). Alel 1 dalam kodon 594 mempamerkan kekerapan yang lebih tinggi menunjukkan seakan-akan berkurangan kejadian metastasis LN. Hasil kajian memperlihatkan bahawa penanda SNP seperti ini akan meningkatkan ketepatan dalam
membuat jangkaan populasi penduduk Iran. Tambahan lagi, kawasan hujung kod ekson 7 daripada gen ER-β membuktikan kehadiran gen (SNP) pada kodon 392 populasi penduduk Iran. Polimorfisma pada kodon 392 hanya ditunjukkan dalam kumpulan kes dengan heterozigot genotype dengan kekerapan statistik yang signifikan pada 8.7% dan dalam homozigot genotaip dengan kekerapan nilai statistik signifikan 1.3%. Keputusan kajian membuktikan polimorfisma pada kodon 392 dalam ER-β adalah berbeza secara signifikan dalam kumpulan kes dan kawalan. Kombinasi antara 3 penanda SNP dalam ER-α akan meningkatkan kejadian pada umur bermulanya kematangan bagi perempuan kurang atau bersamaan dengan 12 tahun, boleh meningkatkan ketepatan dalam membuat jangkaan pembentukan kanser payudara dalam jangka hayat. Tambahan lagi, SNP pada kodon 392 dari ER-β adalah lebih berkesan dari SNPs dalam 3 kawasan polimorfisma gen ER-α, dalam pembentukan kanser payudara keturunan dan metastasis fenotaip. Ini adalah kajian pertama perkaitan antara polimorfisma gen ER-α dan ER-β dan variasi risiko kanser payudara penduduk Iran. Kesimpulannya, keputusan yang diperolehi mencadangkan polimorfisma gen ER-α dan ER-β adalah berkaitan dengan pelbagai aspek kanser payudara. Penemuan dalam kajian ini mencadangkan SNP pada kodon 392 gen estrogen reseptor-β adalah lebih efektif daripada SNPs pada kodon 10, 325, 594 gen estrogen reseptor-α dalam pembentukan kanser payudara. Dengan itu, genotaip ER-α dan ER-β seperti yang ditentukan semasa penilaian pra-pembedahan, akan mewakili penanda timbalan dalam meramalkan kanser payudara di Iran.
ACKNOWLEDGMENTS

In the Name of ALLAH, the Beneficent, the Merciful

I would like to take this opportunity to thank the chairman of my supervisory committee, Professor Dr. Patimah Binti Ismail, who had been like a sister to me, whose valued expert guidance and support has helped me to complete this research. Her kindness, affection, encouragement, and moral support gave me the courage and ability to overcome all the problems I have faced from to time during the course of my work. I would like to extend my heartfelt appreciation to her for her invaluable advice and continuous comments, which brighten my future through the experience that I have gained from her.

I also would like to extend my deepest gratitude to my co-supervisor, Professor Dr. Fauziah Othman for her president guidance, patience, advices, suggestion throughout my research.

I owe my indebtedness to my thoughtful co-supervisor, Professor Dr. Cyrus Azimi for his excellent advice, guidance and support throughout my research. His continuous encouragement and constructive critics brought the best out of me.
Sincere appreciation and thanks are also extended to Professor, Dr. Aini Ideris and Associate Professor Dr. Rozita Rosli for their extremely valued guidance, meticulous discussions, positive criticism and continuous encouragement throughout my studies.

I would also like to express my appreciation to all the staff of the Cancer Institute and Mearaj Clinic and related laboratories, Imam Khomeini Hospital complex for arranging our case and control individual’s screenings.

I am also indebted to and wish to express my appreciation to all the staff of the Medical Genetics Laboratory, Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences specially Associate Professor Dr. Mohammad Housain Modarresi, Head of Department of Medical Genetics, and Professor Dr. Mohammad Reza Noori Daloi for their kindness, assistance and cooperation during my work.

I am also very grateful to the all staff members of the Faculty of Allied Medical Sciences specially Associate Professor Dr. Housain Dargahi, the Dean of Faculty, Professor Dr. Mostafa Rezaian, the Head of Department of Laboratory Medical Sciences, and Assistant Professor Dr. Reza Saftari the Research Deputy Dean, of Allied Medical Sciences, whose expert guidance and support has helped me to overcome most of the problems that I have encountered during the course of my studies.

I would like to express my most sincere and warmest gratitude to my friend, Assistant Professors Dr. Nahid Einollahi, the Education Deputy Dean and of Faculty of Allied
Medical Sciences and Dr. Nasrin Dashti, for their brilliant and kindness supports and for reminding me not to give up!!!!

I sincerely appreciate and acknowledge to all staff members and technicians in Department of Medical Genetics, Faculty of Medicine who gave me a hand during the preparation of this work and my friends Assistant Professors Dr. Mitra Zare Bavani and Dr. Fariba Nabatchian for their kindness support, from the Faculty of Allied Medical Sciences, Tehran university of Medical Sciences.

The list of thanks also goes to Ms. Delaram Dargahi, Ms. Fatemeh Heidari, and Ms. Ladan Ghargozlo for their endless prayer and sports.

Not forgotten, hereby, I wish to special thanks to all cancer patients whom I collected my blood samples from them, who might lay on the bed or being healed from the disease. From them, I know lives are such vulnerable to the perilous disease. We should be delighted as we are still breathing now.
I certify that an Examination Committee has met on March 2008 to conduct the final examination of Sakineh Abbasi on her Doctor of Philosophy thesis entitled “Polymorphisms in Estrogen Receptor- α and - β Genes and their Association with Risk Factors in Breast Cancer Patients from Imam Khomeini Hospital Complex” in accordance with Universiti Pertanian Malaysia (Higher degree) Act 1980 and Universiti Pertanian (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
This thesis was submitted to the Senate of universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Patimah Ismail, PhD
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Cyrus Azimi, MD., PhD
Professor
Faculty of Medicine
Tehran University of Medical Sciences
(Member)

Fauziah Othman, PhD
Professor
Faculty of Medicine and Health science
Universiti Putra Malaysia
(Member)

HASANAH MOHD GHAZALI, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 9 April 2009
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institution.

SAKINEH ABBASI

Date:
TABLE OF CONTENTS

DEDICATION i
ABSTRACT iii
ABSTRAK vi
ACKNOWLEDGMENTS ix
APPROVAL xii
DECLARATION xiv
LIST OF TABLES xviii
LIST OF FIGURES xx
LIST OF ABBREVIATIONS xxii

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 10
 2.1 Definition of Cancer 10
 2.2 Breast cancer 10
 2.3 History of Breast Cancer 11
 2.4 Epidemiology of breast cancer 13
 2.5 Classification of Breast Cancer 15
 2.5.1 Carcinoma 15
 2.5.2 Sarcomas 16
 2.6 Breast Cancer Risk Factors 17
 2.6.1 Epidemiologic Risk Factors 17
 2.6.2 Reproductive Risk Factors 21
 2.6.3 Environmental Causes 24
 2.6.4 Environmental Estrogen 27
 2.6.5 Viral Factors 28
 2.6.6 Non-Impact Risk Factors 28
 2.7 Breast Cancer Staging 30
 2.8 Estrogen receptors 31
 2.8.1 Estrogen Structure and Function 32
 2.8.2 Effects of Estrogens 33
 2.8.3 Estrogen Receptors Proteomics 34
 2.8.4 Estrogen Receptors Genetics 36
 2.8.5 Estrogen Receptors Distribution 39
 2.8.6 ERs Functional Selectivity 39
 2.8.7 ERs Signal transduction 40
 2.8.8 Disease Related to ERs 41
 2.9 Polymorphisms 43

xv
2.9.1 Genetic Polymorphism 43
2.9.2 Single Nucleotide Polymorphisms 45
2.9.3 Uses of Polymorphisms 45
2.10 ER-α Polymorphisms 48
2.11 ER- β Polymorphisms 50
2.12 Breast Cancer Research Background in Malaysia 52
2.13 Breast Cancer Research Background in Iran 55

3 MATERIAL AND METHODS 61
3.1 Study Population 61
 3.1.1 Sample Collections and Storage 66
3.2 Whole Blood DNA Extraction 66
 3.2.1 Method for DNA Quantification 67
3.3 Polymerase Chain Reaction (PCR) 67
 3.3.1 Oligonucleotide Primers 68
 3.3.2 Primers preparation 70
 3.3.3 PCR 70
3.4 Electrophoresis the PCR product in Agarose Gel 70
 3.4.1 PCR Product Quantification 71
3.5 PCR- Single Strand Conformation polymorphisms 72
 3.5.1 SSCP Background Information 72
 3.5.2 SSCP Buffer 75
 3.5.3 SSCP Treatment 75
 3.5.4 Acrylamide Gel 75
 3.5.5 Setting up and pouring a SSCP Gel 77
3.6 Silver Staining of Acrylamide Gel 78
3.7 DNA purification 79
 3.7.1 Protocol 1 79
 3.7.2 Protocol 2 80
3.8 Direct PCR Product Purification 82
3.9 Automated DNA Sequencing 83
3.10 Sequencing Analysis 83
3.11 Statistical analysis 84

4 RESULTS 85
4.1 Demographic characteristics and Major Risk Factor in Breast Cancer 85
4.2 Polymorphisms in Estrogen Receptor Genes 90
 4.2.1 Estrogen Receptor-α Gene 92
 4.2.2 Estrogen Receptor-β Gene 125
4.3 Comparison of Estrogen Receptor-α and -β genes Polymorphisms 134
4.4 Demographic characteristics and major risk factors related to distribution frequencies of ER-α and ER-β genes polymorphic sites 144
5 DISCUSSION
5.1 The Scope of This Thesis 158
5.2 Estrogen Receptor-α Gene Variants 160
 5.2.1 Estrogen Receptor-α, Exon 1 Variants 161
 5.2.2 Estrogen receptor-α, Exon 4 Variants 162
 5.2.3 Estrogen receptor-α, Exon 8 Variants 164
5.3 Estrogen receptor-β Gene Variants 167
5.4 Joint effects of Estrogen Receptor-α and Estrogen Receptor-β on selected demographic characteristics and breast cancer phenotype 170

6 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
REFERENCES 181
APPENDICES 213
BIODATA OF THE STUDENT 308
LIST OF PUBLICATIONS 310
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 The distributions of selected demographic characteristics and major risk factors for breast cancer of whole study population: breast cancer versus control groups</td>
<td>64</td>
</tr>
<tr>
<td>4.1 Clinical characteristics of the 150 breast cancer patients in the study</td>
<td>86</td>
</tr>
<tr>
<td>4.2 The distributions of selected demographic characteristics and major risk factors for breast cancer of whole study population: breast cancer versus control groups</td>
<td>87</td>
</tr>
<tr>
<td>4.3 Genotypic distribution frequencies of codon 10 in exon 1 of estrogen receptor-α gene in study population</td>
<td>93</td>
</tr>
<tr>
<td>4.4 Genotypic distribution frequencies of codon 10 in exon 1 of estrogen receptor-α gene breast cancer in the study population: breast cancer versus control groups</td>
<td>98</td>
</tr>
<tr>
<td>4.5 Genotypic distribution frequencies of codon 325 in exon 4 of estrogen receptor-α gene in the study population: breast cancer versus control groups</td>
<td>101</td>
</tr>
<tr>
<td>4.6 Genotypic distribution frequencies of codon 325 in exon 4 of estrogen receptor-α gene breast cancer in the study population: breast cancer versus control groups</td>
<td>106</td>
</tr>
<tr>
<td>4.7 Genotypic distribution frequencies of codon 323 in exon 4 mutation of estrogen receptor-α gene in the study population: breast cancer versus control groups</td>
<td>109</td>
</tr>
<tr>
<td>4.8 Genotypic distribution frequencies of codon 323 in exon 4 of estrogen receptor-α gene breast cancer in the study population: breast cancer versus control groups</td>
<td>115</td>
</tr>
<tr>
<td>4.9 Genotypic distribution frequencies of codon 594 in exon 8 of estrogen receptor-α gene in study population</td>
<td>119</td>
</tr>
</tbody>
</table>
4.10 Genotypic distribution frequencies of codon 594 in exon 8 of estrogen receptor-α gene in the study population 124

4.11 Genotypic distribution frequencies of codon 392 in exon 7 of estrogen receptor-β gene in the study population: breast cancer versus control groups 128

4.12 Genotypic distribution frequencies of codon 392 in exon 7 of estrogen receptor-β gene breast cancer in the study population: breast cancer versus control groups 132

4.13 Comparison of estimated selected factors with estrogen receptor-α genotypes 143

4.14 The selected demographic characteristics and major risk factors relationships to the ER-α and ER-β polymorphic sites 151
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Chemical structure of Estriol, Estradiol and Estrone</td>
<td>32</td>
</tr>
<tr>
<td>2.2 The domain structures of ER-α and ER-β including some of the known phosphorylation sites involved in ligand independent regulation</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Estrogen Bifunctional Pathways to Breast cancer</td>
<td>37</td>
</tr>
<tr>
<td>2.4 ESR1 (ER-α) Gene location</td>
<td>38</td>
</tr>
<tr>
<td>2.5 ESR2 (ER-β) Gene location</td>
<td>38</td>
</tr>
<tr>
<td>3.1 Mammograms: Left, normal; right, a small mass</td>
<td>62</td>
</tr>
<tr>
<td>3.2 PCR products of exons #1, #4, #8 of ER-α and exons #3, #7 of ER-β</td>
<td>71</td>
</tr>
<tr>
<td>4.1 The distributions of selected demographic characteristics and major risk factors for breast cancer of whole study population</td>
<td>89</td>
</tr>
<tr>
<td>4.2 Genotypic distribution frequencies of codons 10, 325, 594, of estrogen receptor-α gene and 392 of estrogen receptor-β gene in the study population</td>
<td>91</td>
</tr>
<tr>
<td>4.3 Genotypic distribution frequencies of codon 323, in exon 4 of estrogen receptor-α gene and Fist-degree family of breast cancer and LN metastases in the breast cancer group.</td>
<td>111</td>
</tr>
<tr>
<td>4.4 Allelic frequencies of codon 323 of estrogen receptor-α gene in the study population</td>
<td>114</td>
</tr>
<tr>
<td>4.5 Estimated risks for Breast cancer, First-degree family history of breast cancer and Lymph node metastases with estrogen receptor-α codon 323 in different genotypes</td>
<td>117</td>
</tr>
<tr>
<td>4.6 The joint effects of genotypic distribution frequencies of codons 10, 325, 594, 392 of estrogen receptor-α and age at menarche in the study population: breast cancer versus control groups</td>
<td>136</td>
</tr>
</tbody>
</table>
4.7 The joint effects of genotypic distribution frequencies in different codons of estrogen receptor-α and with-β genes polymorphisms for the lymph node metastases of breast cancer in the study population

4.8 Genotypic distribution frequencies of codons 10, 325, 594, 392 of estrogen receptor -α gene and age at menarche in the study population: breast cancer versus control groups

4.9 Genotypic distribution frequencies of codons 10, 325, 594, 392 of estrogen receptor-α gene and race in the study population: breast cancer versus control groups

4.10 Genotypic distribution frequencies of codons 10, 325, 594, 392 of estrogen receptor α gene and age at menarche in the study population: breast cancer versus control group

4.11 Allelic frequencies of codons 10, 325, 594, 392 of estrogen receptor-α gene in the study population

4.12 Estimated risks for First-degree family history of breast cancer and Lymph node metastases with estrogen receptor-α codons 10, 352, 594, 392 in different genotypes
LIST OF ABBREVIATIONS

∞ Limitless or Infinity
bp Base pair
BMI Body Mass Index
CI Confidence Interval
DMSO Dimethyl sulphoxide
DNA Deoxyribonucleic Acid
dNTP Deoxyribonucleotide Phosphate
EDTA disodium ethylenediaminetetraacetate
ER Estrogen Receptor
ESR1 Estrogen Receptor Alpha
ESR2 Estrogen Receptor Beta
g gram
hr hour
kb kilo base
KCl Potassium Chloride
lad DNA ladder
LN Lymph Node
mg miligram
mg/L milligram/liter
MgCl2 Magnesium chloride
min minute
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>μ</td>
<td>micron</td>
</tr>
<tr>
<td>μl</td>
<td>microliter</td>
</tr>
<tr>
<td>μ mol / L</td>
<td>micromole per litre</td>
</tr>
<tr>
<td>°C</td>
<td>Celsius</td>
</tr>
</tbody>
</table>