UNIVERSITI PUTRA MALAYSIA

EXTRACTION, GENE REGULATION AND HYPOCHOLESTEROLEMIC EFFECTS, AND ANTIOXIDATIVE ACTIVITY OF THYMOQUINONE RICH FRACTION AND THYMOQUINONE FROM NIGELLA SATIVA

GHANYA NAJI AL-NAQEEB

FPSK(P) 2009 5
EXTRACTION, GENE REGULATION AND HYPOCHOLESTEROLEMIC EFFECTS, AND ANTIOXIDATIVE ACTIVITY OF THYMOQUINONE RICH FRACTION AND THYMOQUINONE FROM NIGELLA SATIVA

By

GHANYA NAJI AL-NAQEEB

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2009
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

EXTRACTION, GENE REGULATION AND HYPOCHOLESTEROLEMIC EFFECTS, AND ANTIQUOXIDATIVE ACTIVITY OF THYMOQUINONE RICH FRACTION AND THYMOQUINONE FROM NIGELLA SATIVA

By

GHANYA NAJI AL-NAQEEB

August 2009

Chairman: Professor. Maznah Ismail, PhD
Faculty : Medicine and Health Sciences

Nigella sativa and its active constituent thymoquinone (TQ) have been used for various health benefits such as antitumor, antidiabetic, antihypertensive, antioxidative and antibacterial. The present study involves thymoquinone rich fraction (TQRF) prepared from Nigella sativa seeds using supercritical fluid extraction (SFE) and commercial available thymoquinone (TQ) to investigate their regulatory effects on genes involved in cholesterol metabolism in vitro using Human liver cancer cells (HepG2 cells) and in vivo using Sprague-Dawley rats. In the present study, SFE extraction procedures with different parameters of pressure at 400 and 600 bar and temperature at 40, 60 and 80°C were optimized to prepare TQRF. The yield of the oil content was highest (37%) at a high temperature of 80°C and a high pressure of 600 bars. The TQ content in different fractions of oil was the highest (2%) at a low temperature of 40°C and a high pressure of 600 bars compared to other used parameters. The major fatty acids in TQRF were oleic and linolenic which exist as unsaturated fatty acids. Palmitic, stearic and myristic acids were the main saturated fatty acids. TQRF was rich in α-tocopherol content (290 ±
1.5 mg/100g). HepG2 cells viability was determined using MTT assay and flow cytometry. TQRF and TQ were shown to inhibit HepG2 cells growth with \( IC_{50} \) of 100 µg/ml for TQRF and 3.5 µg/ml for TQ after 72 h incubation. Flow cytometry analysis showed that the cells viability was more than 80% when HepG2 cells were treated with TQRF at 50 µg/ml and TQ at 2 µg/ml. The regulatory effects of TQRF at 50 and 80 µg/ml and TQ at 2 µg/ml on genes involved in cholesterol metabolism were studied in HepG2 cell using real time polymerase chain reaction. These genes included low density lipoprotein receptor (LDLR), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-COAR), apolipoproteins (Apo) including Apo A-1 and Apo B100. When cells were treated with TQRF at 50 and 80 µg/ml and TQ at 2 µg/ml mRNA level of LDLR gene was up-regulated by 3, 7 and 2 fold respectively, compared to untreated cells. On the other hand, mRNA level of HMG-COAR was down-regulated by 37, 71 and 12% respectively, compared to untreated cells. The mRNA level of Apo A-1 gene was up-regulated by 3, 4 and 2 fold and Apo B100 was suppressed by 60, 70 and 49% respectively, when cells were treated with TQRF at 50 and 80 µg/ml and TQ at 2 µg/ml compared to untreated cells. TQRF at dose of 0.5, 1 and 1.5 g/kg and TQ at 20, 50 and 100 mg/kg body weight in emulsion form were administrated orally to the rats fed diet supplemented with 1% cholesterol for 8 weeks. There was a significant reduction in plasma total cholesterol levels (TC) and low density lipoprotein cholesterol (LDLC) in both TQRF and TQ at different doses compared to cholesterol control rats (PC). The concentration of the alanine aminotransferase (ALT), gamma glutamyltranspeptidase (GGT), urea and creatinine of plasma collected from experimental rats were also measured in this experiment to test any toxic effect of TQRF and TQ on liver and kidney of rats. ALT, GGT and urea levels were
significantly lower in TQRF and TQ treated groups compared to PC group. The antioxidant activity of TQRF and TQ treatment as hydroxyl radical (OH·) scavenging activity in plasma samples collected from experimental rats was also carried out using electron spin resonance (ESR). The findings showed significantly higher of OH· scavenging activity in TQRF and TQ treated rats at different doses compared to untreated rats. The regulatory effect of TQRF and TQ treatment on hepatic genes involved in cholesterol metabolism including LDLR, HMG-COAR, Apo A-1, Apo B100 and Apo E genes were also investigated \textit{in vivo}. Treating rats with TQRF at dose of 0.5, 1 and 1.5 g/kg and TQ at 20, 50 and 100 mg/kg body weight showed up-regulation of LDLR and Apo E genes whereas both treatments in the same doses showed down-regulation of HMG-COAR and Apo B100 genes compared to untreated rats. In conclusion, the present study suggests that TQRF and TQ generated a hypocholesterolemic effect through regulation of key genes involved in cholesterol metabolism. Both \textit{in vitro} and \textit{in vivo} results demonstrate potential value of TQRF and TQ as a novel cholesterol lowering and antioxidant candidate.
Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan Ijazah Doktor Falsafah

PENGESTRAKAN, PENGAWALATURAN GEN-GEN, KESAN HIPOKOLESTEROLEMIK DAN AKTIVITI ANTIPENGOKSIDAAN FRAKSI KAYA TIMOKUINON DAN TIMOKUINON DARIPADA NIGELLA SATIVA.

Oleh

GHANYA NAJI AL-NAQEEB

Ogos 2009

Pengerusi: Profesor. Maznah Ismail, PhD

Fakulti: Perubatan dan Sains Kesihatan

*Nigella sativa* dan sebatian aktifnya, timokuinon (TQ) telah digunakan secara meluas dalam bidang perubatan dan kesihatan sebagai agen antitumor, antidiabetik, antihipertensi, antioksidatif dan anti-bakteria. Kajian ini bertujuan untuk mengkaji kesan rawatan fraksi kaya timokuinon (TQRF) (disediakan dari biji benih *Nigella sativa* dengan menggunakan kaedah pengekstrakan bendalir superkritikal, SFE) dan timokuinon (TQ) komersial terhadap penga walaturan gen yang terlibat dalam metabolisma kolesterol, dengan menggunakan sel kanser hati manusia (sel HepG2) secara *in vitro* dan tikus Sprague-Dawley secara *in vivo*. Dalam kajian ini, tekanan pengekstrakan SFE yang berjulat dari 400 hingga 600 bars bersama-sama dengan suhu pengekstrakan pada 40, 60 dan 80°C telah dioptimakan untuk menyediakan TQRF. Kebolehdapatan minyak yang tertinggi (37%) didapati apabila pengekstrakan SFE dijalankan pada suhu 80°C bersama-sama dengan tekanan.
tinggi iaitu pada 600 bars. Kandungan TQ yang tertinggi (2%) pula didapati pada minyak SFE yang diekstrak pada suhu rendah iaitu 40°C bersama-sama dengan tekanan pengekstrakan 600 bars. Kandungan asid lemak utama dalam TQRF adalah oleik dan linoleik yang hadir sebagai asid lemak tak tepu. Manakala asid palmitik, stearik dan miristik pula merupakan asid lemak tepu yang utama dalam TQRF. Fraksi kaya timokuinon didapati kaya dengan α tokoferol (290 ± 1.5 mg/100g).

Pertumbuhan sel HepG2 telah dikaji dengan menggunakan kaedah asai MTT dan sitometri pengaliran. TQRF dan TQ telah menunjukkan kesan perencatan terhadap pertumbuhan sel HepG2 dengan bacaan IC₅₀ masing-masing pada 100 µg/ml dan 3.5 µg/ml selepas pengeraman selama 72 jam. Analisis dari sitometri pengaliran menunjukkan bahawa pertumbuhan sel HepG2 adalah melebihi 80% apabila sel tersebut dirawati dengan TQRF pada 50 µg/ml dan TQ pada 2 µg/ml. Kesan rawatan TQRF (pada 50 dan 80 µg/ml) dan TQ (pada 2 µg/ml) terhadap pengawalaturan gen yang terlibat dalam metabolisma kolesterol dalam sel HepG2 telah dikaji dengan menggunakan kaedah tindakbalas berantai polimerase masa nyata. Gen – gen yang terlibat adalah termasuk reseptor lipoprotein berketumpatan rendah (LDLR), reduktase 3-hidroksi-3-metilglutaril-koenzim A (HMG-CoAR), apolipoprotein (Apo) iaitu Apo A-1, Apo B100 dan Apo E. Keputusan menunjukkan bahawa sel yang dirawati dengan TQRF pada 50 dan 80 µg/ml dan TQ pada 2 µg/ml masing-masing menunjukkan peningkatan pengawalaturan gen LDLR dengan peningkatan tahap mRNA sebanyak 3, 7 dan 2 kali ganda berbanding dengan sel yang tidak dirawati. Sebaliknya, pengawalaturan gen HMG-COAR masing-masing direncatkan sebanyak 37, 71 dan 12%, berbanding dengan sel yang tidak dirawati. Selain daripada itu, rawatan TQRF (50 dan 80 µg/ml) dan TQ (2µg/ml) juga didapati meningkatkan pengawalaturan gen Apo A-1 (sebanyak
3, 4 dan 2 kali ganda masing-masing) dan merencatkan pengawalaturan gen Apo B100 (sebanyak 60, 70 dan 49% masing-masing). TQRF pada dos 0.5, 1 dan 1.5 g/kg dan TQ pada 20, 50 dan 100 mg/kg berat badan dalam bentuk emulsi telah diberikan secara oral kepada tikus yang telah diberi makanan yang mengandungi 1% kolesterol tambahan selama 8 minggu. Rawatan TQRF dan TQ pada kepekatan yang berbeza-beza didapati menurunkan tahap kolesterol jumlah plasma (TC) dan kolesterol lipoprotein berketumpatan rendah (LDLC) dalam tikus secara signifikan jika dibanding dengan tahap kolesterol tikus kawalan (PC). Kepekatan alanina aminotransferase (ALT), gama glutamiltranspeptidase (GGT), uria dan kreatinin dalam plasma tikus telah diukur dalam ujikaji ini bagi mengenalpasti ketoksikan TQRF dan TQ terhadap hati dan buah pinggang tikus. Keputusan menunjukkan bahawa tahap ALT, GGT dan uria dalam plasma tikus yang dirawati oleh TQRF dan TQ adalah lebih rendah daripada plasma tikus dari kumpulan PC. Aktiviti antioksida plasma tikus telah dinilai melalui ujian pemerangkapan radikal hiroksil (OH·) yang diukur dengan spektrometer resonan pemusingan elektron (ESR). Keputusan ESR menunjukkan bahawa rawatan TQRF dan TQ pada kepekatan yang berbeza-beza didapati meningkatkan aktiviti pemerangkapan radikal hidroksil dalam plasma tikus secara signifikan jika dibanding dengan tikus kawalan. Kesaran rawatan TQRF dan TQ terhadap pengawalaturan gen-gen yang terlibat dalam metabolisma kolesterol (LDLR, HMG-COAR, gen Apo A-1, Apo B100 dan Apo E) turut dikaji dalam model in vivo. Keputusan menunjukkan bahawa rawatan TQRF pada kadar dos 0.5, 1 dan 1.5 g/kg dan TQ pada kadar 20, 50 dan 100 mg/kg berat badan menunjukkan peningkatan pengawalaturan dalam gen LDLR dan gen Apo E tetapi menunjukkan kesan perencatan terhadap pengawalaturan gen HMG – CoAR dan gen Apo B100 dalam model tikus. Kesimpulannya, kajian ini
mencadangkan bahawa TQRF dan TQ menunjukkan kesan hipokolesterolemik melalui proses pengawalaturan gen – gen penting yang terlibat dalam metabolisma kolesterol. Hasil dari ujikaji secara in vitro dan in vivo mengesyorkan bahawa TQRF dan TQ mempunyai potensi yang tinggi sebagai agen penurunan paras kolesterol dalam badan dan sebagai antipengoksida.
ACKNOWLEDGEMENTS

My great thank is to ALLAH; may ALLAH exalt the mention of Prophet Mohammed, his companions and those who follow in his footsteps.

I would especially like to express my most sincere gratitude to my supervisor, Professor. Maznah Ismail for her supervision, support and guidance.

Thanks would also be extended to my co-supervisors, Associate Professor Dr. Rozita Rosli and Dr. Zeenathul Nazariah Allaudin for their valuable comments.

A big thank you is also dedicated to the staffs in the Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, for their help.

I am deeply obligated and thankful to my father, my mother, my sisters, brothers and all my friends for their great help, patience, support and their encouragement over the course of this thesis. Also, I want to express my thank to my country republic of Yemen and University of Sana’a for giving me scholarship. Finally, I thank all those who helped me directly or indirectly during the period of my study.
I certify that an Examination Committee met on 3rd August/2009 to conduct the final examination of Ghanya Naji Al-Naqeeb on her Doctor of Philosophy thesis entitled “Extraction, Regulation of Genes Involved in Cholesterol Metabolism, Hypocholesterolemic Effect and Antioxidative Activity of Thymoquinone Rich Fraction and Thymoquinone from Nigella Sativa” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Zaitun Yassin, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Asmah Rahmat, Ph.D.
Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Rokiah Mohd Yusof, Ph.D.
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Musalmah Mazlan, Ph.D.
Professor
Faculty of Medicine
Universiti Kebangsaan Malaysia
External Examiner

_________________________________________

PROF. DR. BUJANG KIM HUAT,
Ph.D.
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
This thesis submitted to the Senate of the Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as followed:

**Maznah Ismail, PhD**  
Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Chairman)

**Rozita Rosli, PhD**  
Associate Professor  
Faculty of Medicine and Health Sciences  
Universiti Putra Malaysia  
(Member)

**Zeenathul Allaudin PhD**  
Faculty of Veterinary Medicine  
Universiti Putra Malaysia  
(Member)

__________________________________________

**HASANAH MOHD. GHAZALI, PhD**  
Professor and Dean,  
School of Graduate Studies  
Universiti Putra Malaysia

Date: 16 October 2009
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

GHANYA NAJI AL-NAQEEb

Date:
TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENT ix
APPROVAL xii
DECLARATION xii
LIST OF TABLES xix
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS xxvi

CHAPTERS

1 INTRODUCTION 1

2 LITERATURE REVIEW 9
  2.1 Nigella sativa 9
    2.1.2 Traditional and Therapeutic Uses 11
    2.1.2 Viable Nutrients in Nigella sativa Seeds 11
    2.1.3 Nigella Sativa Oil Extraction 11
    2.1.4 Supercritical Fluid Extraction (SFE) 12
    2.1.5 Thymoquinone Isolation and Quantification 12
    2.1.6 Hypcholesterolemic Effects of Nigella Sativa 14
    2.1.7 Antioxidant properties of Nigella sativa 15
  2.2 Risk Factors of Cardiovascular Diseases 16
  2.3 Cholesterol and Cardiovascular Diseases 16
  2.4 Cholesterol Transportation 17
  2.5 Cholesterol Homeostasis and Regulation 18
  2.6 Regulation of HMG-COAR 22
  2.7 Regulation of LDLR 24
  2.8 Regulation of Apolipoproteins B-100 24
  2.9 Regulation of Apolipoprotein A-1 25
  2.10 Apolipoprotein E 26
  2.11 Current Treatment of Hypercholesterolemia 27
  2.12 Quantitative Real Time PCR 30
    2.12.1 TaqMan Probe Based Detection 21

3 PREPARATION OF THYMOQUINONE RICH FRACTION FROM NIGELLA SATIVA SEEDS USING SUPERCRITICAL FLUID EXTRACTION 34
  Introduction 34
  Materials and Methods 36
  Nigella sativa Seed 36
  Chemicals 36
  Supercritical Fluid Extraction of TQRF 36
  Determination of TQ Content 38
  Properties of TQRF 40
  Statistical Analysis 40
  Results 41
  Optimization of SFE Parameters 41
 Quantification of TQ 42
 Discussion 51

4 REGULATION OF GENES INVOLVED IN CHOLESTEROL METABOLISM IN HEPG2 CELLS BY THYMOQUINONE RICH FRACTION AND THYMOQUINONE

Introduction 55
Materials and Methods 56
Materials 56
Chemicals 56
Reagents and Chemical Preparation 57
Culture of HepG2 Cells 59
Trypan Blue Exclusion Assay 59
Measurement of Cell Viability 60
Flow Cytometric Analysis 61
Gene Expression Study 61
2.2.9 Statistical Analysis 69

Results 70
Cell Viability Assay 70
Flow Cytometry Analysis 71
Gene Expression Study 74
In Vitro Gene Expression of LDLR 86
In Vitro Gene Expression of Apo A-1 and B100 98
Discussion 106

5 HYPOCHOLESTEROLEMIC AND ANTIOXIDATIVE EFFECTS OF THYMOQUINONE RICH FRACTION AND THYMOQUINONE IN VIVO

Introduction 117
Materials and Methods 118
Materials 118
Chemicals 118
Animals 119
Diet Preparation 119
Preparation of TQRF and TQ Emulsion 120
Grouping of Animals 121
Food Intake, Body Weight and Blood Sampling 121
Tissues Collections 122
Lipid Profile and Toxicity Analysis 122
Hydroxyl Radical Scavenging Activity 128
Gene Expression Study 129
Statistical Analysis 131
Results 133
Food Intake 133
Body Weight 133
Liver, Kidney, Hearts and Adipose Weights 135
Lipid Profile Analysis 137
Toxicity Parameters 144
Hydroxyl Radical (OH·) Scavenging Activity 115
Gene Expression Study 156
6 GENERAL DISCUSSION, CONCLUSION AND FURTHER WORK

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 General Discussion</td>
<td>189</td>
</tr>
<tr>
<td>6.2 Conclusion</td>
<td>193</td>
</tr>
<tr>
<td>6.3 Further Work</td>
<td>194</td>
</tr>
</tbody>
</table>

REFERENCES 196
APPENDICES 220
BIODATA OF THE STUDENT 234
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The effect of different pressures on <em>Nigella sativa</em> oil yield</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>The effect of different temperatures on <em>Nigella sativa</em> oil yield</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>TQ content of different fractions of <em>Nigella sativa</em> oil</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Fatty acid composition of TQRF</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>TaqMan primers and probes specific used <em>in vitro</em> study</td>
<td>68</td>
</tr>
<tr>
<td>4.2</td>
<td>Average correlation coefficients and amplification efficiencies of real time PCR.</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>The effect of HLPDS in the presence or absence of 25OH on LDLR gene in control cells</td>
<td>92</td>
</tr>
<tr>
<td>4.4</td>
<td>The effect of HLPDS in the presence or absence of 25OH on HMG-COAR gene in control cells</td>
<td>93</td>
</tr>
<tr>
<td>4.5</td>
<td>Regulation of LDLR Gene by TQRF and TQ in the absence of 25OH</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Regulation of LDLR Gene by TQRF and TQ in HepG2 cells incubated with 10% HLPDS + 25OH</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>Regulation of HMG-COAR by TQRF and TQ in HepG2 cells incubated with 10% HLPDS</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Regulation of HMG-COAR by TQRF and TQ in HepG2 cells incubated with 10% HLPDS + 25OH</td>
<td>97</td>
</tr>
<tr>
<td>4.9</td>
<td>The effect of HLPDS and 25OH on Apo A-1 gene</td>
<td>100</td>
</tr>
<tr>
<td>4.10</td>
<td>The effect of HLPDS and 25OH on Apo B100</td>
<td>101</td>
</tr>
<tr>
<td>4.11</td>
<td>Regulation of Apo A-1 by TQRF and TQ in the absence of 25OH</td>
<td>102</td>
</tr>
<tr>
<td>4.12</td>
<td>Regulation of Apo A-1 by TQRF and TQ with 25OH presence of 25OH</td>
<td>103</td>
</tr>
<tr>
<td>4.13</td>
<td>Regulation of Apo B100 by TQRF and TQ in the absence of 25OH</td>
<td>104</td>
</tr>
<tr>
<td>4.14</td>
<td>Regulation of Apo B100 by TQRF and TQ in the presence of 25OH</td>
<td>105</td>
</tr>
</tbody>
</table>
5.1 TaqMan Primers and probes specific used in vivo study 132
5.2 Average of food intake by rats at week 8 of treatment 133
5.3 Changes of body weights of rats 135
5.4 Organs weight of experimental rats 163
5.5 Regulation of LDLR mRNA level by TQRF and TQ 163
5.6 Regulation of HMG-COA R mRNA level by TQRF and TQ 167
5.7 Regulation of Apo A-1 gene by TQRF and TQ treatments in vivo 170
5.8 Regulation of Apo E gene by TQRF and TQ 173
5.9 Regulation Effect of TQRF and TQ on expression of Apo B100 176
5.10 Related dose effect of TQRF in comparison with equivalent amount of TQ 188
# LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1(a) Nigella Sativa Seeds</td>
<td>10</td>
</tr>
<tr>
<td>2.(b) Nigella Sativa Oil</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Structure Formula of Thymoquinone</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Cellular Cholesterol Homeostasis</td>
<td>18</td>
</tr>
<tr>
<td>2.4 The Cholesterol Synthesis</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Receptor Mediated Endocytosis Of LDL</td>
<td>20</td>
</tr>
<tr>
<td>3.1 HPLC Chromatogram of The TQ Standard</td>
<td>43</td>
</tr>
<tr>
<td>3.2 HPLC Chromatogram of The TQRF</td>
<td>44</td>
</tr>
<tr>
<td>3.3 Standard Curve of TQ.</td>
<td>45</td>
</tr>
<tr>
<td>3.4 HPLC Chromatogram of α-Tocopherol Standard</td>
<td>49</td>
</tr>
<tr>
<td>3.5 HPLC Chromatogram of α-Tocopherol Extracted From TQRF</td>
<td>50</td>
</tr>
<tr>
<td>4.1 (A) Cytotoxic Effect of TQRF Against Hepg2 Cells Growth.</td>
<td>70</td>
</tr>
<tr>
<td>4.1 (B) Cytotoxic Effect of TQ Against Hepg2 Cells</td>
<td>71</td>
</tr>
<tr>
<td>4.2 (A) HepG2 Cells At 90% Confluence Before Treatment</td>
<td>71</td>
</tr>
<tr>
<td>4.2(B) HepG2 Cells Treated with 100 µg/ml TQRF For 24 H</td>
<td>72</td>
</tr>
<tr>
<td>4.2(C) HepG2 Cells Treated with 4 µg/ml TQ For 24 H.</td>
<td>72</td>
</tr>
<tr>
<td>4.3 (A) Flow Cytometric Plots of Untreated HepG2 Cells</td>
<td>73</td>
</tr>
<tr>
<td>4.3 (B) Flow Cytometric Plots of Untreated HepG2 Cells:</td>
<td>74</td>
</tr>
<tr>
<td>4.4 Percentage of Cell Population of Flow Cytometric Results For Untreated HepG2 Cells without or with Annexin V And PI. Staining</td>
<td>74</td>
</tr>
<tr>
<td>4.5 Flow Cytometric Plots of Annexin V And PI Staining of Treated HepG2 Cells</td>
<td>75</td>
</tr>
<tr>
<td>4.6 Percentage of Cell Population of Flow Cytometric Results of Annexin V And PI Staining of HepG2 Cells Treated with TQRF For 24 h.</td>
<td>76</td>
</tr>
<tr>
<td>4.7 RNA Extracted from HepG2 Cells</td>
<td>77</td>
</tr>
</tbody>
</table>
4.8 Gel Electrophoresis for Real Time PCR Product of LDLR Gene.  
4.9 Gel Electrophoresis For Real Time PCR Product of HMG-COAR 
4.10 Gel Electrophoresis for Real Time PCR Product of Beta Actin 
4.11 Gel Electrophoresis for Real Time PCR Apo A-1 And Apo B100 
4.12 Standard Curve of LDLR Gene.  
4.13 Standard Curves of Beta Actin Gene 
4.16 Standard Curves of Apo B100 Gene. 
4.18 The Absolute Values of The Slope of LDLR 
4.19 The Absolute Values of The Slope of HMGCOAR 
4.20 $\Delta C_T$ For LDLR Gene = $\Delta C_T$ For Beta Actin Gene 
4.21 Raw Data of Amplification Curve For LDLR And Bet-Actin 
4.22 Amplification Curve for LDLR And Bet Actin 
4.23 Amplification Curve for HMG-COAR 
4.24 Induction Effect of HLPDS and Suppression Effect of 25OH on mRNA Level of LDLR and HMG-COAR in HepG2 Cells 
4.25 Effect of TQRF and TQ Treatment on LDLR mRNA Levels in HepG2 Cells. 
4.26 Regulation Effect of TQRF And TQ on HMG-COAR mRNA Levels in HepG2 Cells in The Present or Absence of 25OH 
4.27 Quantitation Curve for Apo A-1 and Bet Actin Genes 
4.28 (A) Amplification Curve For Apo B100 And Bet Actin. In Figure A, Cells Were Incubated With HLPDS And In Figure B Cells Were Incubated With HLPDS +25OH 
4.28 (B) Amplification Curve for Apo B100 And Bet Actin. 
4.29 Effect Of HLPDS 25OH On mRNA Level of Apo A-1 and Apo B100 in HepG2 Cells
## LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>25OH</td>
<td>25 Hydroxycholesterol</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One way ANOVA</td>
</tr>
<tr>
<td>Apo A-1</td>
<td>Apolipoprotein A-1</td>
</tr>
<tr>
<td>Apo B100</td>
<td>Apolipoprotein B100</td>
</tr>
<tr>
<td>Apo E</td>
<td>Apolipoprotein E</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>CT</td>
<td>Threshold cycle</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular diseases</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocabonate treated distilled water</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s minimum essential medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma glutamyltranspeptidase</td>
</tr>
<tr>
<td>HDLC</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HLPDS</td>
<td>Human lipoprotein deficient serum</td>
</tr>
<tr>
<td>HMG-COAR</td>
<td>3-Hydroxy-3-methylglutaryl COA reductase</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>ILDL</td>
<td>Intermediate density lipoproteins</td>
</tr>
<tr>
<td>LDLC</td>
<td>Low density lipoprotein cholesterol</td>
</tr>
</tbody>
</table>
LDLR  Low-density lipoprotein receptor
min  Minute
MMLV  Moloney Murine Leukemia Virus
mRNA  messenger RNA
MTT  3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide
NC  Negative control, reference group
OH  Hydroxyl radical
PBS  Phosphate buffered saline
PC  Positive Cholesterol Control Group
PCR  Polymerase chain reaction
PI  Propidium iodide
Real time PCR  Quantitative real-time polymerase chain reaction
RNA  Ribonucleic acid
RSA  Radical scavenging activity
sec  Seconds
SFE  Supercritical fluid extraction
SREBP  Sterol regulatory element binding protein
TBE  Tris/borate/EDTA Electrophoresis Buffer
TC  Total cholesterol
TG  Triglycerides
TQ  Thymoquinone
TQRF  Thymoquinone rich fraction
VLDL  Very low density lipoproteins
WHO  World Health Organization
Cardiovascular diseases (CVD) are considered to be the frequent cause of most deaths in the world, and the current trend is expected to persist till the year 2020 with over 25 million deaths annually (Murray and Lopez, 1997). An estimated 17.5 million people died from cardiovascular disease in 2005, representing 30% of all global deaths. Of these deaths, 7.6 million were due to coronary heart disease (CHD) (WHO, 2005). In the United States, 300,000 individuals each year suffer sudden CVD (Rosamond et al., 2007) 80% of which are of atherosclerotic origin (Wang 2005). CVD was accounted for between 23% to 26% of deaths in Malaysian government hospitals from 1994 to 2001 (Zambahari, 2004).

Generally, the risk of CVD is correlated with elevated plasma levels of total cholesterol (TC) and low density lipoprotein cholesterol (LDLC) as well as low level of high density lipoprotein cholesterol (HDLC) (Hironori et al., 2005). Apolipoproteins are also used in risk assessment for cardiovascular disease. The plasma levels of apolipoprotein B 100 (Apo B100), apolipoprotein A-I (Apo A-I) and apolipoprotein E (Apo E) have been reported to be even more discriminatory in determining the risk of developing CHD than the cholesterol concentration (Kaptein et al., 1992).

Despite the fact that cholesterol is essential in the body, its level should be maintained within normal range to preserve cell functions. The regulation of
cholesterol synthesis and uptake from plasma in humans is dependent on coordinated changes in the level of mRNAs of key genes that are known to regulate cholesterol synthesis and cholesterol uptake (Horton et al., 2002). Genes including low-density lipoprotein receptor (LDLR), 3-hydroxy-3-methylglutaryl COA reductase (HMG-COAR) and apolipoproteins such as Apo B100, Apo E and Apo A-1 are related with CVD and atherosclerosis.

It has been established that increased LDLC is a risk factor for atherosclerosis and the underlying cause of CHD and stroke (Yilin et al., 2007). Low-density lipoprotein receptor (LDLR) is a key regulator of human plasma LDLC homeostasis (Brown and Goldstein, 1986). LDLR expressed on the surface of hepatocytes captures LDLC and internalizes it into the cells, leading to a decrease in circulation LDLC. Thus the expression level of LDLR directly influences the level of plasma LDLC (Brown and Goldstein, 1997). Up regulation of liver LDLR gene is effective in treating hypercholesterolemia (Kong et al., 2004) and is thus of primary importance in controlling the plasma cholesterol and further suggests a reduced risk of cardiovascular disease.

Two-third of the body’s cholesterol is synthesized in the liver with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-COA) reductase as the rate-limiting enzyme of the mevalonate pathway for cholesterol biosynthesis (Goldstein and Brown, 1990). Earlier studies showed that dietary cholesterol synthesis inhibits cholesterol synthesis, suggesting that cholesterol synthesis is a regulated process. Decrease cholesterol synthesis in response to cholesterol feeding seems to be the major compensatory mechanism to prevent an increase in whole body cholesterol levels.
(Peter et al., 1996), whereas the increase of facial bile acid and neutral steroid excretion play secondary role in hypocholesterolemic and normal individuals (Cai and Carr, 1999). Up-regulation of LDLR and down-regulation of HMG-COAR are key mechanisms to control elevated plasma LDLC (Marc et al., 2004). The regulatory mechanisms that control expression of apolipoproteins genes are important since they represent the main structural components of the LDL and HDL particles, and their improper concentrations lead to cardiovascular disorders (Goldstein and Brown, 1997).

The liver is the central organ in the cholesterol metabolism and plays an important role in whole body cholesterol homeostasis because it is an essential organ in the removal of excess cholesterol from the blood circulation for excretion into the bile (Spady et al., 1999). The liver regulates its intra hepatic cholesterol homeostasis, by maintaining an appropriate balance between the regulatory free cholesterol and the more inert cholesterol ester pool (Menno et al., 2005). The human hepatoma cell line HepG2 has been used as a suitable model for studying the cholesterol regulation and lipoprotein synthesis and metabolism (Kaptein et al., 1992).

Among the most common pharmacological drugs currently used as lipid lowering agents in the clinical practices are statins. They act through inhibition of cholesterol synthesis and subsequent increase in hepatic LDLR expression (Kreisberg and Oberman, 2003). Statins effectively lower the plasma concentration of LDLC and reduce mortality and morbidity from CHD (Larosa et al., 1999). However, some patients are unable to tolerate statin treatments due to musculoskeletal symptoms and other side effects (Ballantyne et al., 2003; Rader, 2001). High rate of side effects