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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 
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INVERTER-BASED SHUNT ACTIVE POWER FILTER 

By

HOON YAP 

June 2017 

Chair  : Mohd Amran Mohd Radzi, PhD 
Faculty : Engineering 

Nowadays, harmonics mitigations and reactive power compensations are compulsory 
in power distribution systems due primarily to significant increment of current 
harmonics and reactive power burden resulted from widespread applications of 
power electronic devices. Among the existing mitigation solutions, multilevel 
inverter-based shunt active power filter (SAPF) is potentially to be effective against 
current harmonics and power factor (PF) degradation, and its mitigation performance 
is strictly dependent on the quality of its control algorithms. 

In this work, three main problems were identified for further investigation. First, 
dependency on current control algorithm alone is insufficient to solve the severe 
inherent voltage imbalance problems of multilevel inverters. Second, overall DC-link 
voltage of SAPF is still regulated using inaccurate yet slow response control 
algorithms. Third, the existing harmonics extraction algorithms are still exhibiting 
significant time delay and possessing redundant features.  

Therefore, the main aim of this work is to develop new control algorithms which are 
capable of improving mitigation and dynamic performances of three-level neutral-
point diode clamped (NPC) inverter-based SAPF. Specifically, this work focuses on 
three main control algorithms. Firstly, a simple fuzzy-based dwell time allocation 
(FDTA) control technique is formulated to enhance the performance of space vector 
pulse-width modulation (SVPWM) current control algorithm in minimizing inherent 
voltage imbalance problems of three-level NPC inverter, by suitably adjusting the 
dwell time of each designated switching state in response to voltage imbalance of 
DC-link capacitors. Next, a unique inverted error deviation (IED) control technique 
is incorporated into the main DC-link capacitor voltage regulation algorithm. By 
utilizing indirect voltage error manipulation approach with reduced computational 
efforts, the overall DC-link voltage of SAPF is efficiently controlled. Lastly, a new 
current harmonics extraction algorithm known as simplified synchronous reference 
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frame (SSRF) algorithm is developed, and with its simplified features, it is able to 
respond quickly to various system conditions while maintaining high accuracy.  

SAPF with all the proposed control algorithms is developed and evaluated in
MATLAB-Simulink involving various highly nonlinear rectifier loads. In addition, it
is thoroughly evaluated under both steady-state and dynamic-state conditions. 
Moreover, a laboratory prototype is developed with all the proposed control 
algorithms downloaded in TMS320F28335 digital signal processor (DSP) board for 
validation purposes.  

From the findings, by incorporating advantages of the proposed FDTA technique, 
voltages across all the DC-link capacitors are found to be equal, thereby achieving 
voltage balancing. Without FDTA technique, SVPWM current control algorithm 
fails to maintain voltage balance of all the DC-link capacitors. Meanwhile, the 
proposed DC-link capacitor voltage regulation algorithm with IED control technique 
performs with high accuracy, which is in the range of 99.96 % to 100 %, and fast 
response time, which is within 0.20 s. Next, by utilizing the proposed SSRF 
algorithm, SAPF is observed to perform outstandingly with low THD values, which 
is in the range of 0.96 % to 3.28 % and fast response time, which is within 0.025 s. 
Finally, mitigation performance of the three-level NPC inverter-based SAPF while 
using all the proposed control algorithms simultaneously (Set 3) is observed to be the 
best.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

ALGORITMA KAWALAN TERTINGKAT UNTUK PENAPIS AKTIF 
KUASA PIRAU BERASASKAN PENYONGSANG BERBILANG ARAS 

Oleh

HOON YAP 

Jun 2017 

Pengerusi : Mohd Amran Mohd Radzi, PhD 
Fakulti : Kejuruteraan 

Pada masa kini, mitigasi harmonik dan pampasan kuasa reaktif adalah wajib dalam 
sistem pengagihan kuasa disebabkan terutamanya oleh peningkatan harmonik arus 
yang ketara dan beban kuasa reaktif yang terhasil daripada penggunaan peranti 
elektronik kuasa secara meluas. Antara teknik mitigasi yang sedia ada, penapis aktif 
kuasa pirau (SAPF) berasaskan penyongsang berbilang aras berpotensi untuk 
berkesan terhadap harmonik arus dan penurunan faktor kuasa (PF), dan prestasi 
mitigasinya adalah bergantung kuat kepada kualiti algoritma kawalannya. 

Dalam kerja ini, tiga masalah utama telah dikenal pasti untuk siasatan lanjut. Pertama, 
pergantungan kepada algoritma kawalan arus sahaja tidak berupaya untuk 
menyelesaikan masalah ketidakseimbangan voltan penyongsang berbilang aras yang 
ketara. Kedua, voltan sambungan DC keseluruhan SAPF masih dikawal 
menggunakan algoritma kawalan yang tidak tepat lagi perlahan tindak balas. Ketiga, 
algoritma pengekstrakan harmonik yang sedia ada masih mempamerkan lengah masa 
yang ketara dan memiliki ciri berlebihan.  

Oleh itu, matlamat utama kerja ini adalah untuk membangunkan bagi SAPF 
berasaskan penyongsang diod terkapit titik neutral (NPC) tiga aras, algoritma 
kawalan baru yang mampu meningkatkan prestasi mitigasi dan dinamik SAPF. 
Secara khusus, kerja ini memberi tumpuan kepada tiga algoritma kawalan utama. 
Pertama, teknik kawalan peruntukan masa inap kabur (FDTA) yang mudah telah 
dirumus untuk meningkatkan prestasi algoritma kawalan arus pemodulatan lebar 
denyut ruang vektor (SVPWM) dalam mengurangkan masalah ketidakseimbangan 
voltan terwujud penyongsang NPC tiga aras, dengan melaraskan masa inap di setiap 
keadaan pensuisan sebagai tindak balas kepada ketidakseimbangan voltan pemuat 
sambungan DC. Seterusnya, teknik kawalan sisihan ralat tersongsang (IED) yang 
unik telah digabungkan dengan algoritma pengaturan voltan pemuat sambungan DC. 
Dengan menggunakan pendekatan manipulasi ralat voltan tidak langsung dengan 
penggurangan usaha pengiraan, voltan sambungan DC keseluruhan SAPF dapat 
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dikawal dengan cekap. Akhir sekali, algoritma pengekstrakan harmonik arus baru 
yang dikenali sebagai kerangka rujukan segerak dipermudah (SSRF) telah dibina,
dan dengan ciri-ciri yang mudah, ia mampu bertindak balas dengan cepat kepada 
pelbagai keadaan sistem di samping mengekalkan ketepatan yang tinggi.  

SAPF dengan semua algoritma kawalan yang dicadangkan telah dibangunkan dan
dinilai dalam MATLAB-Simulink yang melibatkan pelbagai beban penerus tak 
lelurus. Tambahan pula, ia telah dinilai dengan teliti dalam kedua-dua keadaan statik 
dan dinamik. Selain itu, prototaip makmal juga telah dibina, dengan semua algoritma 
kawalan yang dicadangkan dimuat turun dalam papan pemproses isyarat digital (DSP) 
TMS320F28335 untuk pengesahan selanjutnya. 

Dari hasil kajian, dengan menggabungkan kelebihan teknik FDTA yang dicadangkan, 
voltan di semua pemuat sambungan DC didapati sama, sekali gus mencapai 
keseimbangan voltan. Tanpa teknik FDTA, algoritma kawalan arus SVPWM gagal 
mengekalkan keseimbangan voltan di semua pemuat sambungan DC. Sementara itu, 
algoritma pengaturan voltan pemuat sambungan DC dengan teknik kawalan IED 
yang dicadangkan telah mempamerkan ketepatan yang tinggi, iaitu dalam lingkungan 
99.96 % hingga 100 % dan masa tindak balas yang cepat, iaitu dalam lingkungan 
0.20 s.  Seterusnya, dengan menggunakan algoritma SSRF yang dicadangkan, SAPF 
didapati beroperasi dengan nilai THD yang rendah, iaitu dalam lingkungan 0.96 %
hingga       3.28 % dan masa tindak balas yang cepat, iaitu dalam lingkungan 0.025 s.  
Akhir sekali, dengan menggunakan semua algoritma kawalan yang dicadangkan 
secara serentak (Set 3), prestasi mitigasi SAPF berasaskan penyongsang diod terkapit 
titik neutral (NPC) tiga aras didapati adalah yang terbaik. 
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CHAPTER 1 
1.

INTRODUCTION 

1.1 Research Background 

The rapid advancement in power electronic fields has led to widespread usage of 
nonlinear loads such as power converters, adjustable speed drives, switched mode 
power supply, arc furnaces, welding equipment and many others, thereby causing 
significant power quality problems to the power distribution system. Different 
classification of power quality problems are identified to be frequency deviation, 
voltage imbalance, flicker, voltage or current waveform distortion, voltage swells 
and dips, transient, and harmonics [1-3]. As one of the most hazardous power quality 
problems, the harmonic currents injected by nonlinear loads causes malfunction of 
electronic devices, voltage quality degradation, and increased heating and power 
losses of transformers [4-7]. Moreover, additional reactive power burden caused by 
the nonlinear loads further degrades the overall system efficiency and worsens power 
factor (PF) performances. Therefore, it is crucial to minimize the harmonic contents 
and improve the power factor of power distribution system.  

In conjunction with the mitigation efforts, significant harmonic limitation standards 
such as IEEE standard 519-2014 [8] and IEC 61000-3-2 [9] are established, aimed to 
limit the negative impacts resulted from nonlinear power system loads. Additionally, 
a mitigation tool known as power harmonic filter is introduced to reduce harmonic 
distortion and to improve PF performance. Basically, there are two main power 
harmonic filters namely passive filter and active power filter, proven to be effective 
against power quality issues [10-13].  

Conventionally, passive filters are fully utilized to deal with harmonic problems. 
They are recognized as the simplest and most economical mitigation solution. Their 
configurations typically involve the combination of simple passive elements 
(resistors, capacitors and inductors) [10, 14]. However, they could be tuned to 
attenuate selected harmonics present in the line current, thereby limiting their 
mitigation ability. They are only capable to solve harmonics resulted from specific 
type of nonlinear loads and cannot work directly with dynamic load conditions which 
occur regularly in power system. Therefore, it is very difficult for these filters to 
meet the mitigation requirements for varying harmonics and reactive power. 

Owing to the limitations of conventional mitigation methods, a more powerful 
harmonic mitigation tool known as active power filter (APF) is introduced. Basically, 
APF is developed based on modern power electronics technology. The modern APF 
possesses the ability to overcome the weaknesses of conventional passive filters. In 
contrast to conventional passive filters, the modern APFs are superior in terms of 
filtering performance, more flexible in dealing with harmonics of various levels, yet 
physically smaller [15]. A typical APF could eliminate the harmonics present in the 
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power system by injecting equal harmonics in opposite phase into the power line, 
thereby improving the power quality of the connected power system. APFs also can 
be referred as active power quality conditioners, active power line conditioners, and 
self-commutated static Var compensators (SVCs). In other words, their applications 
are not limited to harmonic filtering, but are also applicable in harmonic isolation, 
harmonic damping, harmonic termination, reactive power control for power factor 
correction and for voltage regulation, load balancing, voltage flicker reduction, and 
any of their combinations [15].  

Various types of APFs have been reported in the literature [15-17] and they are 
divided into single phase (two-wire) [15] and three-phase (three-wire and four-wire) 
APFs [17], depending on their applications. Moreover, they are also classified into 
series [18, 19] and shunt [20-22], depending on their respective circuit configurations. 
Furthermore, a combination of series and shunt APFs known as unified power-
quality conditioner (UPQC) [23-25], and hybrid APF topology [26-28] which utilizes 
the strength of passive and active filters, are also well investigated serving as another 
alternative in power quality improvement. Nonetheless, shunt APFs (SAPFs) are the 
most widely applied topology in current harmonics mitigation, reactive power 
compensation, and three-phase current balancing.  

Previously, most SAPFs utilize standard two-level voltage source inverters (VSIs) in 
their design [29, 30]. They have been recognized as the best solution to eliminate 
harmonics in low and medium power systems. They provide simple circuit structure, 
and thus simpler control strategies are needed. However, they require large rating 
DC-link capacitor and power semiconductor switching devices which increase the 
cost and system losses. Recently, multilevel inverters have brought a new dimension 
to SAPF by providing significant advantages over conventional two-level inverters. 
They are superior in term of output voltage quality where lower harmonic distortion 
is achieved through the generation of output with higher voltage levels. Moreover, 
having multiple levels of output voltages also contribute to lower switching 
frequency and lower power losses. However, SAPFs based on multilevel inverter are 
more complicated than two-level inverter due primarily to higher amount of 
switching devices and DC-link capacitors. Besides, high usage of DC-link capacitors 
further causes voltage imbalances across the DC-link capacitors. They are recognized 
as the inherent problems of multilevel inverters which must be overcome to ensure 
proper function of SAPF. Therefore, a comprehensive control strategy is needed to 
control the complex switching operation of multilevel inverter, and at the same time, 
for maintaining the voltage balance of all DC-link capacitors.  

Multilevel inverter configurations are mostly considered for high power medium 
voltage applications due to their unique ability in providing higher output voltage. 
However, in another point of view, it will be very interesting to apply them in low 
power and voltage side due to their unique features in reducing voltage stresses 
across power switching devices which will allow the usages of lower rated devices in 
their designated applications. In this manner, the economical features of the designed 
SAPF can be improved. Besides, when it comes to SAPF applications, it is more 
worthwhile to utilize the advantages of multilevel inverter at low voltage side where 
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harmonic problems are more severe. In fact, in low voltage applications, multilevel 
inverters have widely been reported and are proven to exhibit better performance and 
economical features as compared to two-level inverters [31-33].

In the context of SAPF, there are three most widely reported multilevel inverter 
configurations. These include neutral-point diode clamped (NPC) [21, 34], cascaded 
H-bridge (CHB) [20] and flying capacitor (FC) multilevel [35]. Nevertheless, NPC 
multilevel inverter is the most preferred for SAPF implementation as it provides the 
best advantages in terms of DC-link capacitor voltage balancing by requiring the 
least amount of capacitors as compared to the other topologies [36, 37]. Moreover, 
the multilevel inverters employed for SAPF applications are mostly restricted to 
three-level inverters due to great difficulties in controlling the higher amount of 
switching states and more severe voltage imbalances will happen to the capacitors as
the number of level increases [20, 21, 34].  

The effectiveness of SAPF in power quality mitigation is strictly dependent on how 
quickly and how accurately its control strategies work. Various control strategies of 
SAPFs have been discussed in [38-40]. Generally, the control strategies of SAPF 
consist of three main control algorithms namely harmonics extraction (also known as 
reference current generation), DC-link capacitor voltage regulation (usually applied 
in inverter-based SAPF) and current control (also known as switching) algorithms. 
However, for multilevel inverter-based SAPF, the current control algorithm must be 
expanded so that it is able to effectively control the higher switching states of 
multilevel inverter [41]. Moreover, additional control technique must be incorporated 
into the current control algorithm to minimize its voltage imbalance problems by 
controlling the charging and discharging of DC-link capacitors [42]. Basically, the 
techniques used to achieve voltage balancing of DC-link capacitors vary according to 
the current control algorithm applied. In other words, a complete understanding on 
the operation of multilevel inverter and SAPF must be acquired so that a good 
compromise between voltage balancing technique and current control algorithm can 
be achieved to effectively deal with the voltage imbalance problems.  

For three-level NPC inverter-based SAPF, the voltage across the splitting DC-link 
capacitors must equally be maintained as half of the overall DC-link voltage. Among
all the existing current control approaches as reported by Rodriguez, Lai and Peng
[36], space vector pulse-width modulation (SVPWM) algorithm is the most attractive 
choice due to its high flexibility in switching states selection, forming variety of 
optimal switching sequences to suit different types of inverter topologies. 

In the context of SVPWM, unequal operations of small and medium vectors are 
recognized as the prime causes of neutral-point voltage deviation which leads to 
imbalance of DC-link capacitor voltage. Conventionally, SVPWM relies solely on 
symmetrical switching sequence design with equal dwell (conduction) time 
allocation for N-type and P-type small vectors to achieve natural balancing of DC-
link capacitor voltages [43, 44]. However, by depending on fixed dwell time 
allocation approach cannot completely solve the severe voltage deviation problems 
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of NPC inverter, especially when it operates as SAPF. Moreover, in practical 
situation, fixed dwell time allocation approach is incapable of dealing with time-
varying systems which may further worsen the voltage deviation, as demonstrated by 
Bhat et al. [45]. 

Further improvement which involve rearrangement of switching sequence has been 
introduced by Abdelkrim et al. [46]. In this technique, redundant small vectors are 
rearranged to suit different imbalance conditions of DC-link capacitor voltage. 
However, rearrangement of switching sequences requires large development of 
complex switching sequences, thereby it is a time consuming method. A better 
alternative is proposed by Choi and Lee [47], where the dwell time of N-type and P-
type small vectors are adjusted accordingly to deal with different voltage imbalance 
conditions of DC-link capacitors. The dwell time adjustment method is effective 
against various types of voltage imbalance conditions and does not require any 
complex switching sequence design. However, it is difficult to precisely determine 
the amount of time adjustment needed to accurately deal with voltage imbalance 
problems. In most solutions, the time adjustment value is predicted using complex 
mathematical analysis, and thus complicates hardware development [42, 47]. 

Next, in the context of inverter-based SAPF, the overall DC-link voltage must 
constantly be maintained at a level which is high enough to precisely inject the desired 
injection current back to the polluted power system. Conventionally, overall DC-link 
voltage is regulated via direct voltage error manipulation approach where the 
difference (voltage error) between actual overall DC-link voltage and its desired 
reference voltage is directly utilized by either proportional-integral (PI) controller [48-
50] or fuzzy logic controller (FLC) [51-53], to produce an estimated output which is 
assumed to be the main control signal for regulating DC-link voltage. 

PI technique is more widely used due to its simple implementation features. The 
overall DC-link voltage can be regulated just by applying a fixed value of proportional 

gain  and integral gain . However, due to the use of fixed gain values, PI 

technique is unable to work satisfactory under dynamic-state conditions. This greatly 
affects performance of SAPF in regulating DC-link voltage and mitigating harmonic 
currents. Moreover, the tuning procedure for the determination of optimal gain values 
is very time consuming, as reported by Suetake, Silva and Goedtel [54]. Hence, it is 
not worthwhile to allocate such a long time just to obtain a fixed value of gain.  

On the other hand, FLC technique is currently the best method in regulating the overall 
DC-link voltage. Its control ability far surpasses performance of the PI technique [48,
50, 55]. It is an adaptive mechanism which is able to perform effectively with 
imprecise inputs, handle nonlinear or time-varying system, and is possible to be 
designed without knowing the exact mathematical model of the system [52, 56].
However, in the context of overall DC-link voltage regulation, the FLC techniques 
employed are mostly implemented with high number of fuzzy membership functions 
and rules, thereby imposing great computational burden to the controller [49, 51, 57]. 
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Furthermore, synchronous reference frame (SRF) algorithm has served the major role 
in current harmonics extraction and reference current generation due to its superior 
advantages over the other available algorithms such as simple design and fast 
computational speed. However, the latest trend in SRF algorithm is still relying on 
numerical filters especially low pass filter (LPF) to detect the desired fundamental 
component for reference current generation [58-60]. The dependency on sluggish 
numerical LPF which suffers from serious time delay has significantly limited the 
detection performance. For instance, Wang et al. [59] have demonstrated that the 
existing SRF  performs within 0.05 s (2.5 cycles of 50 Hz signal). Moreover, tuning 
procedure for the determination of cutting frequency value is very time consuming as 
it is normally realized through tedious heuristic approach. Furthermore, a good 
compromise between cutting frequency and the order of filter is difficult to be 
attained but it is required to ensure optimum performance.    

Another weakness of existing SRF algorithm is related to the characteristic of its 
generated reference current. To date, the existing SRF algorithm is still producing a 
non-sinusoidal reference current through derivation of the extracted harmonic current 
[58, 61, 62]. As a result, it forces the switching signals meant for controlling the 
switching activities of SAPF to be generated based on direct current control (DCC) 
scheme [63-65].

As reported in [17, 65, 66], the switching operation of SAPF produces switching 
ripples in the source current, which undoubtedly degrades the THD performance of 
the mitigated source current. However, DCC scheme which operates based on 
comparison of measured injection current with its non-sinusoidal reference current 
counterpart does not possess accurate information on the shape of the actual source 
current. Therefore, even if the source current is polluted by switching ripples, the 
DCC scheme will not be able to mitigate the ripples due to lack of exact information. 
Although indirect current control (ICC) scheme which operates based on comparison 
of actual source current with its sinusoidal reference current counterpart [63-66] has 
been revealed to overcome the weakness of DCC scheme, there is still no relevant 
work on SRF algorithm which has been conducted together with ICC scheme. In fact, 
working principle of the existing SRF algorithm itself limits its application solely to 
DCC scheme.   

1.2 Problem Statement

This work focuses on implementation of current control algorithm with neutral-point 
voltage deviation control technique (voltage balancing technique), DC-link capacitor 
voltage regulation and harmonics extraction algorithms, for improving performance 
of a three-level NPC inverter-based SAPF in maintaining the voltage balance of 
splitting DC-link capacitors, regulating overall DC-link voltage, generating reference 
currents and mitigating harmonic currents.

For multilevel inverter applications, it is very crucial to first deal with their inherent 
voltage imbalance problems. In three-level NPC inverter-based SAPF, voltage 
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imbalance across its splitting DC-link capacitors is particularly due to unequal 
operation of its control system, and could be further worsen by fabrication tolerances 
dissimilar characteristic of its switching devices. Although the existing methods have 
performed well in minimizing the voltage imbalance issues, they mostly depend on 
complex mathematical analysis to operate, thereby complicating the control structure.   

Besides that, dynamic-state conditions are unavoidable in SAPF operation especially 
for its DC-link capacitor voltages. The DC-link capacitors may blow if they 
experience a sudden increase of voltage, and also SAPF may not work properly if its 
DC-link capacitors experience a sudden drop of voltage. Since the PI and FLC 
techniques applied in existing DC-link capacitor voltage regulation algorithms are still 
operated based on direct voltage error manipulation approach where the entire voltage 
error signal is processed without giving enough attention to voltage deviations 
(overshoot and undershoot) that occur to the overall DC-link voltage throughout the 
operation of SAPF, hence they cannot completely eliminate the severe DC-link voltage 
deviation that occurs during dynamic-state conditions. This leads to high overshoot, 
undershoot and slow response time during dynamic operation of SAPF.

Furthermore, the existing SRF algorithm which has performed effectively in current 
harmonics extraction still considered to possess unnecessary features which do not 
represent the basic requirements of current harmonics extraction. These include the 
existing of cosine and zero-sequence components which potentially increases 
computation burden of the algorithm. Moreover, its main weaknesses which include 
dependency on numerical LPF and ability to generate non-sinusoidal reference 
current must be improved to further enhance mitigation performance of SAPF.  

Apart from the aforementioned problems, to date, research works on multilevel 
inverter-based SAPF are actually still very limited, and would require further 
comprehensive evaluation and analysis to verify their effectiveness and feasibility.  

1.3 Aim and Objectives 

The main aim of this work is to enhance performance of three-phase three-wire 
three-leg three-level neutral-point diode clamped (NPC) inverter-based shunt active 
power filter (SAPF) in minimizing line harmonic currents and improving line power 
factor with new control algorithms. The objectives of this work are; 

1. To design and develop for the NPC inverter-based SAPF, a current control 
algorithm with new neutral-point voltage deviation control technique known 
as fuzzy-based dwell time allocation (FDTA) technique. 

2. To design and develop for the NPC inverter-based SAPF, a new DC-link 
capacitor voltage regulation algorithm with inverted error deviation (IED) 
control technique. 

3. To design and develop for the NPC inverter-based SAPF, a new current 
harmonic extraction algorithm which operates with ICC scheme known as 
simplified synchronous reference frame (SSRF) algorithm. 
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4. To evaluate overall performance of the NPC inverter-based SAPF with 
simultaneous implementation of the proposed FDTA, IED and SSRF control 
algorithms. 

Simulation model of NPC inverter-based SAPF is developed and simulated together 
with the proposed control algorithms under various steady-state and dynamic-state 
conditions. A hardware prototype of the proposed design is then developed in the 
laboratory to examine and verify its performance.  

1.4 Scope and Limitations of Work 

The scope of this work is divided into two sections namely software and hardware 
sections. In the software section, the work begins with the design of three-phase 
three-wire three-leg three-level NPC inverter-based SAPF followed by simulation of 
the proposed design in MATLAB-Simulink software program. Three-phase three-
wire system is considered for this work due to wider applications of power 
electronics devices in three-phase applications which lead to significant spread of 
current harmonics in three-phase power system, and thus make it compulsory to be 
mitigated efficiently.  

Additionally, in order to further improve mitigation performance of SAPF, multilevel 
inverter which provides better output quality is employed in this work rather than 
depending on standard two-level VSI. However, in SAPF’s applications, the 
multilevel inverters employed are mostly restricted to three-level inverters due to 
complexity of controller design which involves larger number of switching states and 
greater severity of voltage imbalance to the capacitors as the number of level 
increases [20, 21, 34]. Meanwhile, the selection of multilevel inverter topology is 
performed by considering the severity of voltage imbalance problems exhibited by 
that particular topology. Therefore, NPC multilevel inverter which requires the least 
amount of DC-link capacitors is employed for this work. As a result, less effort is 
needed to balance up the voltage across all the DC-link capacitors of NPC multilevel 
inverter, and thus reduces complexity of the designed controller. 

The development of three-phase three-wire three-leg three-level NPC inverter-based 
SAPF involves the design of three-phase three-wire three-leg three-level NPC 
inverter-based SAPF circuits together with its controller, which comprises of four 
main algorithms known as current control algorithm with neutral-point voltage 
deviation control technique, DC-link capacitor voltage regulation algorithm, current 
harmonics extraction algorithm and synchronizer algorithm. However, this research 
work only focuses on three most important algorithms which include current control 
algorithm with neutral-point voltage deviation control technique, DC-link capacitor 
voltage regulation algorithm and current harmonics extraction algorithm, for 
implementing further improvements.   
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In simulation work, the input source voltage is set to be 400 Vrms (line-to-line). The 
three-phase three-level NPC inverter-based SAPF and all the control algorithms 
involved are developed using SimPower System blocks. Three types of highly 
nonlinear loads, as reported in [6, 67, 68] are applied in this work to test the 
performance of SAPF under steady-state and dynamic-state conditions. The first 
nonlinear load is constructed using a three-phase uncontrolled bridge rectifier 
feeding a 20 Ω resistor and 2200 μF capacitor connected in parallel (capacitive).
Meanwhile, the second nonlinear load is developed using similar rectifier feeding a 
series connected 50 Ω resistor and 50 mH inductor (inductive). The third nonlinear 
load is developed using similar rectifier feeding a 50 Ω resistor (resistive). Under 
steady-state condition, THD value and power factor are the main parameters used to 
evaluate performance of the proposed SAPF. Meanwhile, under dynamic-state 
condition, the proposed SAPF is evaluated for its dynamic response when 
encountering sudden nonlinear load change. For this analysis, two dynamic-state 
conditions are created by changing the nonlinear load from capacitive to inductive 
and inductive to resistive, respectively.   

Evaluation under unbalanced and distorted source voltage is out of scope because 
according to working principle of SAPF, source voltage serves as a reference to 
ensure proper synchronization between voltage and current so that opposition 
harmonic mitigating current can accurately be injected back into the power line to 
mitigate the presence of current harmonics [15, 67, 69]. Therefore, this work only 
considers balanced three-phase three-wire system with sinusoidal source voltage. 

In the hardware section, a laboratory prototype is constructed where the controller 
and power circuits are assembled to function as a three-phase three-level NPC 
inverter-based SAPF, similar to the one that is modelled in MATLAB-Simulink. In 
experimental work, for safety purposes and due to limitation of resources, the input 
source voltage is set to be 100 Vrms (line-to-line), which is supplied by 
programmable AC source. Meanwhile, a high performance digital signal processor 
(DSP) is programmed to perform all the control algorithms of the SAPF. The 
laboratory prototype is tested under both steady-state and dynamic-state conditions 
with similar capacitive, inductive and resistive nonlinear loads, as in the simulation 
work. Similarly, evaluation in terms of THD value, power factor, and dynamic 
response is conducted. In addition, the results obtained are validated with the 
simulation work.   

1.5 Thesis Layout 

This thesis is organized into five chapters. Chapter 1 provides brief introduction on 
the research work which includes research background, main problems to be solved, 
aim and objectives, and scope and limitations of the work.

Chapter 2 defines power quality, states distinctive categories of power quality 
problems, and discusses harmonics as one of the main power quality problems. A 
survey on harmonics mitigation strategies which include the commonly applied 
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harmonic standards and harmonics mitigation tools are also provided. Next, 
comprehensive review on multilevel inverter-based SAPF as the most effective 
solution to current harmonics is presented, focusing on its principles of operation and 
control strategies applied. Additionally, comparative study on characteristics, 
advantages and limitations of three most promising multilevel inverter configurations 
are provided, serving as a guideline to select the best multilevel inverter for a specific 
application.  

Chapter 3 describes the design and development of three-phase three-wire three-leg 
three-level NPC inverter-based SAPF, detailing its operating principle and design 
considerations. Moreover, the newly proposed control algorithms are clearly 
described. This chapter also provides complete details on simulation model and 
laboratory setup of the proposed SAPF as well as implementation of the proposed 
control algorithms in a high performance DSP.

Chapter 4 presents the findings and results obtained in simulation and experimental
works. Comparative evaluation is presented, highlighting the improvements achieved 
by all the proposed control algorithms in comparison to their corresponding existing 
benchmark algorithms. Moreover, overall improvements achieved by SAPF with 
simultaneous implementation of all the proposed control algorithms are also 
presented.  

Chapter 5 concludes the work, significant contributions of the work and recommends 
possible future works. 
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