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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fullfilment 

of the requirement for the degree of Master of Science 

COMPLEX-VALUED NONLINEAR ADAPTIVE FILTERS FOR 

NONCIRCULAR SIGNALS 

By 

AMADI CHUKWUEMENA CYPRIAN 

May 2017 

Chairman : Fazirulhisyam Bin Hashim, PhD 

Faculty : Engineering 

Complex signal has been the backbone of large class of signals encountered in many 

modern applications as biomedical engineering, power system, radar, communication 

system, renewable energy and military technologies. However, statistical signal 

processing in complex domain are suited to only the conventional complex-valued 

signal processing technique for subset of complex signal known as circular (proper), 

which is inadequate for the generality of complex signals, as they do not rigorously 

exploit the statistical information available in the signal. This is because of the under-

modelling of the underlying system or due to the inherent blindness of the algorithm 

(for example, the CNGD algorithm) to capture the full second-order statistical 

information available in the signal. With the limitation of the CNGD algorithm toward 

signal generality, an improved CNGD algorithm known as the ACNGD which is 

derived based on the concept of augmented complex statistic which gives optimal 

algorithm for the generality of signals in complex domain is introduced. The 

augmented CNGD has shown low Means Square Error (MSE) capabilities and have 

optimal performance than the conventional algorithm. To this end, a supervised 

complex adaptive algorithm convex combination complex nonlinear gradient descent 

(CC-CNGD) is developed to address the capabilities of processing the generality of 

complex signals (both circular and non-circular) and systems in either a noisy or a 

noise-free environment. Their importance in real-world application is showed through 

case studies. The CC-CNGD algorithm rigorously takes advantage of the fast 

convergence rate of the CNGD algorithm and as well exploit the low Means Square 

Error (MSE) of the ACNGD algorithm in order to circumvent the problem of slow 

convergence rate and high Mean Square Error (MSE) seen in the family of complex 

signal. The introduced approach is capable of facilitating real-time application, 

supported by numerous case studies, such as those in renewable energy. This class of 

algorithm performs well in either noisy or noise-free environments, the introduced 

approached has achieved a 20% better modelling.  Fast convergence and low Mean 
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Square Error (MSE) performance over the conventional and existing methods in the 

literature review. A rigorous mathematic analysis for the understanding of the 

proposed algorithm is shown, with ranges of simulations on both synthetic and real-

world data; support the approach taken in this thesis. 
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Abstrak  tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi  keperluan untuk ijazah  Master  Sains 

TURAS ADAPTIF TAK LINEAR BERNILAI KOMPLEKS BAGI SIGNAL 

TAK MEMBULAT 

Oleh 

AMADI CHUKWUEMENA CYPRIAN 

Mei 2017 

Pengerusi : Fazirulhisyam Bin Hashim, PhD 

Fakulti : Kejuruteraan 

Signal kompleks merupakan tulang belakang bagi kelas signal besar  yang didapati 

dalam banyak aplikasi moden sebagai kejuruteraan biomedikal, sistem kuasa, radar, 

sistem komunikasi, tenaga boleh diperbaharui, dan teknologi ketenteraan. Walau 

bagaimanapun, pemprosesan signal secara statistik dalam domain kompleks telah 

disesuaikan kepada hanya teknik pemprosesan signal bernilai kompleks konvensional 

bagi subset signal kompleks dikenali sebagai bulat (wajar), yang tidak cukup bagi 

generaliti signal kompleks, disebabkan mereka secara tidak teliti mengeksploitasi 

maklumat statistikal yang terdapat dalam signal tersebut. Perkara tersebut akibat 

sistem  pemodelan dasar bagi sistem  mendasari atau disebabkan kelemahan algoritma 

inheren bagi mencapai maklumat statistikal susunan kedua  penuh yang terdapat dalam 

signal. Pada akhir-akhir  ini, algoritma adaptif kompleks yang diselia telah 

dibangunkan bagi menerangkan kapabiliti pemprosesan generaliti signal kompleks 

(kedua-duanya, membulat dan tidak membulat) dan sistem sama ada dalam 

persekitaran yang bising atau tanpa bising. Kepentingannya dalam aplikasi dunia 

sebenar dapat diperlihatkan melalui kajian kes. 

Tesis ini memfokus pada penggunaan anjakan terkini dalam statistik terimbuh dan 

dalam  pemodelan tidak linear yang telah melebihi jangkauan dan memperlihatkan 

limitasi pemprosesan signal kompleks secara statistik dan konvensional (standard). 

Melalui cara yang teliti, pengeksplotasian manfaat  yang kenali sebagai statistik 

terimbuh, suatu kelas algoritma turasan adaptif dengan kerangka berpadu dan 

menggalakkan prestasi bagi generaliti signal kompleks, berbanding dengan teknik 

konvensional telah dicadangkan. Pendekatan yang dicadangkan berkebolehan untuk 

memudahkan aplikasi masa sebenar, disokong oleh pelbagai kajian kes, seperti yang 

terdapat pada tenaga yang boleh  diperbaharui semula dan pemodelan trafik jaringan. 

Kelas algoritma tersebut dapat dilaksanakan dengan  berkesan  sama ada dalam 
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persekitaran yang bising ataupun persekitaran tidak bising, pendekatan yang 

dicadangkan telah memperoleh pemodelan 20%  lebih baik, konvergens dan prestasi. 

Min Kuasa Ralat Dua (MSE) ke atas kaedah konvensional dan kini dalam kaji semula 

literatur. Analisis matematik yang teliti bagi pemahaman mengenai algoritma yang 

dicadangkan telah ditunjukkan,dengan julat simulasi ke atas kedua-dua data sintetik 

dan dunia sebenar; menyokong pendekatan yang diambil dalam tesis ini. 
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ℱ(⋅) Fourier transform operator 

𝑔  Filter coefficient vector 

ℎ  Filter coefficient vector 

𝑖  √−1 

I Identity matrix 

ℑ{⋅}  Imaginary part of a complex number 

𝑗  √−1 

𝐽𝑁  Real to Complex mapping matrix of size 2N × 2N 

𝒥(⋅) Cost function 

𝑘  Discrete time index 

𝑃𝑋(𝑥)  Probability density of a random vector 𝑥 

𝑃𝑥𝑥 Pseudo-covariance matrix of a random vector 𝑥 



© C
OPYRIG

HT U
PM

 
 

 

xix 

 

𝓇 Degree of noncircularity 

ℝ Field of real numbers 

ℜ(⋅) Real part of a complex number 

𝑥(𝑘)  Input vector at a discrete time 𝑘, observed mixture at a discrete time 𝑘 

𝑥  Complex random vector 

𝑥𝑎  Augmented complex random vector 

𝑥𝑟 , 𝑥𝑖 Vector of real/imaginary parts of 𝑥 

𝛿  Discrete time delay 

𝛿0  Delta function 

𝜆  Mixing parameter of a hybrid filter 

𝜌(𝑥)  Circularity quotient of random variable 𝑥 

𝜎𝑥
2 Variance of a random variable 𝑥 

𝜏 𝑥
2 Pseudo-variance of a random variable 𝑥 

Φ Nonlinear activation function 

𝑹  Correlation matrix 

𝑷  Cross correlation matrix 

(⋅)′ First order derivative 

𝜇  Learning rate 

∈ Is an element of 

≈ Approximation 

→ Approaches



© C
OPYRIG

HT U
PM

 
 

 

1 

 

      CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

We live in an information age, where computing technologies has vastly increase the 

availability of data set. This data set need the capability to robustly deal with it in 

achieving enhance performance of the system and evolving technology. 

This is where signal processing plays an important role offering a mathematical 

framework for processing large data set acquired from image and audio processing to 

data compression and weather forecasting. Recently, the need to develop next 

generation signal processing solution, efficient enough to meet the challenging 

requirement of low-cost, fast and accurate data processing for more advanced data is 

in demand. 

This thesis focuses on signal processing, more detailed on adaptive filters, compare to 

other technique employed in signal processing. The adaptive filters operates in real-

time with their performance optimize on arrival at new signal sample. Application 

such as electrical smart-grids, navigational satellite, brain-computer-interface and 

wireless communication had made the adaptive filters ubiquitous due to their time- 

constrain. 

One of the most common feature of adaptive signal processing is that the input signal 

and a desired signal are always used in order to get an output error signal, this error 

signal are then used to optimize the filter weight set. The input signal and output signal 

are configured in a certain way to allow the adaptive signal processing to be possible 

in different applications. 

However, depending on the used configuration setting, adaptive signal processing has 

four possible adaptive application setting, these application settings are: 

i. System Identification 

 

This setting aims at finding a linear or nonlinear model that is best describe as an 

unknown system. This is achieved by configuring the adaptive filter such that, the 

unknown system works parallel with the adaptive filter at which the same signal is fed 

into the unknown system and the adaptive system. 
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ii. Future Sample Prediction 
 

This configuration aim at predicting future signal sample, the input signal is always 

the delayed version of the desired signal. However, this type of model is widely used 

in wind prediction and speech processing application. 

 

 

iii. Inverse Modeling 

 

The inverse modelling aim at obtaining the inverse of an unknown noisy system. This 

is mostly used in channel equalization [1], where it is applied to reduce channel 

distortion in modem as a result of data transmitted via telephone channel. The 

unknown system and adaptive filters are configured in series. 

 

 

iv. Noise Cancellation 

 

This class of adaptive filter aim at subtracting an unknown noise source from a primary 

(main) signal (e.g. electrocardiography [1, 2]). The desired signal is configured to 

correlate with the interference/noise signal responsible for corrupting/damaging the 

primary (main) signal.  

 

 

With the recent rapid development of adaptive filters which can be dated back to 

1950s, since the first merging of the Recursive Least Square (RLS), attributed to 

placket [3], many authors since then has derived variant RLS. However, in 1959, 

Widrow and Holf [4], while studying the adaptive pattern classification machine 

known as adaptive linear (Adaline), developed the Least Mean Square (LMS), using 

the stochastic gradient instead of using the least square solution in [3]. The LMS has 

since been the workhorse of adaptive signal processing due to its simplicity. 

 

 

1.2 Signal Processing  

In adaptive signal processing, supervised and unsupervised (blind) are the two 

distinctive categories under the algorithms. In supervised algorithms, the signals are 

trained, resulting in straight forward technique for adaptive filtering. However, in 

unsupervised (blind) algorithms, the output is processed without the knowledge of the 

system. Since the system is unknown, this scenario makes it more challenging, where 

certain assumption on the input signal or system is required. 

Supervised adaptive algorithm had been extensively studied in real domain ℝ based 

on Wiener and Kalman filters. The LMS algorithm in [4] is the most used and well-

known practice of supervised adaptive algorithm in ℝ, with much noticeable research 

effort being put into enhancing the performance and analyzing of the LMS. This 

includes “the class of variable step-size LMS algorithms” proposed by Benvensite, 

et.al [5] which adopts to the LMS step-size in a linear fashion, making it more suitable 
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for non-stationary and time varying conditions. While “Generalized Normalized 

Gradient Descent (GNGD) algorithm [6, 7, 8] adapt the learning rate in a nonlinear 

fashion. The GNGD is based on Normalized LMS (NLMS). This avoids spurious 

solution due to tiny signal magnitudes by adapting the regularized parameter. With 

both algorithms based on LMS with an adaptive step-size, the GNGD algorithm has 

shown to be more powerful in performance and improved stability due to it nonlinear 

step-size update [6]. 

With this in mind, this research aim at developing a novel theoretical framework to 

enhanced the practical solution for adaptive signal processing of complex-valued 

signals, with real and imaginary components. 

1.3 Signal Processing in  

Signal encountered in complex domain ℂ can be broadly categorize into two groups, 

those that are made complex by convenience of representation and those complex by 

design. Example of signal considered to be complex by design are found in 

communication field, sonar and radar. While complex wind signal are represented by 

convenience of representation when the speed and direction are combine into complex 

vector. 

Widrow et.al extended the LMS algorithm [4] to the complex domain in 1975 [10]. 

Therefore making two-dimensional signal processing using the complex LMS 

(CLMS) algorithm possible. Complex algorithm such as the Widrow’s complex LMS 

was derived by extending already existing algorithm that reside in the real domain to 

complex domain, where the transpose operator represented as (⋅)𝑇  becomes                     

(⋅)𝐻 Hermitical operator in complex domain. This causes the covariance 

matrix 𝐸[𝑥𝑥𝑇] in ℝ to be transmitted to 𝐸[𝑧𝑧𝐻] in ℂ which is considered necessary.  

The implicit assumption of using 𝐸[𝑧𝑧𝐻] to describe the second order statistic of the 

vector is that the distribution of the vector is circular, this assumption implies the 

independence of the real and imaginary signal component. However, this assumption 

is not correct for majority of complex-valued signal. Using this approach would not 

be optimal for generality of complex-valued signals derived on any complex-valued 

algorithm. 

Due to lack of rigorous mathematical standard for describing the complex gradient, 

derivatives and statistics, the pace for developing a complex-valued adaptive filtering 

algorithms was slow. However, Brandwood [12] remedy this challenge in 1983, by 

introducing the Cauchy-Riemann Calculus, which was develop by Wirtinger [13] in 

1927, translated in English [14] in 1992. The ℂℝ-Calculus was exploited by German 

Speaking Scientific Community and was not popularly known in the English Speaking 

Scientific Community until the translation of the ℂℝ-Calculus, which allows the 

treatment of functions of complex variable directly in complex domain and permits 
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the consideration of both analytic and non-analytic function in a unified manner, this 

simplifies the differentiation and analysis of complex functions. Brandwood also 

developed the complex gradient known as conjugate gradient with necessary condition 

for a point to be stationary, which was the problem of minimizing a real function of 

complex variables. Then making these result a very important approach for developing 

a complex-valued adaptive filtering algorithms. 

Furthermore, with the breakthrough in complex statistic in 1900 by Massey and 

Neeser [15] which address the concept of complex random variable circularity. The 

widely linear model (augmented) and second-order complex random variable statistic. 

A complex-valued random variable is consider circular if it has a rotation invariant 

distribution. If it does not, it is otherwise known as noncircular [16]. The second order 

statistic of a complex-valued random vector is showed in [17] and [18]. Depicting that 

the covariance matrix is incapable of modeling the full statistic and pseudo-covariance 

matric is needed to fully capture the real and imaginary component of the vector. 

Hence, both the covariance and pseudo-covariance are important to model/capture the 

full second order information available within the signal. Massey and Neeser also 

showed that only circular (or proper) signals has vanishing pseudo-covariance, which 

coincide with the assumption of traditional algorithm in ℂ. However, for noncircular 

(improper) signals, the pseudo-covariance matrix is non-zero. 

From this understanding, the augmented statics is introduced in [17] which 

incorporates the information of both covariance and pseudo-covariance. This was 

followed by Pincinbono [18, 19] who depicts on taking advantage of the full second 

order statistics of complex signals that the complex conjugate must be included to 

form the augmented linear model given by, 

𝑦 = ℎ𝑥 + 𝑔𝑥 (1.1) 

where 𝑦, ℎ, 𝑔 and 𝑥 are the outputs of the augmented linear model, coefficient and 

input signal respectively. 

Adaptive filtering algorithm suitable for processing both proper and improper signals 

were made possible, based on the work carried out on complex statistic, gradients and 

widely linear models in the 1980s and early 1990s. 

Unlike linear adaptive filters, the nonlinear adaptive filtering algorithm faced a serious 

challenge in finding the best and suitable analytic complex-valued nonlinear activation 

functions. This is as a result of the Liouville theorem, which states that a bounded 

entire function must be constant in ℂ, this limit the scope of the nonlinear activation 

function that were once suitable in ℝ, to solve this direct consequences, Kim and Adali 

proved a class of complex Element Transcendental Functions (ETFs) based on the 

entire adaptive filtering application [20]. 
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The ETFs depict to satisfy the Cauchy-Riemann (ℂℝ) criteria’s condition proving to 

be analytic in ℂ, which was implemented in Fully Complex real Time Recurrent 

Learning algorithm (FCRTRL) [21]. The FCRTRL takes advantage of the correlation 

between the real and imaginary parts resulting in an improved performance of the 

algorithm. Hence, the introduction of the (ETFs) has pathways for more nonlinear 

adaptive filtering algorithm which will be discussed in detail in the next chapter. 

1.4 Problem Statement 

In the past five decades, adaptive signal processing has been the center for statistic 

signal processing, attracting more researchers, due to increase in demand for high 

power digital processing processors, with low power consumption rate and costing. 

This demand has placed more investigation for more complex computational and 

ambitious problems. However, in adaptive filtering and change detection problems, 

linear models affected by Gaussian noise are usually used to solve the challenge, noise 

approximation and linearization are often used when not the challenge of estimation 

and detection to create approximate Gaussian and linear system. The performance 

effect of this technique to nonlinear system has a low attention (sometimes ignored) 

[11]. Although there are existing techniques to process non-Gaussian and nonlinear 

system such as statistical signal processing and others. The computational complexity 

of the algorithm itself suffers from slow convergence and high MSE, which is the 

same problem encountered by the family of complex-valued algorithms [22].  

However, statistical signal processing in complex domain are suited to only the 

conventional complex-valued signal processing technique for subset of complex 

signal known as circular (proper), which is inadequate for the generality of complex 

signals, as they do not rigorously exploit the statistical information available in the 

signal. This is because of the under-modelling of the underlying system or due to the 

inherent blindness of the algorithm (for example, the CNGD algorithm) to capture the 

full second-order statistical information available in the signal, the CNGD algorithm 

is equipped with fast convergence rate and high MSE capabilities. With the limitation 

of the CNGD algorithm toward signal generality. An improved CNGD algorithm 

known as the ACNGD which is derived based on the concept of augmented complex 

statistic which gives optimal algorithm for the generality of signals in complex domain 

is introduced. The augmented CNGD has shown low Means Square Error (MSE) 

capabilities with slow convergence rate and have optimal performance than the 

conventional algorithm. 

To this end, an approach in the field of real-valued nonlinear adaptive filtering will be 

explored by evaluating the performance of linear algorithm for the modeling of 

nonlinear systems. The linear algorithm will be extended to nonlinear algorithm for 

the evaluating performance of the nonlinear system. 
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An approach to combine the nonlinear algorithm is proposed, the proposed algorithm 

will benefit from the fast convergence of one of the individual algorithm and as well 

the low Means Square Error (MSE) of the other algorithm. 

1.5 Aim and Objectives 

The main aim of this thesis is to design a nonlinear adaptive filter with less 

computational complexity. 

The objective of this thesis introduces contribution to supervised adaptive signal 

processing of noncircular signals: 

 Evaluating the performance of linear algorithm for the modeling of nonlinear 

systems 

 The linear algorithm will be extended to nonlinear algorithm for the evaluating 

performance of the nonlinear system 

 Develop algorithm that will benefit from the fast convergence of one of the 

individual algorithm and as well the low Means Square Error (MSE) of the other 

algorithm 

 

 

1.6 Research Activities Flowchart 

 

Figure 1.1 : Research activities flowchart 
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1.7 Research Scope 

The research approached employed to successfully complete this thesis is shown in 

Figure 1.2. The solid line represent the followed direction to implement and achieve 

the goals of this research while the dot dashed line denotes other research area related 

to this work. 

In this thesis, the adaptive signal processing is categorized into two, namely supervised 

and unsupervised. The unsupervised signal processing refers to blind signal processing 

where the system is unknown, whereas supervised signal processing refers to trained 

signal processing where the system is known. This thesis adopts supervised signal 

processing with algorithm such as Least Mean Square (LMS) and Nonlinear Gradient 

Descent as the workforces of signal processing. Type of signals domain processed by 

this algorithm are real and complex domain. Since this thesis is about complex signal 

processing, the complex domain direction is adopted under nonlinear signals 

processing used in applications such as system identification and modelling. 
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Figure 1.2 : Study module 

 

CLMS  ACLMS 

CC-CNGD 

System Identification 

Modelling  

Network Traffic 

Prediction   

Inverse 

Modelling   

Noise 

cancellation  

Application 

CNGD  ACNGD 

Unsupervised 

(Blind processing)  

Supervised 

(Trained signal)  

LMS and NGD 

ASP 

Real 

domain 

Complex 

domain 

Linear Nonlinear 



© C
OPYRIG

HT U
PM

 
 

 

9 

 

1.8 Organization of Thesis  

This thesis is organized as follows: 

Chapter 2 

 

Introduces the theoretical background and fundamental concept used in the 

development of the work presented in this thesis, this include background theory in 

respect to complex signals using duality of both real and complex domain. Next, the 

measurement of circular models with comparison to the standard linear and nonlinear 

model are discussed. 

 

 

Chapter 3 

 

Deals with the methodology approach taken towards the proposed algorithm, detailing 

the mathematical framework of the proposed algorithm. 

 

 

Chapter 4 

 

Introduces the nonlinear system modeling utilizing second order augmented statistic 

complex-valued algorithm as well with the collaborative adaptive filtering approach 

for the identification of complex-valued improper signals. This chapter will show the 

result and discussion of the thesis. 

 

 

Chapter 5 

 

This thesis is concluded in this chapter, where the overall conclusion is drawn and 

suggestion for future work is recommended. 
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