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Abstract of thesis presented to the Senate of Universiti Putra Malaysia  

in fulfilment of the requirement for the Degree of Master of Science 
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By 

CHOO HONG NING 

February 2017 

Chair: Nurul Adilah Abdul Latiff, PhD 

Faculty: Engineering  

Power Amplifier (PA) is one of the prominent devices in a communications system. 

Ideally, the PA linearly amplifies signals, but exhibits non-linearity when operates in 

the actual world, where PA output power deviates away from the ideal linear region. 

The non-linearity of the PA has result in various undesired effects include amplitude 

and phase distortion which contributes to Adjacent Channel Interference (ACI) that 

degrades the signal quality at the receiver side. Inevitable increasing bandwidth and 

transmission speed causes memory effects in the PA. Memory effects causes scattering 

of the PA output signal and increases overhead processing requirements at the receiver 

side to decode/rectify deteriorated signal quality. PA linearization is therefore required 

to neutralize the non-linearity effects on the system. Among various linearization 

methods, Digital Pre-distortion (DPD) stands out due to its balanced advantages and 

trade-offs in terms of implementation simplicity, supported bandwidth, efficiency, 

flexibility and cost. DPD models the PA, pre-distorts the input signal with an inversed 

function of the PA, and further feeds the pre-distorted input signal into the PA. The 

Memory Polynomial method (MP) by (Ding, 2004), a simplified derivative of the 

Volterra Series is capable of modeling the PA with Memory Effects with reduced 

complexity. This project presents the MP with Binomial Reduction method (MPB) 

which is an optimized MP with reduced addition and multiplication operations. 

Referring to Computational Complexity Reduction Ratio (CCRR) by (Hou, 2011), 

Multiplication Operations Reduction Ratio (MORR) and Addition Operations 

Reduction Ratio (AORR) are derived to showcase the reduction percentage of 

addition/multiplication operations in MPB against the method to be compared. 

Comparing to MP, MPB is capable of achieving similar Adjacent Channel Power 

Reduction (ACPR) Ratio performance, amplitude and phase distortion reduction, 

memory effects elimination, improvements in Normalized Mean Square Error (NMSE) 

of 36.5dB, 86.43% AORR and 50% MORR. MPB is also compared with one of the 

recent derivatives of MP, the Augmented Complexity Reduced General MP (ACR-

GMP) by (Liu, 2014) with 56.76% MORR, 84.38% AORR and 92.36dB of NMSE 

improvement.  The method is simulated in MATLAB by Mathworks using a modeled 

ZVE-8G PA and fed with sampled 4G (LTE) signals.  
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PENAMBAH-BAIKAN MEMORI POLINOMIAL DENGAN 

PENGURANGAN KOMPLEKSITI DALAM PRA-DISTORSI DIGITAL 

UNTUK KOMUNIKASI TANPA-WAYAR 

Oleh 

CHOO HONG NING 

Februari 2017 

Pengerusi: Nurul Adilah Abdul Latiff, PhD 

Fakulti: Kejuruteraan 

Amplifier Kuasa atau Power Amplifier (PA) merupakan salah satu peranti utama 

dalam sistem komunikasi. Dalam situasi ideal, PA memperbesarkan signal secara 

linear, tetapi gagal mengekalkan lineariti apabila beroperasi dalam dunia sebenar, di 

mana kuasa output PA melencong dari rantau linear yang ideal. Ketidak-linearan PA 

telah menyebabkan pelbagai kesan yang tidak diingini, seperti distorsi amplitud dan 

distorsi fasa, yang menyumbang kepada Gangguan Saluran Bersebelahan, atau 

Adjacent Channel Intereference (ACI), menyebabkan pemburukan kualiti signal di 

bahagian penerima. Jalur lebar atau bandwidth yang semakin meningkat dengan 

kelajuan penghantaran signal yang semakin bertambah tinggi menyumbang kepada 

Kesan Memori, atau Memory Effects dalam PA. Kesan Memori menyebabkan 

penyerakan signal di bahagian output PA, seterusnya meningkatkan keperluan 

pemprosessan di bahagian penerima bagi dekod/memperbetulkan kualiti signal yang 

sudah menurun. Oleh yang demikian, pelinearan PA amat diperlukan bagi 

meneutralkan kesan ketidak-linearan ke atas sistem. Antara pelbagai kaedah 

pelinearan, Pra-distorsi Digital atau Digital Pre-distortion (DPD) telah berjaya 

menarik perhatian atas kelebihan-kelebihan seperti kemudahan implimentasi, jalur 

lebar yang disokong, kecekapan, fleksibiliti, dan kos. DPD memodelkan PA, 

memproseskan signal di input menggunakan fungsi PA yang songsang, dan seterusnya 

menyalurkan signal yang telah diproses ke dalam PA. Kaedah Memori Polinomial 

(MP), merupakan terbitan Siri Volterra yang telah dipermudahkan yang mampu 

mengambil kira Kesan Memori PA dengan kerumitan yang  dikurangkan. Projek ini 

membentangkan Kaedah Memori Polinomial dengan Pengurangan Binomial (MPB) 

yang merupakan MP yang dioptimumkan melalui pengurangan operasi tambahan dan 

pendaraban. Dengan merujuk kepada Nisbah Pengurangan Kompleksiti Pengiraan, 

atau Computational Complexity Reduction Ratio (CCRR) daripada (Hou, 2011), 

Nisbah Pengurangan Operasi Pendaraban, atau Multiplication Operations Reduction 

Ratio (MORR) dan Nisbah Pengurangan Operasi Tambahan, atau  Addition 

Operations Reduction Ratio (AORR) telah diperolehi bagi menunjukkan peratus 

pengurangan operasi tambahan/pendaraban MPB dengan kaedah yang dibandingkan   
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Berbanding dengan MP, MPB mampu mencapai prestasi yang hampir sama bagi 

Nisbah Pengurangan Kuasa Rangkaian Bersebelahan atau Adjacent Channel Power 

Reduction (ACPR), pengurangan distorsi amplitud/fasa, penghapusan Kesan Memori, 

dan juga penambah-baikan dalam Penormalan Min Ralat Persegi atau Normalized 

Mean Square Error (NMSE) sebanyak 36.5dB, 86.43% AORR, dan 50% MORR. 

MPB juga dibandingkan dengan salah satu derivatif MP yang terkini, Augmentasi 

Memori Polinomial Umum dengan Pengurangan Kompleksiti, atau Augmented 

Complexity Reduced General MP (ACR-GMP) daripada (Liu,  2014). Pengurangan 

sebanyak 56.76% dalam operasi pendaraban, 84.38% dalam pengurangan penggunaan 

operasi tambahan, dan 92.36dB penamabah-baikan NMSE telah dicapai. Kaedah ini 

disimulasi dalam MATLAB daripada Mathworks, menggunakan PA ZVE-8G yang 

dimodelkan dan disalurkan dengan signal 4G (LTE) disampel. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The Power Amplifier (PA) is one of the most significant electrical components in a 

transmitter of a communications system. Ideally, the output power of the PA behaves 

linearly when its input power increases. However, the PA exhibits non-linearity, when 

operated in real-world scenarios. When the input power of the PA is increased to a 

certain limit which is unique to each class of PA, the output power measured will lost 

its linearity with reference to the PA input power. The PA output power slowly 

converges to the maximum power, despite the increase in PA input power. The PA has 

now entered into its saturation region, where several undesired outcomes are observed 

due to the non-linearity of the PA.  

The non-linearity of the PA has triggered several issues that concerns researchers and 

communication engineers. First, the decrease in power efficiency of the PA is obvious, 

as the PA output no longer increases linearly with the PA input power. Consequently, 

more power is needed to drive the PA to produce the signal at the desired output power 

level. This PA inefficiency increases operating cost for communication service 

providers, which in turn adds cost to the users. Besides inefficiency, the PA non-

linearity also leads to Adjacent Channel Interference (ACI), which causes the signal 

to suffer high possibility of corruption in intelligence, where the unwanted rise of 

energy at the sidebands of the signal interferes with the neighboring signals during 

transmission. ACI heavily jeopardizes the quality of communication and introduces 

extra cost to the system for interference elimination. Maintaining the linearity of the 

PA is therefore plausible to retain the efficiency which results in cost saving, higher 

profit margin, and further leads to a more competitive industry that benefits the end 

users.  

Linearizing the PA has always been a tradeoff between the linearization performance, 

with factors such as ease of implementation, gate counts, memory requirement, 

complexity of the algorithm, and bandwidth supported. The Digital Pre-distortion 

(DPD) method stands out from the rest of the linearization methods due to its balanced 

overall strengths and weaknesses. DPD generally involves pre-processing the input 

signal at the baseband before passing the signal to the PA. The DPD block functions 

as an inverse of the PA’s model in terms of non-linearity, where the convergence 

happens at the input power instead. The multiplications of the two systems are 

expected to result in a final PA output that has improvement in linearity compared to 

the un-predistorted PA. The next challenge that is worth exploring shall be the DPD 

method that is suitable to be used, with considerations in communication technology 

requirement and the effects onto the PA due to high frequency modulations. 
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In comparison with operating in lower frequencies, the PA possesses more challenges 

to be solved when it operates in higher frequency applications. Due to rapid changes 

in signal during high frequency transmission, the components of the PA experiences 

fluctuations in heat and electrical features. These factors observed from 3rd Generation/ 

4th Generation Network’s (3G/4G) high frequency transmission, contributes to the 

formation of the Memory Effects. PA exhibits Memory Effects when the output power 

no longer stays within the expected region, but shows frequent glitches at the output. 

When graphed in terms of output power vs. input power, the PA output signal scatters 

across the expected operating region, introduces extra challenge to the PA linearization 

due the additional unpredictability of the system. The direct solution to counter the 

Memory Effects will be the backing-off the PA to operate only in its non-saturating 

region, a.k.a. linear region to avoid the peaks in signals. This results in a limitation to 

PA performance because operating only in the linear region is inefficient. To proper 

linearize the PA that operates at higher frequencies, the DPD method needs more 

considerations and accuracy in modeling, which results in a more complex system, if 

compared to the PA at lower frequency applications that is memoryless. 

In conjunction with today’s direction in communication technology advancement, this 

project focuses on the DPD implementation in 3G/4G where high frequency 

transmission is inevitable. The pre-distortion algorithm of the DPD block will need to 

take into considerations in handling Memory Effects, therefore resulting in a relatively 

advance formula compared to the memoryless DPD implementation. Modeling the PA 

is evidently a challenging but important task, because the DPD relies heavily on the 

PA model where it is used to obtain the inversed model. Derived from the Taylor Series, 

the Volterra series have been traditionally used to model non-linear systems. Moving 

forward, the Memory Polynomial (MP) PA modeling is widely used in today’s pre-

distortion academia research, due to its reduced complexity compared with the 

Volterra Series. MP PA modeling is capable of achieving acceptable difference in 

measured and calculated PA performance, with significantly lesser PA coefficients 

that defines the order of non-linearity and Memory Effects. The MP pre-distortion 

algorithm which is similar to the MP PA modeling, has been widely implemented and 

tested in 3G/4G applications, with noticeable contributions towards a better algorithm 

with lesser coefficients, simpler implementation, and better performance.  

1.2 Problem Statement 

MP is one of the most commonly used DPD methods in PA linearization, especially 

for latest systems with high transmission rate which results in Memory Effects. 

However, when compared to memoryless linearizing methods, the MP method 

possesses several drawbacks such as increased complexity in design implementation, 

and also a higher number of operations required. The increase in resources results in 

extra cost for the communication industry as technologies move into higher data 

transmission speed to support more users. Therefore, it is evidently beneficial for an 

improved system in terms of operation resources, while capable of achieving 

comparable linearization performances with the MP method. 
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1.3 Objective 

The objective is to develop a DPD algorithm where: 

a) The predistorted PA output signal has similar linearization performance 

compared with MP in terms of amplitude and phase distortion reduction, 

indicated via the AM/AM, AM/PM and Adjacent Channel Power Ratio 

(ACPR) graphs. 

b) The predistorted PA output signal has lesser error deviation against the ideal 

PA output, indicated via the Normalized Mean Square Error (NMSE) 

performance metric, as compared with the MP and one of the recent method 

derivations of MP, the Augmented Complexity Reduced Generalized MP 

(ACR-GMP) by (Liu, 2014).  

c) The improved DPD algorithm has improvement in operational resource 

optimization by having reductions in number of multiplication and addition 

operations used, when compared with MP and one of the recent method 

derivations of MP, the ACR-GMP. The operations comparison is to be done 

using the Multiplication Operations Reduction Ratio (MORR) and Addition 

Operations Reduction Ratio (AORR), derived from Computational 

Complexity Reduction Ratio (CCRR) by (Hou, 2011). 

1.4 Related Work 

The linearization of PA has been carried out by various researchers, using different 

methods. DPD has a leading advantage against the other linearization methods, with a 

balanced trade-offs between metrics such as efficiency, cost, flexibility, and bandwidth. 

In ensuring the maximum performance of the DPD, modelling of the PA plays a 

significant role, as the DPD acts as an inversed of the PA function. Volterra series is 

used to model the non-linearity of the PA, but with disadvantages in high number of 

coefficients, which results in high complexity. In order to improve the Volterra Series 

modelling, several derivatives of simpler approach are developed. The Wiener Model, 

the Hammerstein Model, and the Hybrid Wiener-Hammerstein Model are examples of 

simpler representations of the Volterra Series, with different arrangements of Linear 

Time Invariant (LTI) block and Non-linearity Block. The MP, which utilizes only the 

diagonal kernels of the Volterra Series is one of the most successfully reduced version 

of the infamous series (Ghannouchi, 2009; Gotthans, 2013). MP is capable in 

achieving huge reductions in number of coefficients which results in reduced 

complexity. This method is then heavily used by researchers in DPD implementation 

across modern telecommunication systems. Although capable of compensating signal 

distortion caused by Memory Effects present in high speed transmissions in 3G/4G 

technology, MP is still relatively having a higher complexity compared to memory-

less DPD methods. Numerous efforts have been conducted to simplify MP. It could be 
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categorized to 4 directions:  Augmentation, Branch Pruning, Basis Function Extension, 

and Basis Function Reduction 

1.5 Research Scope 

Figure 1.1 shows the research scope of this thesis project.  

                                                                                                  

 

Figure 1.1: Research Scope Structure 
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The research is performed at the transmitter side of a communication systems, with 

focus on one of the most vital components in the system, the PA. Various linearization 

methods are used to compensate signal distortion due to the non-linearity of the PA, 

where DPD has championed among linearization methods. DPD is an inversed 

function of the PA, which makes modeling the PA the next challenge, with 

consideration of Memory Effects that exists in today’s high bandwidth transmission 

technology. Volterra Series is capable of modeling the PA together with Memory 

Effects, but has high complexity due to the exponentially increased coefficients. The 

MP model is an simplified Volterra Series, which is widely used by researchers in the 

field. MP is further optimized in this thesis project, by binomially reduce the basis 

function of the respective model, resulting in the MP with Binomial Reduction (MPB) 

model.  

To justify the strength of MPB, the model is simulated in MATLAB by Mathworks with 

a modeled ZVE-8G PA and fed with sampled 4G (LTE) signals. The output signals 

are then compared with a simulated MP model in terms of NMSE to check for 

improvement in error deviation from the ideal output. Besides that, MPB is also 

compared with MP using the derived MORR and AORR from CCRR (Hou, 2011) to 

check for percentage of reductions in multiplication/addition operations usage. 

Furthermore, ACPR, AM/AM and AM/PM is also used to verify the ability of MPB 

against MP to cope with amplitude/phase distortion and Memory Effects.  

MPB is also compared with a simulated recent derivative of MP, the ACR-GMP by 

(Liu, 2014) in terms of NMSE, AORR and MORR.  

1.6 Thesis Contribution 

The project presents a novel Binomially Reduced Optimized MP Method. The 

optimization in resources is capable of contributing towards a more energy efficient 

system, which is beneficial to energy conservation. A more efficient system results in 

lower cost, which is also a key triggering point for better revenues. A cost effective 

solution, results in a cheaper solution for the users, which is a win-win situation that 

is healthy for the industry as a whole. 

The discussion of materials related to DPD in PA Linearization, serves as a reference 

point for prospective researchers to commence work in the respective field. The novel 

classification of MP improvement directions, paves the road for future improvements 

by researchers. 
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1.7 Thesis Organization 

The thesis is comprised of 5 chapters. 

The first chapter, Introduction, gives an overview of the whole project. The chapter 

starts with the background description, problem statement, objective, related works, 

research scope and contribution, thesis contribution, and thesis organization. 

The second chapter, Literature Review, presents the readings involved to support the 

project research effort. Compiled research findings include PA, PA linearization, DPD, 

DPD Learning Architecture, MP, and Improvement Directions of MP. 

The third chapter, Methodology, shows the binomial reduction process in simplifying 

the MP Method. The simulation components are presented, together with the 

performance comparison metrics. The system architecture is presented as well, 

together with explanations and derivation steps of the related performance comparison 

metrics. 

Chapter four, Results and Discussion, displays prove of workability of the developed 

MPB method. The optimization results are shown, with the respective performance 

comparison metrics of NMSE, MORR, AORR ACPR, AM/AM and AM/PM by 

having MP as a reference point. MPB is also compared with ACR-GMP in terms of 

NMSE improvement, MORR and AORR. 

The last chapter, chapter five, Conclusion, concludes the MPB method on its 

significance in resource optimization with improvements in linearization performance 

when compared to MP and ACR-GMP.  
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