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Landslides are one of the major natural disasters that cause severe damage to lives and 

properties worldwide. Historically, landslide occurrences are usually mapped by 

taking inventory of location and magnitude of the landslide in a region. This 

information is used to examine and manage slope failures and distributions effectively. 

A good landslide inventory map is a prerequisite for analyzing landslide susceptibility, 

hazard, and risk. Field survey, optical remote sensing, and synthetic aperture radar 

techniques are traditional techniques use for landslide detection in tropical regions. 

However, such techniques are time consuming and costly. In addition, the dense 

vegetation in tropical forests affects the accuracy of the landslide inventory maps. 

Furthermore, it is difficult to distinguish different types of landslides due to 

geomorphological development along hillsides using the traditional approach. so, it 

necessary to develop more innovative approach that can resolve the aforementioned 

challenges. 

 

 

Therefore, in line with the objectives of this research, very- high-resolution LiDAR 

point cloud data and orthophotos image, have been utilized to map the landslide events 

in Cameron Highlands, Malaysia. The segmentation process was optimized using 

Fuzzy-based Segmentation Parameter. Also, six techniques: Ant Colony Optimization 

(ACO), Gain Ratio (GR), Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), Random forest (RF), and Correlation-based Feature Selection (CFS) were used 

for the feature selection. The locations of landslides were detected accurately by 

employing two Machine learning classifiers, namely, SVM and RF, decision rule and 

hierarchal rules sets were developed by applying decision tree (DT) algorithm to 

provide improved landslide inventory.  In this task, two neural network algorithms, 

Recurrent Neural Networks (RNN) and Multi-Layer Perceptron Neural Networks 
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(MLP-NN) were used and the hyper-parameters of the network architecture was 

optimized based on a systematic grid search. 

 

 

The performance of the outcome was validated based on the receiver operating 

characteristic (ROC) area under the curve (AUC) values, confusion matrix and Cross 

Validation method. Transferability of each of the models was verified by testing in 

another site for consistency. The overall accuracy of the Support Vector Machine 

SVM and Random Forest RF classifiers revealed that three of the six algorithms 

exhibited higher ranks in the landslide detection. The classification accuracy of the RF 

classifier is observed to be higher than that of SVM using either all features or only 

the optimal features. The proposed techniques performed well in detecting landslides 

in tropical area in Malaysia. Furthermore, the transferability indicates that the 

techniques can easily be extended to any region with similar characteristics.  

 

 

The result show that the accuracy of shallow and deep-seated landslides were 0.80 and 

0.83, respectively. The intensity derived from the LiDAR data, geometric and texture 

features significantly affects the accuracy of differentiating shallow from deep-seated 

landslides. While, the results of shallow and deep using hierarchal rules set were 

observed to be 87.2%, and 90% respectively, for site A (Analysis area). More so, the 

hierarchal rules set were evaluated using another site named site B (Test area), and the 

accuracies of shallow and deep seated were found to be 86.4% and 80.8% respectively. 

This indicates that LiDAR data are highly efficient in detecting landslide 

characteristics in tropical forested areas.  

 

 

Furthermore, RNN and MLP-NN models in the test area showed 81.11%, and 74.56%, 

accuracy level, respectively. These results indicated that the proposed models with 

optimized hyper-parameters produced the accurate classification results. The LiDAR-

derived data, orthophotos and textural features significantly affected the classification 

results. The results indicated that the proposed methods have the potential to produce 

accurate and appropriate landslide inventory in tropical regions such as Malaysia. 

Hopefully, this innovative method can be deployed in detecting landslide and 

distinguish between different types of landslides (shallow and deep-seated landslides) 

in the near future for landslide management due to its transferability capabilities to 

different environments. 
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Tanah Tanah runtuh merupakan salah satu bencana alam yang boleh mengakibatkan 

kemalangan jiwa dan kerosakan harta benda. Menurut sejarah, kejadian tanah runtuh 

kebiasaannya dikesan dengan mengenal pasti lokasi dan magnitud kejadian tanah 

runtuh tersebut di sesuatu kawasan dan maklumat ini digunakan untuk mengkaji corak 

tebaran tanah runtuh bagi menguruskan hakisan tanah dengan berkesan. Peta kajian 

tanah runtuh yang baik merupakan satu keperluan penting bagi mengenal pasti 

kawasan yang terdedah dan berisiko untuk berlakunya tanah runtuh selain daripada 

untuk mengkaji perubahan landskap yang berlaku akibat daripada kejadian tanah 

runtuh. Pengukuran tanah, sensor penderiaan jauh dan teknik sintetik bukaan radar 

adalah antara teknik tradisional untuk mengenal pasti tanah runtuh di kawasan tropika. 

Walaubagaimanapun, teknik-teknik traditional ini adalah lambat dan menelan kos 

yang sangat besar. Tambahan pula, ketebalan tumbuhan hutan tropika merumitkan 

penghasilan peta kajian tanah runtuh di kawasan ini dengan lebih berkesan. Teknik-

teknik traditional ini bukan sahaja lambat bahkan sukar untuk membezakan jenis-jenis 

kejadian tanah runtuh kerana pembangunan geomorfologi di kawasan persisiran bukit 

dan pergerakan tektonik dalam tanah itu sendiri. 

 

 

Hasil kajian ini membentangkan beberapa kaedah untuk mengesan tanah runtuh dan 

keupayaan bagi membezakan antara tanah runtuh yang cetek dan dalam dengan 

menggunakan pengesan cahaya dan berbagai-bagai set data-LiDar dan 

kepenggunaannya mengikut keadaan persekitaran yang berbeza. Antara objektif 

khusus kajian ini adalah: 1) mengenal pasti algoritma yang sesuai untuk pemilihan ciri 

bagi menambah baik proses mengesan tanah runtuh, 2) untuk mengoptimumkan 

ketetapan peraturan keputusan data set dan hierarki peraturan untuk membezakan ciri-
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ciri kegelongsoran yang berlainan, 3) untuk membangunkan prosedur pembelajaran 

(Seni Bina Saraf) bagi pemetaan tanah runtuh. Bagi mencapai matlamat ini, pertama, 

proses segmentasi dioptimumkan dengan menggunakan selia logik kabur. Selepas itu, 

enam teknik: Pengoptimuman Koloni Semut (ACO), Nisbah Perolehan (GR), 

Pengoptimuman Kawanan Zarah (PSO) dan Algoritma Genetik (GA), Hutan Rawak 

(RF), dan Hubungan Pemilihan Ciri (CFS) telah digunakan untuk pemilihan ciri. Di 

sini, lokasi tanah runtuh telah dikesan dengan tepat dengan menggunakan dua teknik 

mesin pengasingan pembelajaran, iaitu, MSV dan HR. Di samping itu, peraturan 

keputusan dan peraturan set hierarki telah dibangunkan dengan menggunakan Pohon 

Keputusan (DT) algoritma untuk menyediakan inventori tanah runtuh yang lebih baik. 

Dalam tugas ini, dua rangkaian neural algoritma telah digunakan iaitu Rangkaian Saraf 

Berulang (RNN) dan Rangkaian Saraf Pelbagai Lapisan Perceptron (MLP-NN). 

Dalam proses ini juga, lebihan parameter dari rangkaian seni bina telah dioptimumkan 

berdasarkan carian grid yang sistematik. 

 

 

Kesemua prestasi tersebut telah disahkan berdasarkan nilai di bawah kurva (AUC) 

dalam ciri-ciri operasi penerima (ROC), matriks kekeliruan dan pengesahan silang. 

Setiap pemindahan model telah disahkan dengan diguna pakai di kawasan lain. Untuk 

objektif pertama, keseluruhan ketepatan daripada Mesin Sokongan Vektor (SVM) dan 

pengelas Hutan Rawak (RF) mendedahkan bahawa tiga daripada enam algoritma 

berjaya mempamerkan ketepatan yang lebih tinggi dalam mengesan kejadian tanah 

runtuh. Ketepatan pengelasan bagi pengelas (RF) adalah lebih tinggi daripada 

pengelas (SVM) walau sama ada dengan menggunakan kesemua ciri atau ciri 

optimum sahaja. Teknik yang dicadangkan ini adalah yang terbaik dalam mengesan 

tanah runtuh di kawasan tropika seperti Malaysia. Oleh yang demikian, teknik-teknik 

ini mudah untuk diguna pakai di mana-mana kawasan yang mempunyai ciri-ciri yang 

hampir serupa.      

 

 

Objektif kedua menunjukkan bahawa ketepatan bagi mengenal pasti jenis-jenis tanah 

runtuh sama ada cetek dan mendalam adalah 0.80 dan 0.83. Keamatan yang diperolehi 

daripada tekstur dan data LiDAR dengan ketara sangat mempengaruhi ketepatan 

dalam membezakan tanah runtuh cetek dengan mendalam. Walau bagaimanapun, 

didapati bahawa keputusan data bagi tanah runtuh cetek dan mendalam dengan 

menggunakan aturan hierarki adalah 87.2% dan 90.0%., untuk kawasan A (iaitu 

kawasan yang dianalisis). Sementara itu, set aturan hierarki yang sama diguna pakai 

di kawasan B (iaitu kawasan yang dikaji), dan ketepatan dalam mengenal pasti tanah 

runtuh cetek dan mendalam adalah 86.4% dan 80.8%. Oleh yang demikian, hasil 

kajian ini menunjukkan bahawa data LiDAR adalah sangat berkesan dalam mengesan 

dan mengenal pasti jenis-jenis tanah runtuh di kawasan hutan hujan tropika. 

 

 

Selain itu, hasil daripada objektif ketiga pula menunjukkan bahawa ketepatan bagi 

model RNN dan MLP-NN yang dijalankan di kawasan uji kaji masing-masing adalah 

81.11% dan 74.56%. Oleh itu, keputusan ini menunjukkan bahawa model yang 

dicadangkan dalam kajian ini menghasilkan hasil klasifikasi yang sangat tepat dengan 
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mengoptimumkan beberapa parameter-hiper. Di sini, data daripada LiDAR, 

orthofotos dan ciri-ciri tekstur amat mempengaruhi hasil klasifikasi kajian.  

 

 

Keputusan dari hasil kajian ini menunjukkan bahawa kaedah yang dicadangkan 

berpotensi untuk menghasilkan inventori jenis tanah runtuh dengan tepat dan sesuai 

diguna pakai di kawasan hutan hujan tropika seperti Malaysia. Algoritma dan 

maklumat yang diperolehi daripada kajian ini dapat menyumbang kepada pengurusan 

tanah runtuh di negara-negara hutan hujan tropika. 
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CHAPTER 1 

1 INTRODUCTION  

1.1 Introduction  

The rapid expansion of cities and the continuously increasing population in urban 

areas lead to the establishment of settlements in mountainous areas. This phenomenon 

has increased the impact of natural disasters, particularly landslides, in these 

mountainous areas. Landslides result in severe property losses, human casualties, and 

environmental damage. Landslides are considered one of the geological phenomena – 

along with earthquakes, subsidence, volcanic activity and glacial rebound – to 

contribute to ground deformation (Pradhan and Lee, 2010). In the near future, climate 

change induced by anthropogenic actions such as urban expansion and deforestation, 

will lead to higher landslide occurrences. Considering the wide coverage of landslide 

damages, planners and decision makers have to identify location of landslide to 

mitigate the event (Pradhan et al., 2011).  Two major aspects should be considered to 

produce an efficient landslide inventory map. One aspect is related to the data used, 

whereas the other is related to the methods employed (Pradhan et al., 2016).  

Landslides are geological disasters with catastrophic effects on human lives and 

properties. Landslide incidence is related to a cluster of triggering factors, such as 

intense rainfall, volcanic eruptions, rapid snowmelt, elevated water levels, and 

earthquakes (Tehrany et al., 2014a). Landslide inventory maps are required for various 

purposes such as: (i) recording the magnitude of landslide in a region, (ii) performing 

the initial steps in analysing the susceptibility, hazard, and risk of the landslide (Van 

Westen et al., 2008; Guzzetti et al., 2012; Althuwaynee et al., 2014a; Althuwaynee et 

al., 2014b; Pradhan et al., 2016), and (iii) examining the patterns of landslide 

distributions and studying the evolution of landscape affected by landslides (Parker et 

al., 2011; Pradhan et al., 2016). Mapping of landslide susceptibility, hazards, and risks 

is imperative to achieve the mitigation planning (Pradhan and Buchroithner, 2010). 

The identification and mitigation of landslide occurrences are also crucial within the 

field of hazard management and mitigation research (Guzzetti et al., 2012).   

According to Metternicht et al. (2005), remote sensing (RS) technology provides detail 

information about landslides for policy-makers and emergency managers. Selecting 

relevant features is important for distinguishing between landslides and non-landslides 

as well as classifying landslides (Van Westen et al., 2008). Mapping a landslide 

inventory in tropical areas is challenging because the dense vegetation cover in these 

regions obscures underlying landforms (Chen et al., 2015). The precision of derived 

maps depends not only on the methodology adopted but also on the quality of the 

features selection. The use of a large number of features can decrease the accuracy of 

landslide detection because of the presence of irrelevant features (Stumpf and Kerle, 

2011). Moreover, the dense vegetation of tropical forests complicates the generation 
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of an accurate landslide inventory map in these regions. Therefore, the present study 

aims to utilize light detection and ranging (LiDAR) data and orthophoto image along 

with recent optimized techniques, in detecting landslides and differentiating between 

their characteristics.  

1.2 Problem Statement 

Field survey, optical remote sensing, and synthetic aperture radar techniques are 

traditional techniques use for landslide detection in Remote Sensing and Geographic 

Information System (GIS) (Pradhan et al., 2016). However, there exist some 

challenges that affect its accuracy and performance. In a dense vegetation cover, it is 

difficult to use the traditional technique due to the obstruction from mountains and 

shadows (Chen et al., 2014). Many researches have attempted to develop rule-set 

based on time trial-error method. However, the rule-set development with the trial-

and-error optimization method is time consuming, and the optimum rulesets are 

difficult to be determined (Sameen et al., 2017). Also, many investigations have been 

carried out using hierarchical approach with multiresolution sets of images. However, 

this approach has not been adopted in differentiating between types of landslide 

(shallow and deep seated) using LiDAR data. Despite the viability of Neural 

Architecture techniques in many areas of endeavour such as GIS, the technique has 

not been deployed with LiDAR data in detecting landslide. 

1.3 Motivation Behind this Research 

Nowadays, natural hazards are common in today‘s life. Increasing amounts of natural 

catastrophes have proved to the human the vital importance of the natural hazards 

issues for the safety of the environment, and the populations. Rapid urbanization and 

climate change are expected to raise the amount of landslide. Landslide results in sever 

property losses, human casualties and environmental damage.  The dramatic 

landslides which occur in tropical countries, especially Malaysia, emphasize the 

extremity in climatic variations. Since large-scale landslides often cause severe 

damage to human lives and properties, it is desirable to identify and map them for 

hazard mitigation purposes (Lin et al., 2013a). This phenomenon triggers due to the 

unexpected variations of the state of features due to natural forces, such as rainfall, 

and human activities. In most cases, human beings are not capable of controlling and 

predicting these disasters precisely. When major natural catastrophes such as 

landslides, earthquakes, floods and land subsidence occur, they have a definite impact 

upon human lives, belongings, infrastructure, farming and environment. The influence 

of natural hazards varies based on the intensity and coverage of region. 

Landslides are of the most commonly occurring natural catastrophes that influence 

human beings and their surrounding environment. Inhabitants of Asia and the Pacific 

regions are affected in terms of social and economic stability. According to Pradhan 

(2010), high percentage of the destructions related to natural catastrophes in Malaysia 

are produced by landslide. Furthermore, average annual landslide damage is as high 
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as $10 million USD. The attention towards providing proper landslide management 

has risen over the last few centuries. The recent reasons for recurrent landslides within 

some regions are mostly due to unplanned urbanization, construction and 

deforestation. In spite of these factors, it is possible to predict and mitigate effects of 

landslides with the use of various technology. The use of technology can facilitate 

landslide prevention actions to detect the landslide areas and to have an early warning 

for this catastrophe. 

This thesis attempts to propose novel techniques for mapping the landslide in 

vulnerable locations using state- of-the-art machine learning methods. The key 

motivation of this research is to establish high-quality landslide inventory maps by 

applying semi-automatic techniques. To recognize those susceptible regions, landslide 

inventory maps should be generated as a basis of landslide susceptibility mapping in 

order to avoid more urbanization in hazardous areas. To reduce the damage and 

victims in case of a landslide occurrence, it is critical to locate the susceptible areas. 

Additionally, optimized techniques vastly improve the accuracy of classifications. 

Governments and planners can utilize the generated results of this study to identify 

safe regions for inhabitants, support the first ones to respond to emergencies, and 

update the urban planning strategies. Such data can decrease the requirements for 

performing field surveys by agencies such as departments of surveying. 

1.4 Research Objectives 

The present thesis proposes and applies various new methods that clearly contribute 

to the gap in the literature. These methods are simple, repeatable, and comprehensive. 

The following are the main objectives of the thesis:  

1. To investigate the suitable selection features algorithms in landslide 

detection.   

2. To optimize rule sets to distinguish various landslide characteristics and 

compare its performance with hierarchical rule-set classification 

approach. 

3. To apply deep learning (Neural Architecture) classifier for landslide 

mapping. 

1.5 Research Questions 

This thesis comprehensively addresses the following research questions:  

1. What are the results of the selected feature techniques using high resolution 

LiDAR data? How do the selected relevant features contribute to detection of 

landslides and differentiation of two landslide types in a highly dense, 

vegetated area? 
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2. What is the result of the optimize rule data with high density LiDAR data? 

How can this be helpful in detecting landslides and differentiating between two 

types of landslide? 

3. How effective is the supervised approach classification method in defining the 

landslide prone areas? 

4. How do the LiDAR derived data aid in differentiation of deep seated and 

shallow landslides? 

5. How does the optimized segmentation aid in delineating the boundary of 

landslides and improve in its exploitation? 

6. How do the decision rule sets aid to distinguish between two types of 

landslides? 

7. How do the hierarchal rules set contribute to differentiation of two types of 

landslides? 

8. How do deep neural networks help in detecting landslides within tropical 

areas? 

1.6 Scope of this Thesis 

This study is carried out to develop a method for detecting and distinguish landslide 

areas using remote sensing and GIS techniques in a tropical environment like Cameron 

Highland, Malaysia. Also, transferability capability to similar geological and 

geomorphological areas are investigated and tested in other study areas. In this 

research, airborne laser scanning techniques is used to detect landslides and to 

distinguish between shallow and deep-seated landslides. Six (6) algorisms; Ant 

Colony Optimization (ACO), Gain Ratio (GR), Particle Swarm Optimization (PSO) 

and Genetic Algorithm (GA), Random forest (RF), and Correlation-based Feature 

Selection (CFS) are used for the feature selection. The performance of the feature 

selection algorism is evaluated using two Machine learning classifiers, namely support 

vector machine (SVM) and random forest (RF). Decision rule and hierarchal rules set 

are developed by applying decision tree (DT) to provide improved landslide inventory 

map. In this task, two neural network algorithms, Recurrent Neural Networks (RNN) 

and Multi-Layer Perceptron Neural Networks (MLP-NN) are used and the hyper-

parameters of the network architecture was optimized based on a systematic grid 

search. 

1.7 Research Hypothesis 

1. The optimized techniques for both segmentation parameters and feature 

selection may improve and facilitate the generation of landslide inventory map 

with high density LiDAR data.  

2. Decision rule and hierarchal rule sets along with relevant features may improve 

significantly in differentiating between the landslide types. 

3. Deep neural network may contribute in improving accuracy of a landslide 

inventory map.  
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1.8 Thesis Organization 

This thesis is organized into five chapters. The summary of each chapter is as follows: 

(i) CHAPTER 1: INTRODUCTION 

This chapter introduces the problem statement of the study, aim, objectives and scope 

of the study. Furthermore, this chapter highlights the research questions proposed for 

the thesis as well as the significant contribution of new knowledge and the overall 

structure of the thesis. 

(ii) CHAPTER 2: LITERATURE REVIEW 

This chapter provides an overview of landslide status in various regions and previous 

work of using remote sensing and GIS to detect landslides.  The two types of landslide 

detection techniques were outlined followed by the traditional and innovative and 

emerging techniques for detecting landslide prone areas. Next, the methodology used 

to detect and distinguish landslides using different techniques were discussed. Finally, 

validation methods used to assess the accuracy of maps produced are summarized. 

(iii) CHAPTER 3: MATERIALS AND METHODOLOGY 

This chapter details the characteristics of the study area followed by the following 

details in order: materials, data, methodology, optimized segmentation, evaluation of 

the training sample, features selection algorithms, detection, differentiation of the 

types of landslide (i.e. deep seated and shallow), and various remote sensing 

techniques. 

(iv) CHAPTER 4: RESULTS AND DISCUSSION 

This chapter focuses on the results of the study, which include the analysis results, 

optimized segmentation, and selected feature algorithms using LiDAR data – 

supported by photos, tables, diagram and charts. This chapter also discusses the results 

of optimized segmentation. Afterwards, decision rule and hierarchal rules were used 

in differentiating between two types landslides with regards to their characteristics. 

Lastly, the results of the deep neural network – using only the LiDAR derived data – 

were employed for detecting landslides and differentiating between the two types of 

landslides are discussed. 

(v) CHAPTER 5: CONCLUSION AND FUTURE WORK 

RECOMMENDATIONS 

This chapter provides the overall conclusion from this study, recommendation and 

further research for the study area. 
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