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Combined Energy Storage and Attitude Control System (CEACS) is a new satellite 

system developed using flywheels to offer mass reduction, longer operation life and 

also cost reduction. To date, the demonstration of the CEACS attitude control 

performance has been limited only to the proportional derivative control (PD) and 

the active force control-proportional derivative (AFC-PD). Both controllers have 

their limitations where the PD controller is known to be less sensitive to 

uncertainties while the AFC-PD requires accurate in-situ measurement, which is not 

readily available at the moment. This proposed study will focus on improving the 

performance of small satellites with the CEACS system as the pitch attitude actuator 

by applying advanced control methods, H2 control and H∞ control.  Both controllers 

were applied on three different classes of satellite, nanosatellite, microsatellite and 

enhanced microsatellite and simulated via MATLAB™ and SIMULINK® 

programming for the ideal and non-ideal scenarios.  From the testing, it is found that 

the CEACS pitch attitude performance for both the H2 control and H∞ control can 

meet the required pitch attitude requirement of 0.2°. The comparison between both 

controllers shows that the H2 control method has a slightly better pitch attitude 

performance compared to the H∞ control for ideal and non-ideal scenarios. As for the 

comparison with the conventional PD controller and the PD-AFC controller, the 

results indicate that both the H2 and H∞ controllers outperform the conventional PD 

controller while having a slight advantage over the PD-AFC controller in terms of 

the attitude performance.  However, as the feasibility of the AFC controller is highly 

dependent on the in-situ measurement of systems where the development of these 

systems requires time, thus the H2 and H∞ controls are the favourable control options 

for an immediate deployment of the CEACS system while providing an accurate 

pitch control in the face of orbit uncertainties.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Sarjana Sains

KAWALAN ATITUD SATELIT H2 DAN H∞ UNTUK SISTEM GABUNGAN 

TENAGA DAN KAWALAN ATITUD 

Oleh 

BAN YING SIANG 

Februari 2015 

Pengerusi: Profesor Renuganth Varatharajoo, PhD, Ir 

Fakulti: Kejuruteraan 

Sistem Kombinasi Penyimpanan Tenaga dan Kawalan Atitud Satelit (CEACS) 

adalah sistem baru yang direka untuk memberi pengurangan jisim satelit, 

memanjangkan tempoh hayat operasi dan juga penjimatan kos satelit.  Sehingga hari 

ini, demonstrasi kecekapan CEACS dalam menangani fungsi kawalan atitud satelit 

hanya terhad kepada penggunaan kawalan derivatif berkadar (PD) dan kawalan 

tenaga aktif-derivatif berkadar (AFC-PD). Kawalan-kawalan ini mempunyai 

kelemahan masing-masing dimana kawalan derivatif berkadar kurang berkesan 

menangani masalah ketidakpastian. Kawalan tenaga aktif-derivatif berkadar pula 

memerlukan alat pengesan yang berfungsi di satelit yang memberikan pengukuran 

semasa, dimana perkembangan alat pengukuran tersebut memerlukan masa yang 

lebih.  Kajian ini menitik berat aspek peningkatan kecekapan kawalan atitud satelit 

bersaiz kecil yang menggunakan CEACS sebagai penggerak paksi anggul melalui 

aplikasi cara kawalan maju, kawalan H2 dan kawalan H∞. Kedua-dua kawalan 

diaplikasikan dalam tiga kelas satelit yakni nanosatelit, mikrosatelit dan mikrosatelit 

maju dan semua ini dissimulasi melalui perisian komputer MATLAB™ dan 

SIMULINK® dalam sistem sempurna dan sistem tidak sempurna.  Keputusan dari 

simulasi menunjukan bahawa kawalan anggul sistem CEACS dengan menggunakan 

kawalan H2 dan kawalan H∞ memenuhi keperluan misi iaitu ketepatan dalam 0.2° di 

paksi anggul. Perbandingan antara kedua-dua jenis kawalan menunjukan bahawa 

kawalan H2 mempunyai kecekapan yang lebih baik daripada kawalan H∞ dalam 

semua senario termasuk sistem sempurna dan sistem tidak sempurna. Perbandingan 

seterusnya dilakukan dengan kawalan PD dan kawalan AFC-PD. Keputusan 

perbandingan menunjukkan bahawa kedua-dua kawalan H2 dan kawalan H∞ adalah 

jauh lebih baik berbanding dengan kawalan PD, manakala dalam perbandingan 

antara kawalan atitud H2 and H∞ dengan kawalan AFC-PD, sedikit kelebihan dapat 

disaksikan. Walaubagaimanapun, disebabkan kebolehlaksanaan kawalan AFC 

adalah sangat bergantung kepada pengukuran semasa sistem di mana perkembangan 

alat pengukuran tersebut memerlukan masa yang lebih, maka kawalan H2 dan 
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kawalan H∞ merupakan pilihan yang baik di mana ia membolehkan pelaksanaan 

yang segera dalam sistem CEACS di samping mempunyai kawalan atitud dengan 

kejituan yang tinggi di samping ketidakpastian orbit. 
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CHAPTER 1 

INTRODUCTION 

Since the beginning of human civilization, man has always marvelled at the beauty 

of the celestial sky. Years of observations of the celestial bodies such as the Sun, 

Moon and stars had led to the discovery of some principle laws of nature that have 

helped in the development of mankind. One of the oldest applications of a celestial 

body developed was for navigations. Understanding the position of the sun and stars 

during the day and at night time had become a useful reference for mankind in 

exploring the land of the unknown and thus expanding human reach and building 

bridges connecting to the other parts of the world.  Through the tireless efforts of 

scientists for many centuries, much change has been seen in our perceptions and 

knowledge of the physics behind the observations of celestial bodies. From a space 

model where the Earth is deemed as the center of the universe, surrounded by 

revolving celestial bodies as suggested by Aristarcus (310-250 B.C); it had evolved 

and improved to a modern space model that was first suggested by Coppernicus in 

1543 where Sun is seen as the center of the Solar system with Earth and planets 

revolving around it (Vallado, 2001). Later, much effort was put into the motion and 

kinetics of celestial bodies, notably by Kepler, who described the motion of planets 

through three Keplers’s laws in 1619 and Isaac Newton on the dynamics of motion 

via three Newton’s Laws in 1687 (Vallado, 2001). The new laws developed laid a 

strong foundation for scientists to improve and these laws were used primarily to 

accurately predict the motion of celestial bodies. It was not until several hundred 

years later when humans started to dream of utilizing space resources with the 

advancements in electronics and rocket technology. Fuelled by the political 

environment during the Cold War, the race to space between the United States and 

the Soviet Union had led to the launch of the first man-made satellite, “Sputnik” by 

the Soviet Union on October 4, 1957.  Since then, satellites have been used in many 

fields such as telecommunications, meteorology, scientific research, and others (Sidi, 

2000). According to a survey study conducted by Futron Corporation (2012) in May 

2012, there are up to 994 satellites in various orbits and functions currently 

operational globally. Review on the past decades also showed that satellite demand 

remains high where there has been a growth of 175% in terms of global satellite 

industry revenues from 2001 to 2011 (Futron Corporation, 2012). According to 

Aragón, Mura, Dionisio, Howes, & Erickson (1998), to ensure the growth of space 

revenue, cost reduction and increased performance in the space industry are essential. 

The same study above also pointed out that spacecraft, launcher and launch service 

itself contribute from 20% to 50% of the total cost. Thus, the ability to reduce the 

cost in these areas will help to ensure a lower cost to the revenue ratio, which in turn 

encourages the usage of satellites for the consumer market. With the advancement in 

technology, cost reduction has become possible with the introduction of hybrid 

subsystems that combine power storage and attitude control as proposed by several 

authors (Roithmayr, 1999; Tsiotras, Shen, & Hall, 2001; Varatharajoo & Fasoulas, 

2002). The system uses flywheel as an attitude control actuator as well as an energy 

storage mechanism (Tsiotras et al., 2001). The introduction of flywheel is seen as a 

better alternative to batteries, which is the conventional method of storing and supply 
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the electrical energy produced by solar panels while flywheel has better performance 

in terms of longevity, lower mass requirement, wide operational temperature range, 

and capable of controlling attitude and energy storage simultaneously (Ginter et al., 

1998). Following this, a full system design and numerical treatment of a Combined 

Energy and Attitude Control System (CEACS) for small satellites was presented by 

Varatharajoo in his work (Varatharajoo & Fasoulas, 2002). As pointed out by Won 

(1999), gravitational, aerodynamic and magnetic torques are part of the external 

disturbance that will affect the satellite attitude. In order to maintain the pointing 

accuracy of a satellite under the influence of external disturbances, a suitable attitude 

controller will need to be designed. Although further studies by Varatharajoo and his 

team had demonstrated that CEACS using proportional-derivative (PD) control and 

active force control-proportional-derivative (AFC-PD) control are able to meet the 

specified mission requirements and provide adequate control to maintain and control 

the attitude of a satellite (Varatharajoo, 2004, 2006; Varatharajoo, Wooi, & Mailah, 

2011), it is worthwhile to explore the other control methods to provide a complete 

comparative review of the control methods available in its implementation of 

CEACS. The purpose of the research presented in this thesis is to focus on 

developing and implementing several different control methods for attitude controls 

in small satellites via combined energy storage and attitude control system (CEACS). 

 

 

1.1 Problem Statement 

 

CEACS will be the ideal solution for the next generation satellite, which will offer 

mass reduction, longer operation life and also cost reduction. To date, the attitude 

control performance of CEACS has been demonstrated using PD and AFC-PD 

controller. Although both controllers are able to meet the desired satellite mission 

requirement; however there is still room for improvement. The PD controller is less 

sensitive to uncertainties in general whereas the AFC-PD requires accurate in-situ 

measurement which is not readily available at the moment. Thus, there is a need to 

have a complete analysis of the attitude pointing performance of CEACS using other 

control methods that are robust in handling uncertainties and can be applied 

immediately into CEACS. All controllers will then be compared and served as a 

reference for future implementation in satellite applications. 

 

 

1.2 Research Objectives 

 

As mentioned previously, only the PD and AFC-PD controls have been investigated 

for CEACS system in small satellites. The purpose of this research is to design and 

implement different control methods for the CEACS pitch attitude control. A small 

satellite CEACS model will be proposed based on an earlier work done by 

Varatharajoo (2004), whereby three types of satellite models are investigated, e.g., 

nanosatellite, microsatellite and enhanced microsatellite. 
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1.3 Research Scope 

 

The research scopes are: 

i) Developing the CEACS pitch attitude control architecture for the H2 and 

H∞ controllers. 

ii) Performing numerical evaluation on the developed CEACS H2 and H∞ 

based attitude control architectures. 

iii) Optimising the CEACS attitude control performances for both controllers. 

 

 

1.4 Thesis Contribution 

 

The research will focus on the pitch attitude control performance of CEACS in small 

satellites. This study will be able to refine the attitude control performance of 

CEACS via the proposed controllers. At present, only the PD and AFC-PD 

controllers have been tested for CEACS. The CEACS pitch attitude performance 

using optimal and robust controllers such as H2 controller and H∞ controller could 

provide a much better CEACS attitude control capability. Comparison on the pitch 

attitude control between the proposed controllers and the controllers studied in the 

past will also serve as a reference for the CEACS implementation. 

 

 

1.5 Outline of Thesis 

 

The thesis is presented in six chapters including this chapter, namely, literature 

review, methodology, simulation and results, discussions, and conclusion and 

recommendations. In Chapter 2, the literature review, all the essential background 

information will be discussed for a better understanding of the research topic. The 

information includes the satellite dynamics, the standard attitude control systems, 

flywheel development and the review on past research work on CEACS. Chapter 3 

will demonstrate the methodology for the research where the numerical treatment to 

CEACS model and explanation on the CEACS simulation algorithm are presented. 

This will be followed by Chapter 4, which presents the reference mission and 

subsequently the simulation and result done via MATLAB™ and SIMULINK® for 

the H2 and H∞ controllers applied on CEACS in nanosatellite, microsatellite and 

enhanced microsatellite. The non-ideal scenarios are treated and shown as well in the 

chapter. Chapter 5 discusses the performance of the controllers for CEACS and also 

provides a comparison with other controllers done in other literature. Finally, the 

conclusion and recommendation on the optimal controllers based on all satellite 

scenarios are given in Chapter 6. 
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