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The Recent developments in sensor technology; human centered computing and robotics 

have brought to light new classes of multidimensional data which are naturally represented 

as quaternion three and four-dimensional vector-valued processes. Such signals are readily 

modeled as real normal vectors in R3 and R4; however; it has become obvious that there 

are advantages in processing multidimensional data in division algebras (quaternion 

domain). The progress in the statistics of quaternion variable, particularly augmented 

statistics and widely linear modeling; has opened up a new front of research in channel 

equalization, vector sensor modeling and system identification. However, prediction gain, 

tracking ability and convergence speed of quaternion adaptive filters still need to be 

improved due to the fixed step size of those types of algorithms. Choosing the right value 

of step size is very important for the adaptation process of the algorithm. There is a tradeoff 

between the convergence speed and the missadjustment of the system. Using large step 

size value will produce high convergence speed and high missadjustment while using small 

step size value will produce slow convergence speed and low missadjustment. since in real 

scenario the input signal power does not remain constant, that will change the step-size 

according the changes of the input signal of the algorithm which increase the tradeoff 

between the convergence speed and the missadjustment. This changing will cause noise 

amplification and affects the convergence speed. In this thesis, a new quaternion gradient 

based adaptive algorithm for FIR adaptive filter is developed. The proposed algorithm is 

capable of processing the generality of quaternion and complex data signals in both noisy 

and noise-free environments. The new adaptive algorithm is called dynamic quaternion 

least mean square algorithm (DQLMS) because of the normalization process of the filter 

input and the variable step-size. Those techniques proved to be very useful to enhance the 

trade-off between the convergence speed and the steady-state MSE and achieve small 

misadjustment and fast convergence speed. The sign function has been implemented in the 

process of filter coefficients adjustments in order to get faster adaptation processes, for 

high speed communication. The DQLMS algorithm is extended to the widely linear model 

forming the WL-DQLMS algorithm in order for the algorithm to be able to capture the full 

second order statistics. Prediction gain, tracking ability and convergence speed of the 

proposed algorithms are analyzed and validated experimentally by various simulations on 
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both synthetic and real world multidimensional data. The performance of the proposed 

algorithms are compared with quaternion least mean square QLMS, zero-attract quaternion 

least mean square ZA-QLMS, and widely linear quaternion least mean square WL-QLMS 

algorithms. In noise cancellation, the DQLMS and WL-DQLMS algorithms were able to 

recover the input signal in 30 and 50 samples respectively while the QLMS and ZA-QLMS 

needed 250 and 200 samples respectively in order to recover the same data. A superior 

performance is achieved by the proposed algorithms in system modeling where the 

DQLMS was able to track the correct weights values of the different modeled systems 430 

sample faster than the QLMS and ZA-QLMS algorithms while the WL-DQLMS was faster 

than the WLQLMS algorithm by 950 samples. In prediction setting the proposed 

algorithms showed 4dp to 8dp higher prediction gain than other algorithms. Thus, the 

proposed algorithms proved to be superior over the other algorithms in all aspects. 
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Perkembangan Perkembangan baru di bidang teknologi sensor, pengkomputeran 

berpusatkan manusia dan robotik telah menunjukkan kelas-kelas baru data  

multidimensi yang secara semula jadinya diwakili sebagai proses dinilai-vektor kuaternion 

tiga- dan empat-dimensi.  Isyarat sebegitu  mudah dimodelkan sebagai vektor normal 

sebenar di R3 dan R4; walau bagaimanapun telah menjadi jelas bahawa ada terdapat 

kelebihan dalam pemprosesan data multidimensi melalui algebra pembahagian (domain 

kuaternion). Kemajuan dalam statistik pembolehubah kuaternion, terutamanya statistik 

diperkukuhkan dan pemodelan linear secara meluas, telah membuka satu 

barisan baru penyelidikan dalam penyamaan saluran, pemodelan sensor vektor dan 

pengenalan sistem. Walau bagaimanapun  gandaan ramalan, keupayaan mengesan dan 

kelajuan penumpuan  penapis penyesuaian kuaternion masih perlu diperbaiki.  Di dalam 

tesis ini, suatu algoritma penyesuaian kuaternion baru berdasarkan kecerunan 

untuk penapis penyesuaian FIR yang mampu memproses sifat umum  isyarat data 

kuaternion dan rumit di dalam kedua-duanya persekitaran berhingar dan tanpa-hingar 

dibangunkan.  Algoritma penyesuaian baru itu dipanggil algoritma kuaternion dinamik 

kuasa dua min terkecil (DQLMS) kerana proses penormalan input penapis dan saiz-

langkah yang berubah-ubah. Teknik-teknik tersebut terbukti sangat berguna untuk 

meningkatkan keseimbangan antara kelajuan penumpuan dan MSE keadaan-mantap 

dan mencapai salah larasan yang kecil serta kelajuan penumpuan yang cepat.  Fungsi tanda 

telah dilaksanakan di dalam proses pelarasan pekali penapis untuk mendapatkan proses 

penyesuaian yang lebih cepat, untuk komunikasi berkelajuan tinggi. Algoritma 

DQLMS dilanjutkan kepada model linear secara meluas yang membentuk algoritma WL-

DQLMS agar algoritma tersebut dapat menangkap statistik order kedua yang 

penuh.  Gandaan ramalan, keupayaan mengesan dan kelajuan penumpuan algoritma yang 

dicadangkan dianalisis dan disahkan secara eksperimen oleh pelbagai simulasi ke atas 

kedua-duanya data multidimensi dunia nyata dan sintetik.  Prestasi algoritma yang 

dicadangkan dibandingkan dengan algoritma-algoritma kuasa dua min terkecil kuaternion 

QLMS, kuasa dua min terkecil kuaternion tarikan-sifar  ZA-QLMS, dan  kuasa dua min 

terkecil linear meluas kuaternion WL-QLMS.  Dari segi penghapusan hingar algoritma-

algoritma DQLMS dan WL-DQLMS berupaya untuk mendapatkan semula isyarat input 
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bagi 30 dan 50 sampel masing-masing manakala QLMS dan ZA-QLMS masing-masing 

memerlukan 250 dan 200 sampel untuk mendapatkan semula data yang sama.  Prestasi 

yang lebih baik dicapai oleh algoritma yang dicadangkan dari segi pemodelan sistem di 

mana DQLMS dapat mengesan nilai pemberat yang betul bagi sistem berbeza yang  

dimodelkan dengan 430 sampel lebih cepat daripada algoritma QLMS dan ZA-QLMS 

manakala WL-DQLMS adalah lebih cepat daripada algoritma WLQLMS dengan 950 

sampel. Dari segi menetapkan ramalan algoritma yang dicadangkan menunjukkan gandaan 

ramalan 4dp hingga 8dp  lebih tinggi daripada algoritma lain. Oleh itu algoritma yang 

dicadangkan terbukti lebih baik berbanding dengan algoritma lain dari segala aspek. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  General Background  

For the last five decades, the adaptive filters have stand out and attracted the attention of 

many researchers owing to their characteristic of self-designing. Different filters have 

been elaborated and applied in order to meet the demand for better tracking and faster 

convergence properties than earlier methods could offer.  

 

 

An optimal linear filter for a specific application can be designed in advance when prior 

information about the statistics of the signal is available such as the Wiener filter which 

has the ability to minimize the mean squared error (MSE) between the desired signal and 

the output of the filter. When the prior information is unavailable, the solution is to use 

adaptive filters which have the ability to alter their coefficients according to the statistics 

of the signals involved in a process known as the weight update. As a result, the adaptive 

filters and algorithms have been successfully adopted and implemented in a wide variety 

of devices for various application fields such as biomedical engineering, control, radar, 

and communications.  

 

 

The adaptive filters began practically with the efforts of research and development in the 

late fifties of the 20th century, while the field of adaptive signal processing has been 

established as a different discipline in its own right in the 1980's. There are two basic 

operations involved in adaptive filtering process; the filtering process followed by the 

adaptation process. An output signal is generated by the filtering process from an input 

signal data using a digital filter, while in the adaptation process an algorithm handles the 

weight update process, the adjustments of the coefficients of the filter in order to 

minimize the desired cost function. The above mentioned capability of adaptive filters 

has attracted many researchers to this field. 

 

 

In adaptive filtering, there is a large variety of filter structures and algorithms used, each 

of them is more suitable for a specific application. The adaptive filters can be classified 

into two main categories; the infinite impulse response (IIR) and the finite impulse 

response (FIR) filters. In IIR filters, the existence of the internal feedback makes the 

impulse response in the system does not settle to zero while the impulse response of the 

FIR filters is of finite time duration, thus settles to zero after some finite duration of time. 

 

 

Moreover, in the class of FIR filters, there are three different filter structures, namely: 

the transversal filter, the lattice predictor and the systolic array [1]. There are other FIR 

structures such as sub-band FIR adaptive filters and frequency-domain adaptive filters. 
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Figure 1.1: The block diagram of the transversal filter [1] 

The structure of transversal adaptive filter is illustrated in Figure 1.1, where x(n) is the 

input of the adaptive filter, hN is the coefficients of the filter, and y(n) is the filter output.  

Many adaptive algorithms can be addressed to the transversal adaptive FIR filters due to 

the large number of adaptive filtering algorithms, some algorithms may be preferred over 

the others. This preferability is due to some performance criteria. These criteria may 

include the following:  

 

 

1. Rate of convergence: This can be defined as the time required by an algorithm to reach 

near optimum Wiener solution in the mean and mean-square sense. Usually, a fast 

convergence rate is preferable.  

 

 

2. Tracking ability: It is the ability of an adaptive filtering algorithm to track (change in 

response to) the statistical variations in a stationary or a non-stationary environment.  

3. Misadjustment: This is a quantitative parameter that measures the difference between 

the final value of the mean-square-error (MSE) reached by the algorithm and the MSE 

produced by Wiener filter. 

 

 

4. Structure: This is concerned with the hardware implementation. Structure means the 

flow of information in the algorithm which determines the nature in which the algorithm 

was implemented.  

 

 

Due to its simplicity and robustness, the least mean square (LMS) algorithm has been at 

the core of adaptive filtering applications [3], [4], and its online adaptive mode of 

operation makes it suited for the processing of non-stationary real world signals. In many 

fields, the simultaneous processing of the two dimensions of a signal (radar, sonar) can 

lead to a more efficient signal processing algorithm than processing each dimension 

separately. As the quaternion domain represents an extension of the complex field, the 

class of LMS algorithms has been extended to quaternion least mean square (QLMS) to 

cater for adaptive filtering of three- and four- dimensional (hyper-complex) signals. 

Quaternions have been used for more than 150 years (conceived by Hamilton in 1843) 

and have found applications in computer graphics, for the modeling of three-dimensional 

(3-D) rotations [5], in robotics [6], and molecular modeling [7]. Although the quaternion 

least mean square algorithm has addressed many slandered least mean square algorithm 
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problems but it is necessary to further improve the performance of QLMS algorithm for 

the processing of quaternion valued signals in different aspects. 

 

 

1.2 Problem Statement 

Adaptive filters play an important role in the fields related to digital signal processing 

and communication, such as system identification, wind prediction, noise cancellation, 

channel equalization, and beamforming. In practical applications, the stability of an 

adaptive filter is an important consideration. The four channels LMS and QLMS 

algorithms are widely used due to their stability. However, it is well known that the 

performance of LMS and QLMS still need to be improved in terms of prediction gain, 

tracking ability and convergence speed especially for non-stationary input signals. 

 

 

Adaptive filtering is applied commonly to prediction because of its ability to track and 

converge upon the stochastic characteristics of a signal. The performance of a predictor 

is measured using a quantity known as prediction gain. In prediction, a filter is used to 

estimate future values of a signal from prior observations. However, the convergence 

speed of the QLMS and widely linear quaternion least mean square (WLQLMS) are 

slowed by input signals with high non-stationary nature.  

 

 

The tracking ability of an adaptive algorithm is the ability to track (change in response 

to) the statistical variations in a stationary or a non-stationary environment. The tracking 

performance of the algorithm is influenced by convergence rate and steady-state 

fluctuation contradictory features. 

 

 

The convergence rate is the number of iterations required for the algorithm to converge 

to the steady state solution. A fast convergence rate allows the algorithm to adapt rapidly 

to a non-stationary environment of unknown statistics. In QLMS and WLQLMS 

algorithms choosing the right value of step size is very important for the adaptation 

process of the algorithm. There is a tradeoff between the convergence speed and the 

missadjustment of the system. Using large step size value will produce high convergence 

speed and high missadjustment while using small step size value will produce slow 

convergence speed and low missadjustment. since in real scenario the input signal power 

does not remain constant, that will change the step-size according the changes of the 

input signal of the algorithm which increase the tradeoff between the convergence speed 

and the missadjustment. This changing will cause noise amplification and affects the 

convergence speed. 

 

 

1.3 Objectives 

The primary objectives of this research are: 

 

 

1- To develop quaternion valued gradient based hyper-complex algorithm with 

variable step size. The new algorithm should be tolerant to three and four-
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dimensional reference signal while having better prediction gain, tracking ability 

and convergence speed than the QLMS and ZAQLMS.  

 

 

2- To extend the new algorithm to the widely linear model in order to account 

rigorously for the second-order statistics of the quaternion system.  

 

 

3- To compare the performance of the proposed algorithm with existing algorithms 

under non-stationary environment. Evaluating the performance of the proposed 

algorithm operating under various conditions will be conducted using a Matlab 

baseband simulation platform. 

 

 

1.4 Scope of the Thesis 

To increase the efficiency of gradient based adaptive filters for the modeling of three and 

four dimensional synthetic and real-world signals, many researchers introduced 

techniques such as multichannel adaptive filters, multiple univariate LMS, a pair of 

complex LMS (CLMS) and QLMS adaptive filters. Some signals exhibit nonlinear 

complex dynamics, together with the coupling between their components such as 3D 

Lorenz attractor, Saito, and 4D wind data which makes the quaternion domain is the 

optimal solution due to its unique properties. An efficient quaternion based hyper-

complex algorithm is introduced for the modeling of three and four dimensional synthetic 

and real-world data. The new designed algorithms have been tested in system modeling 

and system identification modes and have been compared with some of the early 

designed available systems. All the algorithms are fed with four dimensional Saito 

synthetic signal and three and four real world wind data as an input. 

 

 

1.5 Study Module  

The summary of chosen approach in this thesis is illustrated in Figure 1.2, where the gray 

colored boxes with solid lines refer to the followed direction to reach desired goals and 

the white boxes with dotted lines show the very close research areas which were 

beneficial in a way or another to the developing process of the proposed algorithm. 
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Figure 1.2: Study Module 

1.6 Thesis Organization 

The thesis is organized into five chapters as follows: Chapter 1 provides a brief 

introduction to adaptive filters and their applications and issues in the modeling of three 

and four-dimensional signals and the required improvements to the currently available 

gradient based adaptive filters in term of prediction gain, tracking ability and 

Adaptive filter

FIR IIR

lattice predictor transversal systolic array 

Dual channelSingle channel Multichannel

Real domainComplex domain
Quaternion 

Domain

DQLMS & WL-

DQLMS

Deterministic Stochastic 
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convergence speed. Problem statement, objectives, and scope of the thesis are 

highlighted as well. 

 

 

Chapter 2 presents literature review on the important types of adaptive filters focusing 

on families of the LMS and FIR algorithms. 

 

 

Chapter 3 considers the main body of this thesis where it provides the basics of 

quaternion algebra and introduces the concept of quaternion augmented statistics. This 

was followed by introducing the new algorithm (DQLMS) and its widely linear extension 

WLDQLMS. 

 

 

Chapter 4 delivers the obtained results from the simulation model for the proposed 

algorithm and the results were delineated using respective diagrams and graphs. The 

results of the proposed algorithms are compared with two of the most stable algorithms 

in the field. 

 

 

Chapter 5 provides the conclusion and thesis contribution in addition to some 

recommendation and suggestions for future works. 
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