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This thesis presents a research study on the novel electrochemical sensors based on 

single-walled carbon nanotube/nanoparticles for the voltammetric determination of 

ascorbic acid and paracetamol. The determination of ascorbic acid and paracetamol 

using bare electrodes have several limitations such as poor sensitivity and 

reproducibility. Electrode modified by using a hybrid of both nanoparticles and single-

walled carbon nanotubes (SWCNTs) could provide better sensitive and reproducibility 

in the electrochemical determination of ascorbic acid and paracetamol. 

 

The solid phase voltammetry of microparticles (SPVM) technique is applied for the 

fabrication and characterization of the electrochemical sensors. SWCNTs and 

metal/metal oxides-modified glass carbon electrodes (GCEs) were fabricated by a 

mechanical attachment technique. SWCNT/tungsten/GCE, SWCNT/tungsten 

oxide/GCE and SWCNT/zinc oxide/GCE were fabricated for the detection of ascorbic 

acid. Electrochemical determination of paracetamol in a potassium dihydrogen 

phosphate electrolyte solution was performed with SWCNT/zinc oxide/GCE and 

SWCNT/nickel/GCE. The electrochemical behavior and electrocatalytic properties of 

all the modified electrodes were characterized by using cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS). Nanocomposites of the selected 

metal/metal oxide and SWCNT were examined by the UV-visible spectroscopy (UV-

Vis), scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer 

(EDX). 

 

When a SWCNT/nanoparticle was introduced as the mediator, current responses 

toward ascorbic acid in the potassium dihydrogen sulphate electrolyte solution 

dramatically increased in comparison to the bare GCE. In the cyclic voltammetric 

analysis, the enhancement factors were 2.5, 3.5, and 2.0 for the SWCNT/WO3/GCE, 

SWCNT/W/GCE and SWCNT/ZnO/GCE, respectively. In the application of 

electrodes immobilized with a nanocomposite for ascorbic acid determination, the 

SWCNT/WO3/GCE, SWCNT/W/GCE and SWCNT/ZnO/GCE displayed a sensitivity 

of 14.6, 23.8, 13.7 mA M-1 and a detection limit of 5.1, 1.9, 21.0 M, respectively. 

Cyclic voltammetry studies indicated that the oxidation of ascorbic acid at all the 
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modified electrodes was a diffusion controlled process. The effect of pH was 

investigated and the optimal pH was obtained: pH 2 (SWCNT/WO3/GCE), 2.5 

(SWCNT/W/GCE), and 4-5 (SWCNT/ZnO/GCE) when 0.1 M potassium dihydrogen 

phosphate solution was used. The activation energy (Ea) of the electrocatalytic reaction 

was found to be 3.43, 1.02 and 3.81 kJ mol-1 corresponding to SWCNT/WO3/GCE, 

SWCNT/W/GCE and SWCNT/ZnO/GCE, respectively using a temperature study. 

The electrochemical method was assessed with a repeatability study, and relative 

standard deviation (RSD) values of 5.3%, 3.5% and 3.8% were obtained for 

SWCNT/WO3/GCE, SWCNT/W/GCE and SWCNT/ZnO/GCE, respectively. All the 

modified electrodes were used for ascorbic acid recovery determination in real 

samples, with excellent recovery rates of near 100% with RSD ranging from 2.0-6.5%. 

 

The peak current response of paracetamol obtained at the SWCNT/ZnO/GCE and 

SWCNT/Ni/GCE were significantly better than that of a bare GCE, with the 

enhancement factors of 4 and 5, respectively. The improved current response of 

modified electrodes is attributed to the unique structure and physicochemical 

properties of SWCNT and nanoparticles. In the determination of paracetamol using 

cyclic voltammetry, a linear current response was observed for the concentration range 

of 0.05 to 0.50 mM. The SWCNT/ZnO/GCE and SWCNT/Ni/GCE displayed a 

sensitivity of 42.5, 63.8 mA M-1 and a detection limit of 0.32, 0.12 M, respectively 

Redox reactions of paracetamol at the SWCNT/ZnO/GCE and SWCNT/Ni/GCE were 

controlled by both diffusion and adsorption. Both modified electrodes had higher 

oxidation peak currents at lower pH. 

 

The reproducibility of the developed method in paracetamol detection was assessed. 

Relative standard deviations of 5.5% and 5.6% were obtained for SWCNT/ZnO/GCE 

and SWCNT/Ni/GCE, respectively in the repeatability study. Both modified 

electrodes show excellent results for detecting paracetamol in real life samples with a 

RSD of 1.9%. Scanning electron micrographs indicate the porous and uneven 

distribution of nanocomposites on the modified electrode surfaces. The particle size of 

nanocomposite was found to be bigger after electroanalysis. From the UV-Vis 

analysis, a decrease in band gap energy was discovered when a SWCNT was 

introduced to the nanoparticles. This could have improved the electrical conductivity 

of the nanocomposite and therefore enhance the electrocatalytic activity.   It was 

indicated in the EIS analysis that the charge transfer resistance of the 

SWCNT/ZnO/GCE is higher compared to other modified electrodes.  

 

In conclusion, several electrochemical sensors were fabricated and characterized on 

the voltammetric determination of ascorbic acid and paracetamol. The results 

demonstrated that SWCNT and selected metal/metal oxide are superior electrode 

materials. The electroanalytical method is a simple, fast, low cost and sensitive 

approach for the detection of ascorbic acid and paracetamol. The results indicate that 

the modified electrodes based on SWCNT and selected metal/metal oxides can be 

applied for the routine qualitative and quantitative determination of ascorbic acid or 

paracetamol. 
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Tesis ini membentangkan kajian mengenai penderia elektrokimia yang baru 

berdasarkan nanotiub karbon berdinding tunggal/nanopartikel untuk penentuan 

kandungan asid askorbik dan parasetamol secara voltammetri. Penentuan asid 

askorbik dan parasetamol dengan menggunakan elektrod yang tidak diubahsuai 

mempunyai beberapa kelemahan seperti sensitiviti dan kebolehulangan yang kurang 

memuaskan. Gabungan kedua-dua nanopartikel dan nanotiub karbon berdinding 

tunggal (SWCNT) mungkin boleh menyediakan elektrod ubahsuai yang lebih sensitif 

dan menpunyai kebolehulangan yang tinggi untuk menganalisis kandungan asid 

askorbik dan parasetamol secara elektrokimia. 

 

Teknik voltametri fasa pepejal mikropartikel (SPVM) digunakan untuk fabrikasi dan 

pencirian penderia elektrokimia. Teknik penempalan mekanikal telah digunakan untuk 

fabrikasi elektrod karbon berkaca (GCE) baru ini dengan campuran SWCNT dan 

logam/oksida logam. SWCNT/tungsten/GCE,  SWCNT/tungsten oksida/GCE dan 

SWCNT/zink oksida/GCE telah difabrikasi untuk mengesan kandungan asid askorbik. 

Kaedah elektrokimia telah digunakan untuk mengesan kandungan parasetamol di 

dalam larutan elektrolit kalium dihidrogen fosfat dengan menggunakan SWCNT/zink 

oksida/GCE dan SWCNT/nikel/GCE. Sifat elektrokimia dan ciri-ciri pemangkinan 

elektron di dalam semua elektrod yang ubahsuai telah dikaji dengan alat voltammetri 

berkitar (CV) and spektroskopi impedans elektrokimia (EIS). Nanokomposit 

logam/oksida logam terpilih dan SWCNT  telah  disemak  menggunakan spektroskopi 

ultra lembayung nampak (UV-Vis), mikroskopi pengimbasan elektron (SEM) dan 

spektrometer penyerakan tenaga sinar-X (EDX). 

 

Apabila SWCNT/nanopartikel digunakan sebagai bahan perantaraan, tindak balas arus 

elektrik terhadap asid askorbik di dalam elektrolit kalium dihidrogen sulfat meningkat 

secara mendadak, berbanding dengan GCE yang tidak diubahsuai. Dalam analisis 

voltammetri berkitar, faktor penambahbaikan  adalah 2.5, 3.5, dan 2.0 untuk 

SWCNT/WO3/GCE, SWCNT/W/GCE dan SWCNT/ZnO/GCE. Dalam penggunaan 

elektrod yang disekat gerak dengan nanokomposit untuk penentuan asid askorbik, 

SWCNT/WO3/GCE, SWCNT/W/GCE dan SWCNT/ZnO/GCE memaparkan 
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sensitiviti sebanyak 14.6, 23.8, 13.7 mA M-1 dan had pengesanan 5.1, 1.9, 21.0 M. 

Kajian voltammetri berkitar menunjukkan bahawa pengoksidaan asid askorbik pada 

semua elektrod yang diubahsuai adalah dikawal oleh proses resapan. Kajian pH telah 

dijalankan dan pH optimum untuk semua elektrod adalah pH 2 (SWCNT/WO3/GCE), 

2.5 (SWCNT/W/GCE), dan 4-5 (SWCNT/ZnO/GCE) apabila larutan elektrolit kalium 

dihidrogen fosfat 0.1 M digunakan. Tenaga pengaktifan (Ea) bagi tindak balas 

pemangkinan elektron adalah 3.43, 1.02 dan 3.81 kJ mol-1 untuk SWCNT/WO3/GCE, 

SWCNT/W/GCE dan SWCNT/ZnO/GCE. Kebolehulangan kaedah elektrokimia ini 

telah dikaji dan nilai sisihan piawai relatif (RSD) SWCNT/WO3/GCE, 

SWCNT/W/GCE dan SWCNT/ZnO/GCE ialah 5.3%, 3.5% dan 3.8%. Kadar 

perolehan semula pada semua elektrod yang diubahsuai untuk mengesan asid askorbik 

dalam sampel sebenar adalah sangat memuaskan iaitu menghampiri 100% dengan 

RSD berada di antara 2.0-6.5%. 

 

Puncak tindak balas arus elektrik parasetamol yang diperolehi pada 

SWNCT/ZnO/GCE dan SWCNT/Ni/GCE adalah lebih baik berbanding pada GCE 

yang tidak diubahsuai, dengan faktor-faktor peningkatan sebanyak 4 dan 5. Tindak 

balas arus elektrik yang lebih baik untuk elektrod diubahsuai adalah disebabkan oleh 

strukturnya yang unik dan ciri-ciri fizikal dan kimia SWCNT dan nanopartikel. Dalam 

penentuan parasetamol menggunakan voltammetri berkitar, tindak balas arus elektrik 

yang linear untuk pelbagai kepekatan diperhatikan iaitu di antara 0.05-0.50 mM. 

SWCNT/ZnO/GCE dan SWCNT/Ni/GCE memaparkan sensitiviti bernilai 42.5, 63.8 

mA M-1 dan had pengesanan sebanyak 0.32, 0.12 M. Tindak balas redoks 

parasetamol di SWCNT/ZnO/GCE dan SWCNT/Ni/GCE dikawal oleh kedua-dua 

proses, iaitu resapan dan jerapan. Kedua-dua elektrod diubahsuai mempunyai puncak 

pengoksidaan yang lebih tinggi pada pH yang lebih rendah. 

 

Kebolehulangan untuk pengesanan parasetamol menggunakan elektrod-elektrod 

tersebut telah dinilai. Dalam kajian ini, sisihan piawai relatif sebanyak 5.5% dan 5.6% 

telah diperolehi bagi SWCNT/ZnO/GCE dan SWCNT/Ni/GCE. Kedua-dua elektrod 

yang diubahsuai menunjukkan hasil yang sangat baik untuk mengesan parasetamol 

dalam sampel sebenar dengan RSD sebanyak 1.9%. Mikrograf pengimbasan elektron 

menunjukkan taburan nanokomposit yang poros dan bentuk tidak sekata pada 

permukaan elektrod yang diubahsuai. Saiz partikel nanokomposit didapati lebih besar 

selepas proses analisis elektrokimia. Daripada analisis UV-Vis, terdapat pengurangan 

dalam jurang jalur tenaga ditemui apabila SWCNT dicampurkan dengan nanopartikel. 

Ini boleh meningkatkan kekonduksian elektrik nanokomposit dan sekaligus 

meningkatkan aktiviti pemangkinan elektronnya. Ini telah ditunjukkan dalam analisis 

EIS bahawa rintangan pemindahan cas bagi SWCNT/ZnO/GCE adalah lebih tinggi 

daripada elektrod ubahsuai yang lain. 

 

Sebagai rumusan dalam kajian ini, beberapa penderia elektrokimia telah difabrikasi 

dan ciri-cirinya  dikaji atas penentuan kandungan asid askorbik dan parasetamol secara 

voltammetri. Keputusan penyelidikan menunjukkan bahawa SWCNT dan logam/ 

oksida logam terpilih adalah bahan elektrod yang unggul. Analisis secara elektrokimia 

adalah kaedah yang mudah, cepat, murah dan sensitif untuk analisis kandungan asid 

askorbik dan parasetamol. Hasil penyelidikan juga menunjukkan bahawa penderia 

elektrokimia dengan SWCNT dan logam oksida /logam terpilih amat sesuai digunakan 

untuk analisis kualitatif dan kuantitatif asid askorbik atau parasetamol.  
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KH2PO4 at a SWCNT/Ni/GCE. Scan rate: 100 mV s-1. 

Temperature: 20-75 oC. 

 

9.7 A plot of anodic peak current for the oxidation of 0.1 mM 

paracetamol in 0.1 M KH2PO4 electrolyte solution with various 

pH values at a SWCNT/Ni/GCE. Scan rate: 100      mV s-1. pH: 

3-12. 

 

9.8 A plot of anodic peak potential for the oxidation of 0.1 mM 

paracetamol in 0.1 M KH2PO4 electrolyte solution with various 

pH values at a SWCNT/Ni/GCE. Scan rate: 100      mV s-1. pH: 

3-9. 
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9.9 Variable pressure scanning electron micrographs of the 

SWCNT/Ni nanofilm immobilized onto the surface of BPPGE 

(a) before the electrochemical cycling and (b) after the 

electrochemical cycle in the 0.1 M KH2PO4 electrolyte 

containing 0.1 mM paracetamol. Scan rate: 100 mV s-1. 
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CHAPTER 1 

  

INTRODUCTION 

 

 

1.1 Modification of Electrode 

 

The bare electrode is an unmodified electrode of inert substrate. Direct electrochemical 

oxidation of an electroactive species at a bare electrode is difficult. It is irreversible, 

slows electrode kinetics and requires high overpotentials for the reactions, which 

results in the fouling of the electrode by its oxidation products. This leads to poor 

sensitivity, low stability and poor reproducibility. 

 

The electrochemical performance of electrodes can be improved via surface treatment 

or surface modification. Electrodes surface treatment or surface modification can 

enhance the performance of the electrodes in terms of sensitivity and selectivity. The 

modification of electrodes is aimed to improve the electrical conductivity, promote the 

electrode surface activity, reduce the overpotential and therefore enhance the electron 

transfer activity.  

 

 

1.1.1 Electrode Surface Treatment 

 

Electrode surface treatment is employed to clean and activate the electrode surface. 

The two common approaches of electrode surface treatment are surface cleaning and 

surface activation. Cleaning of electrode surface prior to fabrication or modification is 

significant to ensure the surface is free from impurities and contaminants. Surface 

cleaning can be done by physically wiping off the chemical or nanofilm from the 

electrode surface; and the polishing of the electrode using the polishing pad with 

alumina slurry, followed by an ultrasonic bath for the removal of alumina residues.  

 

Surface activation can be achieved by potential cycling the electrode at a wide 

potential range; or preparing a highly oxidized/reduced electrode via potentiostatic 

polarization. The two common approaches for potentiostatic polarization are 

anodization and cathodization. Under anodization, an electrode is subjected to the 

potentials where oxidation will take place. Conversely in cathodization, the potentials 

applied is programmed to cause reduction. Therefore, positive or negative charges can 

be created on the electrode surface by anodization or cathodization. 

 

 

1.1.2 Electrode Surface Modification 

 

Electrode surface modification can overcome some limitations of bare electrode and 

enhance the electron transfer activity, reduce the high overpotential, improve the mass 

transfer velocity, improve the sensitivity of the desired substrate and restrain the 

interferences in real sample analysis. A chemically modified electrode (CME) is one 

where some type of electrode material is attached by one or more combinations of 

electron transfer mediator via a selected fabrication method. Electrode surface can be 

modified by fabrication with various electron transfer mediators via selected 

techniques (Topoglidis et al., 2005). In any type of fabrication technique, a thin film 



© C
OPYRIG

HT U
PM

2 

 

which consists of the desired mediator is attached onto the electrode surface. The 

surface modification of a bare electrode offers several advantages if the electrode is to 

be used as an electrochemical sensor for some particular substance. Different 

techniques have been used for electrode fabrication such as mechanical attachment 

(Banan et al., 2013; Ganchimeg et al., 2011), surface casting (Motahary et al., 2010; 

Habibi et al., 2011a), electropolymerization (Wan et al., 2006), electrochemical 

deposition (Selvaraju and Ramaraj, 2007), covalent attachment, adsorption, sol-gel 

matrices, layer-by-layer assembly (Fernandes et al., 2011; Qian et al., 2005), cross-

linking method etc.  

 

 

1.2 Electron Transfer Mediators 

 

Electron transfer mediators are electroactive materials which are usually used in the 

modification of electrode surfaces in order to improve the electrode performance in 

terms of sensitivity and selectivity. Those electron transfer mediators act as electron 

transfer agents, which can be deposited onto different electrodes surface via various 

fabrication techniques. There are a variety of electron transfer mediators used in the 

research, such as metals, polymers, biochemical compounds, deoxyribonucleic acid 

(DNA), organic compounds, inorganic compounds, chemicals, etc. Several 

nanomaterials such nanoparticles and carbon nanotubes are also commonly used as 

electron transfer mediators when fabricated on the electrode surface. 

 

 

1.3 Ascorbic Acid 

 

Ascorbic acid (vitamin C) is a water soluble compound which is naturally present in 

many types of fruits and vegetables (Figure 1.1). It possesses antioxidant property, and 

plays an important role in biochemical metabolism and physiological processes. 

Ascorbic acid is one of the essential nutrients that is required by humans, which can 

be obtained through diet or supplement.  Various pharmaceutical, nutraceutical and 

food products are fortified with ascorbic acid. Food and Drug Administration (FDA) 

recommended a daily dosage of ascorbic acid at 60 mg for human consumption. 

Deficiency in ascorbic acid will cause scurvy disease. Therefore, the determination of 

ascorbic acid content is important in the quality control process of pharmaceutical, 

nutraceutical and food industries.  Hence, a simple, rapid, sensitive and accurate 

method for the routine determination of ascorbic acid is needed. 

 

 

    
 

Figure 1.1. The structure and reaction of ascorbic acid. 
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1.4 Paracetamol 

 

Paracetamol (acetaminophen, 4-acetamidophenol, N-acetyl-p-aminophenol or 4’-

hydroxyacetanilide) is a drug with antipyretic and analgesic properties (Figure 1.2). It 

is an effective medicament used to relieve various pains associated with headache, 

toothache, neck ache, muscular pain, chronic pain, rheumatic pain, postoperative pain 

and pains from minor injuries. Paracetamol is also widely used to reduce body 

temperature; thus it is applied in fevers, colds, flu and it even relieves coughing. 

Suppliers recommend a daily limit of 4000 mg or 8 tablets in paracetamol intake. It is 

safe and without any harmful side effects under controlled or therapeutic dosage. 

Chronic use or overdose of paracetamol leads to the accumulation of toxic metabolites 

in the liver. The toxic metabolite is produced by cytochrome P-450, which may cause 

severe or fatal hepatoxicity and nephrotoxicity, skin rashes and pancreas 

inflammation. Quantitative determination of paracetamol is a significant process in the 

quality assurance of pharmaceutical industry. In the healthcare industry, the analytical 

detection of paracetamol content in the human specimen is also vital for diagnostic 

purpose. Therefore, the development of a simple, fast, sensitive and accurate analytical 

method for the determination of paracetamol is needed. 

 

 
Figure 1.2. The structure and reaction of paracetamol. 

 

 

1.5 Methods Used in the Determination of Ascorbic Acid and Paracetamol 

 

Many methods have been developed to evaluate the concentration of ascorbic acid and 

paracetamol; alone, in a mixture solution, pharmaceutical formulations or biological 

fluids. A range of analytical methods which are most commonly used have been 

reported in the literature, such as chromatography (including gas chromatography, 

thin-layer chromatography and liquid chromatography) , spectrophotometry, 

fluorometry, colorimetry, titrimetry, electrophoresis and chemiluminescence.  
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Nevertheless, there are some shortcomings in using some of these methods. Those 

disadvantages such as poor sensitivity, high cost, time-consuming and complicated 

pretreatment or preparation procedure, making those methods unsuitable for routine 

analysis. Gas and liquid chromatography methods are sensitive but require expensive 

instrumentation and operating cost. Spectrophotometry and titrimetry analysis require 

a tedious extraction procedure and therefore the methods are time-consuming. 

Colorimetry method involves a formation of colour compound from the derivatization 

of the analyte, which is less sensitive and also time-consuming. 

 

Over last few decades, development of alternative methods for detecting ascorbic acid 

and paracetamol has received great interest. Compared to other methods, 

electroanalytical method is more promising due to its simplicity, fast results and low 

cost. The use of electrochemical analysis in the detection of ascorbic acid and 

paracetamol is recommended because of its good sensitivity, reproducibility and 

stability. Both ascorbic acid and paracetamol are electroactive compounds, which can 

be oxidized electrochemically. At present, there are many literatures on the 

electrochemical study in determining ascorbic acid and paracetamol. The importance 

of both ascorbic acid and paracetamol led to the efforts to develop and improve the 

electroanalytical method for the determination of both compounds.  

 

 

1.6 Problem Statement 

 

Electrochemical determination of ascorbic acid or paracetamol is a promising 

methodology. Electrochemical sensors are of great interest due to the wide applications 

in the pharmaceutical, food and healthcare industries. Due to the importance of this 

simple, reliable and rapid method of determining ascorbic acid and paracetamol, the 

development of electrochemical sensors with excellent reproducibility, sensitivity, low 

detection limit and fast response has been a subject of concern. 

 

The direct oxidation of ascorbic acid and paracetamol using a bare electrode has some 

limitations such as poor sensitivity and poor reproducibility. This is due to the high 

overpotential at the electron transfer process and the fouling problem which is caused 

by the adsorption of the products formed. Thus, the bare electrode is not appropriate 

in analytical application and is not widely employed in the routine analysis for quality 

control purposes. Recently, much attention has been focused on the use of modified 

electrodes to improve the electrocatalysis of ascorbic acid and paracetamol. 

 

However, some of the modified electrodes may possess several disadvantages such as 

complicated, time-consuming or costly preparation procedure, poor stability and 

reproducibility. Therefore, it is important to explore a potential electron transfer 

mediator that provides a good sensitivity and to fabricate a modified electrode with a 

simple preparation technique. In this sense, mechanical attachment has been proposed 

for the immobilization of the electron transfer mediators onto the electrode surface.  
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The main advantages of the mechanical attachment technique are simplicity, low cost 

and faster speed of preparation.  New reproducible surface can be easily obtained by a 

simple polishing or cleaning procedure. The porous and the roughness of electrode 

surface allowed the accessibility of reactants to the active sites on the electrode surface. 

Different modifiers such as organic compounds, biochemical compounds, synthetic 

polymers and nanoparticles can be used as electron transfer mediators. 

 

The electrochemical determination by using modified electrodes based on different 

electron transfer mediators is an attractive technique. However, a major drawback of 

the modified electrode prepared by mechanical attachment is the leaching of electron 

transfer mediators into the electrolyte solution, which diminishes the mediator film 

that is deposited onto the electrode surface. This is because the mediators are in loose 

contact with the electrode surface.  Another problem in preparing the electrochemical 

sensor based on the mechanical attachment is lack of long term stability. Repetitive 

use of the modified electrode leads to surface contamination and passivation. This is 

due to the adsorption and accumulation of intermediates which cause low electron 

transfer rate, poor sensitivity and poor detection limit. Therefore, the modified 

electrode could be degraded and passivation after some time.  

 

To solve the problem, the electrode surface has to be renewed or refreshed to overcome 

mediators leaching as well as contamination by the intermediates or oxidation 

products. A fresh electrode surface deposited with the electron transfer mediators 

possesses good sensitivity and reproducibility which can be used as an effective sensor 

in the oxidation of the substrate of interest.  

 

Many electrochemical sensors have been explored towards the improving of the 

sensitivity and reproducibility by using various electron transfer mediators. From this 

point of view, the selection of the type of electron transfer mediator used in the 

fabrication of electrochemical sensors still remains a challenge. 

 

 

1.7 Hypotheses 

 

The electrocatalytic property of the mediators is the main factor to determine the 

performance of the modified electrode. Most of the previous studies on the 

electrochemical oxidation of electroactive species involve the use of nanomaterials. 

Recent studies demonstrated the advantages of using nanocomposite as a mediator to 

accelerate the electron transfer activity. Carbon nanotube (CNT) exhibits excellent 

electrocatalytic activities due to its high electrical conductivity and electrochemical 

activity. Additionally, CNT could reduce the overpotential and lead to a remarkably 

increase of peak current response compared to bare electrode. 

 

Recently, increasing attention has been focused on the composite of CNT and coating 

with various nanomaterials. Particular attention is paid on the interaction between 

single-walled carbon nanotube (SWCNT) and nanoparticle of metal/metal oxide. The 

electrocatalytic activity of the SWCNT/nanoparticle modified electrode for 

biochemical compounds is remarkably different from using just the individual 

nanoparticle.  
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This work describes the solid phase voltammetry of microparticles (SPVM) study on 

the electrocatalytic determination of ascorbic acid and paracetamol. Mechanical 

attachment (MA) technique is applied for the fabrication of novel electrochemical 

sensors. Cyclic voltammetry (CV) is used for the characterization of the modified 

electrodes in determining the concentration of ascorbic acid and paracetamol. 

Different modified electrodes were prepared and constructed based on the 

nanocomposites of SWCNT and selected metal/metal oxides using glassy carbon 

electrode (GCE). Nanocomposites of the electron transfer mediators were prepared 

and immobilized onto the freshly polished and cleaned GCE surfaces by using 

mechanical attachment technique. These mediators are commercially available, and 

the preparation of modified electrodes is simple and fast. Ascorbic acid and 

paracetamol were used as model compounds to study the electrochemical properties 

of the modified electrodes.  Ascorbic acid is chosen as the model nutraceutical 

supplements; and paracetamol is used as the model pharmaceutical drug. 

 

In the present work, three electrochemical sensors (SWCNT/WO3, SWCNT/W and 

SWCNT/ZnO modified electrodes) were used for the determination of ascorbic acid. 

The use of SWCNT/ZnO and SWCNT/Ni modified GCEs for the determination of 

paracetamol is described. These nanocomposites will be immobilized onto the GCE 

surface and used for electrochemical sensing. It is expected that the SWCNT could 

enhance the property of the individual nanoparticle. The aims of this work are to 

establish the electrochemical sensors, and to compare the electrochemical performance 

of different modified electrodes in the determination of ascorbic acid and paracetamol. 

 

Tungsten and nickel are transition metals which possess good electrical conductivity.  

Tungsten oxide and zinc oxide are transition metal oxides that possess high potential 

to be applied as electron transfer mediators due to their semiconducting nature. The 

transition metals and their oxides in nanostructures could possess better electron 

transfer activity and electrochemical properties. We propose the synergistic effect 

between the SWCNT and metal/metal oxides will produce an effective electrochemical 

sensor. 

 

To the best of our knowledge, so far there is no report in the detection of ascorbic acid 

based on a SWCNT/WO3 and SWCNT/W modified GCEs. For instance, the 

nanocomposites of SWCNT/W and SWCNT/WO3 were not used as mediators to 

enhance the sensing activity of any electroactive species, including ascorbic acid and 

paracetamol. The novel CNT/ZnO has excited significant attention due to the 

electrochemical and photocatalytic properties of zinc oxide. CNT/ZnO has been 

reported in many literatures for various studies including synthesis, characterization, 

optical properties and applications (Gultekin et al., 2013; Kim et al., 2008; Wang and 

Adhikari, 2011; Zhang et al., 2009). Multi-walled carbon nanotube/zinc oxide 

(MWCNT/ZnO) was applied in the determination of glucose by Palanisamy and co-

workers (2012). However, the fabrication of SWCNT/ZnO/GCE in determining 

ascorbic acid as well as paracetamol has not been reported so far. We assume the 

combination of SWCNT and ZnO will show a better sensitivity than the MWCNT/ZnO 

modified GCE. Another experiment on carbon-coated nickel magnetic nanoparticles 

fabricated electrode was used in detecting paracetamol (Wang et al., 2007b). We 

suggest the presence of SWCNT in nickel could also produce satisfactory electrode 

performance.  
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1.8 Objectives 

 

The general objective is to carry out solid phase voltammetry study on all the modified 

electrodes prepared. 

 

The specific objectives of this study are as follows: 

1. To fabricate modified glassy carbon (GC) solid electrodes using 

nanocomposites of single-walled carbon nanotubes (SWCNT) and 

nanoparticles of selected metal and metal oxides (W, Ni, ZnO and WO3) via 

mechanical attachment technique.  

 

2. To determine (a) the band gap energy of the selected nanocomposites using 

UV-Vis spectrophotometers; (b) the surface morphology and elemental 

composition of the above mentioned modified solid electrodes using SEM and 

EDX, respectively; (c) the impedance of the electrochemical reaction of 

ascorbic acid at SWCNT/WO3/GCE, SWCNT/W/GCE and 

SWCNT/ZnO/GCE; and the detection of paracetamol at SWCNT/ZnO/GCE 

and SWCNT/Ni/GCE, using EIS. 

 

3. To carry out the electrocatalytic studies on the electrochemical reaction of (a) 

ascorbic acid mediated by SWCNT/WO3/GCE, SWCNT/W/GCE and 

SWCNT/ZnO/GCE; (b) paracetamol  mediated by SWCNT/ZnO/GCE and 

SWCNT/Ni/GCE using cyclic voltammetry under various physical and 

chemical conditions. 
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