SYNTHESIS, CHARACTERIZATION AND EFFECTS OF THERMAL TREATMENT OF ZnO-AND CdO-BASED NANOMATERIALS

NAIF MOHAMMED ALI AL-HADA

FS 2015 80
SYNTHESIS, CHARACTERIZATION AND EFFECTS OF THERMAL TREATMENT OF ZnO-AND CdO-BASED NANOMATERIALS

By

NAIF MOHAMMED ALI AL-HADA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2015
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of requirement for the Degree of Doctor of Philosophy

SYNTHESIS, CHARACTERIZATION AND EFFECTS OF THERMAL TREATMENT OF ZnO-AND CdO-BASED NANOMATERIALS

By

NAIF MOHAMMED ALI AL-HADA

Januray 2015

Chairman: Professor Elias Saion, PhD

Faculty: Science

Nanoscience can simply be defined as the study and understanding of nanomaterials and their manipulation at atomic, molecular and macromolecular scales where properties vary significantly from those at a macroscopic scale. Nanotechnology on the other hand can be defined as the design, production and application of nanostructured devices and systems by controlling shape and size at a nanometer scale. Nanomaterials could be defined as the materials with at least one of its dimensions in the range of a nanometer. The study of nanomaterials is very interesting and important because at nanoscale, materials have fundamentally unique properties compared to their bulk due to increased surface area to volume ratios. The metallic compounds which formed with metal and oxygen in the form of oxide ion (O2-) are called metal oxide." They are named in two words where first word is the name of metal with oxidation number in parenthesis followed by oxide.

Nanomaterials including metal oxide nanoparticles are of scientific and technological importance due to their unique physical and chemical properties arise from their nanoscale dimension and large number of surface atoms. As their properties are dependent on large surface area to volume ratio and quantum confinement effect, they have potential applications in almost every field of human endeavor. PVP displays capping ability (capping agent) which plays significant role in the synthesis of metal oxide nanoparticles. It is however realized that PVP controls the growth of the nanoparticles with the variation of its concentration, prevents the agglomeration, improves the crystallinity and brings about homogeneity and uniformity in the shape of nanoparticles.

From the prepared ZnO results, the XRD diffraction patterns at calcination temperatures 500-650 °C showed that the crystallite size was in the range of 18–41 nm with hexagonal structure. These results were in agreement with the transition electron microscopy results which showed that the formation of ZnO in nanoscale size. The average particle size determined by TEM images were found to increase
from 19 to 43 nm with increase in calcination temperatures. The FTIR results confirmed the removal of polymer and the presence of metal oxide nanoparticles at calcination temperatures 500-650 °C. The elemental composition of the samples obtained by EDX spectroscopy has further evidenced the formation of ZnO nanoparticles. In addition, the optical band gap of the samples was calculated using Kubelka-Munk model for calcination temperatures 500-650 °C. The band gap varied from 3.27 to 3.23 eV for calcination temperatures 500-650 °C. A decrease in the energy band gap with increasing calcination temperatures is attributed to the increase in the particle size. It is believed that as the particle size increases, the number of atoms that form a particle also increase, which consequently render the valence and conduction electrons more attractive to the ions core of the particles, and hence decreasing the band gap of the particles. The PL spectra at calcination temperatures 500-650 °C showed that the increment in the intensity with increasing calcination temperatures is attributed to the increase in the particle size.

From the prepared CdO results, the XRD diffraction patterns at calcination temperatures 500-650 °C showed that the crystallite size was in the range of 13–47 nm with cubic center face structure. These results were in agreement with the transition electron microscopy results which showed the formation of CdO in nanoscale size. The average particle size determined by TEM was found to increase from 18 to 48 nm with increase in calcination temperature. The FTIR results confirmed the removal of polymer and the presence of metal oxide nanoparticles at calcination temperatures 500-650 °C. The elemental composition of the samples obtained by EDX spectroscopy has further evidenced the formation of CdO nanoparticles. In addition, the optical band gap of the samples was calculated using Kubelka-Munk model for calcination temperatures 500-650 °C. The band gap was found to vary from 2.14 to 2.01 eV. A decrease in the energy band gap with increasing calcination temperatures is attributed to the increase in the particle size. The PL spectra at calcination temperatures 500-650 °C showed that the increment in the intensity with increasing calcination temperatures is attributed to the increase in the particle size.

From the prepared (ZnO)x(CdO)1-x nanosheets results, the XRD diffraction patterns at calcination temperatures 500-650 °C showed that the crystallite size was in the range of 15-25 nm for (ZnO)0.2(CdO)0.8 and 13-32 nm for ZnO0.8(CdO)0.2 with hexagonal and cubic structures respectively. The average particle size determined by TEM were found to increase with calcination temperatures from 14-26 nm for (ZnO)0.2(CdO)0.8 and 16-40 nm for ZnO0.8(CdO)0.2. The FTIR results confirmed the removal of polymer and the presence of metal oxide nanoparticles at calcination temperatures 500-650 °C. The elemental composition of the samples obtained by EDX spectroscopy has further evidenced the formation of (ZnO)x(CdO)1-x nanosheets In addition, the optical band gap of the samples was calculated using Kubelka-Munk model for calcination temperatures 500-650 °C. The band gap varied from 2.83-3.22 to 2.68-3.09 eV for calcination temperatures 500-650 °C. A decrease in the energy band gap with increasing calcination temperatures is attributed to the increase in the particle size. It is believed that as the particle size increases, the number of atoms that form a particle also increase, which consequently render the valence and conduction electrons more attractive to the ions core of the particles, and hence decreasing the band gap of the particles. The PL spectra at calcination
temperatures 500-650 °C showed that the increment in the intensity with increasing calcination temperatures is attributed to the increase in the particle size. A thermogravimetric analyser (TGA) was used to study thermal stability and the temperature at which polymer could be remove from the samples during calcination. The maximum decomposition of the polymer was found at 485 °C.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi syarat keperluan Ijazah Doktor Falsafah

SINTESIS, PENCIRIAN DAN KESAN RAWATAN HABA DARIPADA ZnO, DAN CdO-BASED BAHAN NANO

Oleh

NAIF MOHAMMED ALI AL-HADA

Januari 2015

Pengerusi: Profesor Elias Saion, PhD

Fakulti: Sains

Bahan Nano termasuk nanopartikel oksida logam mempunyai kepentingan sains dan teknologi kerana sifat mereka yang unik fizikal dan kimia timbul dari dimensi nano dan nombor atom besar permukaan. Sebagai sifat-sifat mereka adalah bergantung kepada kawasan permukaan yang besar kepada nisbah jumlah dan kesan pantang kuantum, mereka mempunyai aplikasi yang berpotensi dalam hampir setiap bidang endeaver manusia. Memaparkan PVP menghadkan keupayaan (ejen menetapkan siling) yang memainkan peranan penting dalam sintesis nanopartikel oksida logam. Namun ia menyediadahawa PVP mengawal pertumbuhan nanopartikel dengan pengubahan kepekatannya, menghalang penumpuan, meningkatkan penghabluran dan membawa homogeneity dan keseragaman dalam bentuk partikel nano.

Dari disediakan keputusan ZnO, corak belauan XRD pada suhu pengkalsinan 500-650 °C menunjukkan saiz hablur tersebut adalah dalam lingkungan 18-41 nm dengan struktur heksagon. Keputusan ini adalah selaras dengan keputusan
mikroskopi elektron peralihan yang menunjukkan bahawa pembentukan skala nano oksida saiz logam. Saiz zarah purata ditentukan oleh imej TEM telah didapati untuk meningkatkan 19-43 nm dengan peningkatan suhu pengkalsinan. Keputusan FTIR mengesahkan penyingkiran polimer dan kehadiran partikel nano oksida logam pada suhu pengkalsinan 500-650 °C. Komposisi unsur sampel diperolehi oleh EDX spektroskopi telah dibuktikan lagi pembentukan partikel nano ZnO. Di samping itu, jurang jalur optik bagi sampel telah dikira menggunakan model Kubelka - Munk untuk suhu pengkalsinan 500-650 °C. Penurunan dalam jurang jalur tenaga dengan meningkatkan suhu pengkalsinan adalah disebabkan oleh peningkatan dalam saiz zarah. Adalah dipercayai bahawa peningkatan saiz zarah, bilangan atom yang membentuk zarah yang juga meningkat, yang seterusnya menyebabkan valens dan elektron konduksi lebih menarik kepada teras ion zarah, dan dengan itu mengurangkan jurang jalur zarah. PL spektrum pada suhu pengkalsinan 500-650 °C menunjukkan bahawa kenaikan dalam keamatan dengan suhu pengkalsinan meningkat adalah disebabkan oleh peningkatan dalam saiz zarah.

Dari disediakan (ZnO) x (CdO) 1- x nanosheets keputusan, corak belauan XRD pada suhu pengkalsinan 500-650 °C menunjukkan saiz hablur tersebut adalah dalam lingkungan 15-25 nm untuk (ZnO) 0.02 (CdO) 0.8 dan 13-32 nm untuk ZnO) 0.8 (CdO) 0.2 dengan struktur heksagon dan padu. Saiz zarah purata ditentukan oleh TEM telah didapati meningkat dengan suhu pengkalsinan 14-26 nm untuk (ZnO) 0.02 (CdO) 0.8 dan 16-40 nm untuk ZnO) 0.8 (CdO) 0.2 . Keputusan FTIR mengesahkan penyingkiran polimer dan kehadiran partikel nano oksida logam pada suhu pengkalsinan 500-650 °C. Komposisi unsur sampel diperolehi oleh EDX spektroskopi telah dibuktikan lagi pembentukan (ZnO) x (CdO) 1- x nanosheets Di samping itu, jurang jalur optik bagi sampel telah dikira menggunakan model Kubelka - Munk untuk suhu pengkalsinan 500-650 °C. Penurunan dalam jurang jalur tenaga dengan meningkatkan suhu pengkalsinan adalah disebabkan oleh peningkatan dalam saiz zarah.
peningkatan dalam saiz zarah. Adalah dipercayai bahawa peningkatan saiz zarah, bilangan atom yang membentuk zarah yang juga meningkat, yang seterusnya menyebabkan valens dan elektron konduksi lebih menarik kepada teras ion zarah, dan dengan itu mengurangkan jurang jalur zarah. PL spektrum pada suhu pengkalsinan 500-650 °C menunjukkan bahawa kenaikan dalam keamatan dengan suhu pengkalsinan meningkat adalah disebabkan oleh peningkatan dalam saiz zarah.

Seorang penganalisis Termogravimetri (TGA) telah digunakan untuk mengkaji kestabilan haba dan suhu di mana polimer boleh mengalihkan dari sampel semasa proses mengapur. Penguraian maksimum polimer didapati di 485 °C.
ACKNOWLEDGEMENTS

All praise to supreme Allah (S.W.T.). The only creator, cherisher, sustainer, and able who gave me the ability to accomplish this project successfully.

I would like to thank my supervisor, Professor Dr. Elias Saion for embarking with me on this project. There is nothing greater than the gift of working in a field one loves, and you allowed for this to happen. This has been an amazing learning experience. Thank you for your time, your invaluable patience to accomplish this work successfully.

My deepest gratitude goes to Professor Dr. Abdullhalim Shaari. Your help has been invaluable, as an advisor, guide, and family friend. Thank you for your trust, encouragement, and for creating opportunities and directing them my way. I will be in eternal debt to you.

Very special thanks to Dr. Mazliana Ahmad and the Faculty and Staff of the Department of Physics. It has been an honor to work with you these past years. You have provided me with professional and life experience, friendship and support, and made this dream true. I greatly appreciate and wish to thank Mr. Mohd ZainYusof for his immense help and staff of the Faculty of Science and the Bioscience Institute of University Putra Malaysia, who had contributed to this work.

During my studies numerous people have contributed their time and energy to my knowledge; I would like to thank them all. I would like to thank Dr. Moayad Fliefel for his help during TEM analysis in UKM. Also I would like to express my deepest gratitude to Dr. Abdullah Ahmed Ali for his help during Uv-Vis spectroscopy. Thanks to Mr. Nura Abdullahi, Mr. Salahudeen Gene, and Dr. Mahmoud goodariz for their help during my studies. My propound gratitude goes to Aeshah and Manal for their cordial relationship during the course of this study.

I would like to express my sincere thanks to Thamar University in Yemen for providing me with financial support through full period time to get PhD degree at Universiti Putra Malaysia.

Finally, I specially wish to dedicate this work to my late father. There are no words to express my appreciations for the love and support received from my mother, brothers, sisters, my wife, and my sons, Mohammed and Khalid. This work could not have been possible without their continuous support encouragement and patience during my studies.
APPROVAL

I certify that a Thesis Examination Committee has met on 12 January 2015 to conduct the final examination of Naif Mohammed Al-Hada thesis entitled "SYNTHESIS, CHARACTERIZATION AND EFFECTS OF THERMAL TREATMENT OF ZNO- AND CDO-BASED NANOMATERIALS" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Halimah M. Kamari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

W. Mahmood Mat Yunus, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
/Internal Examiner

Zainal Abidin Talib, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
/Internal Examiner

Ahmad Umar, PhD
Professor
Faculty of Science
Najran University, Saudi Arabia
/External Examiner

ZULKARNAIN ZAINAL, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 19 March 2015
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the Degree of Doctor of Philosophy of Science. The members of the Supervisory Committee were as follows:

Elias Saion, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Chairman)

Abdul Halim Shaari, PhD
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

Mazliana Ahmad Kamurudin, PhD
Seniar Lecturer
Faculty of Science
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work
- quotations, illustrations and citations have been duly referenced
- the thesis has not been submitted previously or concurrently for any other degree at any institutions
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software

Signature: ______________________ Date: ______________________

Name and Matric No.: Naif Mohammed Al-Hada (GS30782)
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature: ___________________________ Signature: ___________________________
Name of Chairman of Name of Member of
Supervisory Supervisory
Committee: __________________________ Committee: __________________________

Signature: __________________________
Name of
Member of
Supervisory
Committee: __________________________
TABLE OF CONTENTS

COPYRIGHT ... Page
ABSTRACT ... i
ABSTRAK .. iv
ACKNOWLEDGEMENTS .. vii
APPROVAL ... viii
DECLARATION .. x
LIST OF TABLES ... xv
LIST OF FIGURES ... xvii
LIST OF ABBREVIATIONS ... xxiv

CHAPTER

1 INTRODUCTION ... 1
1.1 Background of Study ... 1
1.2 Problem Statement ... 2
1.3 Significant of The study ... 3
1.4 Scope of The present Study 3
1.5 Objectives of The study ... 3
1.6 Outline of Thesis .. 4

2 LITERATURE REVIEW .. 5
2.1 Metal Oxide Semiconductor Nanomaterials 5
2.2 Synthesis of Metal Oxide Nanostructures 5
2.2.1 Precipitation Method .. 6
2.2.2 Hydrothermal method ... 8
2.2.3 Solvothermal Method .. 11
2.2.4 Sol-Gel Method ... 11
2.2.5 Microemulsion Method 12
2.2.6 Combustion Synthesis ... 13
2.2.7 Electrochemical Synthesis 14
2.2.8 Sonochemical Method .. 14
2.2.9 Laser Ablation on Solid Liquid Interface 15
2.2.10 Chemical Vapor Deposition 16
2.2.11 Spray Pyrolysis Deposition 16
2.2.12 Mechanochemical Method 17
2.2.13 Thermal-treatment method 18
2.3 Applications of ZnO and CdO Nanoparticles 24
2.3.1 Electronic Device Fabrication 25
2.3.2 Solar Cells and Light Detectors 25
2.3.3 Light Emitting Devices (LEDs) 25
2.3.4 Sensors ... 26
2.3.5 Biological and Medical Application 26
2.3.6 Other Applications .. 26
3 THEORY
3.1 Introduction 27
3.2 Fundamental Concepts of Semiconductors 27
 3.2.1 Crystal Structure and Phonons 27
 3.2.2 Electronic Energy Bands and Band Gap 28
 3.2.3 Electron and Hole Effective Masses 29
 3.2.4 Fundamental optical absorption due to electronic transitions 30
 3.2.5 Density-of-States and Fermi Energy 31
 3.2.6 Trap States and Large Surface-to-Volume Ratio 32
 3.2.7 Energy levels 32
 3.2.8 Density of states in nanomaterials 34
3.3 Electronic Structure and Electronic Properties 36
 3.3.1 Electronic Structure of Nanomaterials 36
 3.3.2 Electron–Phonon Interaction 37
3.4 Optical Properties of Metal Oxide Nanomaterials 37
 3.4.1 Optical Absorption 38
 3.4.2 Optical Emission 42

4 MATERIALS AND METHOD 48
4.1 Introduction 48
4.2 Materials 48
4.3 Experimental Method 48
 4.3.1 Synthesis of Zinc Oxide Semiconductor Nanoparticles 48
 4.3.2 Synthesis of Cadmium Oxide Semiconductor Nanoparticles 49
 4.3.3 Synthesis of Binary (ZnO)x(CdO)1-x Semiconductor Nanosheets 49
4.4 Characterization 51
 4.4.1 Thermo-Gravimetry Analyses (TGA) 51
 4.4.2 Fourier Transform Infrared Spectroscopy (FTIR) 52
 4.4.3 Energy Dispersive X-Ray (EDX) Spectroscopy 54
 4.4.4 X-Ray Diffraction (XRD) 55
 4.4.5 Transmission Electron Microscopy 56
 4.4.6 Scanning Electron Microscopy (Sem) and Morphology Study 57
 4.4.7 UV-Visible Spectrophotometer Measurement 58
 4.4.8 Photoluminescence (PL) Measurement 59

5 RESULTS AND DISCUSSION 61
5.1 Introduction 61
5.2 Synthesis, Characterization and Properties of ZnO Nanoparticles 61
 5.2.1 X-Ray Diffraction Patterns of ZnO Nanoparticles 61
 5.2.2 SEM Images of ZnO Nanoparticles 65
 5.2.3 TEM Images of ZnO Nanoparticles 67
 5.2.4 FTIR Spectra of ZnO Nanoparticles 72
 5.2.5 EDX Spectrum of ZnO Nanoparticles 77
 5.2.6 UV-Vis Reflectance Spectra of ZnO Nanoparticles 78
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.7</td>
<td>Band Gap of ZnO Nanoparticles</td>
<td>78</td>
</tr>
<tr>
<td>5.2.8</td>
<td>PL Measurements of ZnO Nanoparticles</td>
<td>82</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Formation Mechanism of ZnO Nanoparticles</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Synthesis, Characterization and Properties of CdO Nanoparticles</td>
<td>88</td>
</tr>
<tr>
<td>5.3.1</td>
<td>X-Ray Diffraction Patterns of CdO Nanoparticles</td>
<td>88</td>
</tr>
<tr>
<td>5.3.2</td>
<td>SEM Images of CdO Nanoparticles</td>
<td>92</td>
</tr>
<tr>
<td>5.3.3</td>
<td>TEM Images of CdO Nanoparticles</td>
<td>94</td>
</tr>
<tr>
<td>5.3.4</td>
<td>FTIR Spectra of CdO Nanoparticles</td>
<td>99</td>
</tr>
<tr>
<td>5.3.5</td>
<td>EDX Spectrum of CdO Nanoparticles</td>
<td>104</td>
</tr>
<tr>
<td>5.3.6</td>
<td>UV-Vis Reflectance Spectra of CdO Nanoparticles</td>
<td>105</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Band Gap of CdO Nanoparticles</td>
<td>105</td>
</tr>
<tr>
<td>5.3.8</td>
<td>PL Measurements of CdO Nanoparticles</td>
<td>108</td>
</tr>
<tr>
<td>5.3.9</td>
<td>Formation Mechanism of CdO Nanoparticles</td>
<td>110</td>
</tr>
<tr>
<td>5.4</td>
<td>Synthesis, Characterization and Properties of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>112</td>
</tr>
<tr>
<td>5.4.1</td>
<td>X-Ray Diffraction Patterns of Binary (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>112</td>
</tr>
<tr>
<td>5.4.2</td>
<td>SEM Images of Binary (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>113</td>
</tr>
<tr>
<td>5.4.3</td>
<td>TEM Images of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>117</td>
</tr>
<tr>
<td>5.4.4</td>
<td>FTIR Spectra of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>122</td>
</tr>
<tr>
<td>5.4.5</td>
<td>EDX Spectrum of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>123</td>
</tr>
<tr>
<td>5.4.6</td>
<td>UV-Vis Reflectance Spectra of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>124</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Band Gap of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>125</td>
</tr>
<tr>
<td>5.4.8</td>
<td>PL Measurements of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>129</td>
</tr>
<tr>
<td>5.4.9</td>
<td>Formation Mechanism of (ZnO)x(CdO)${1-x}$ Nanostructures</td>
<td>131</td>
</tr>
<tr>
<td>5.5</td>
<td>Thermal Analysis</td>
<td>132</td>
</tr>
<tr>
<td>5.5.1</td>
<td>TGA-DTG Measurements For PVP</td>
<td>132</td>
</tr>
<tr>
<td>5.5.2</td>
<td>TGA-DTG Measurements For Bimetal Nitrate With PVP</td>
<td>133</td>
</tr>
</tbody>
</table>

6 CONCLUSION AND FUTURE WORKS

6.1 Conclusion

6.2 Future works

REFERENCES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Summary of different methods and materials used to synthesize of ZnO and CdO nanoparticles</td>
<td>19</td>
</tr>
<tr>
<td>5.1: XRD results for ZnO nanoparticles at different concentrations of PVP and calcination temperatures</td>
<td>65</td>
</tr>
<tr>
<td>5.2: TEM results for ZnO nanoparticles at different concentrations of PVP and different calcinations</td>
<td>72</td>
</tr>
<tr>
<td>5.3: Frequencies and their assignments for IR spectra for concentrations 0.00g/ml of PVP and ZnO nanoparticles</td>
<td>74</td>
</tr>
<tr>
<td>5.4: Frequencies and their assignments for IR spectra for concentrations of PVP and ZnO nanoparticles</td>
<td>77</td>
</tr>
<tr>
<td>5.5: The values of energy gap of ZnO nanoparticles powder at different calcination temperatures and different concentrations of PVP.</td>
<td>82</td>
</tr>
<tr>
<td>5.6: The intensities of ZnO nanoparticles powder at different calcination temperatures and different concentrations of PVP.</td>
<td>85</td>
</tr>
<tr>
<td>5.7: XRD results for CdO nanoparticles at different concentrations of PVP and different calcinations</td>
<td>92</td>
</tr>
<tr>
<td>5.8: TEM results for CdO nanoparticles at different concentrations of PVP and different calcinations</td>
<td>99</td>
</tr>
<tr>
<td>5.9: Frequencies and their assignments for IR spectra for concentrations 0.00g/ml of PVP and CdO nanoparticles</td>
<td>101</td>
</tr>
<tr>
<td>5.10: Frequencies and their assignments for IR spectra for concentrations of PVP and CdO nanoparticles</td>
<td>104</td>
</tr>
<tr>
<td>5.11: The values of energy gap of CdO nanoparticles powder at different calcination temperatures and different concentration of PVP.</td>
<td>108</td>
</tr>
<tr>
<td>5.12: The intensities of CdO nanoparticles powder at different calcination temperatures and different concentration of PVP.</td>
<td>110</td>
</tr>
<tr>
<td>5.13: TEM results for binary (ZnO)ₓ(CdO)ₙ₋ₓ nanosheets at different concentrations of PVP and different calcinations</td>
<td>122</td>
</tr>
<tr>
<td>5.14: Frequencies and their assignments for IR spectra for of and (ZnO)₀.₄(CdO)₀.₆ nanoparticles</td>
<td>123</td>
</tr>
<tr>
<td>5.15: EDX spectra showing the atomic percentages of Zn, Cd, and oxygen species in four positions</td>
<td>124</td>
</tr>
<tr>
<td>5.16: The values of energy gap of (ZnO)ₓ(CdO)₁₋ₓ nanosheets powder</td>
<td>128</td>
</tr>
</tbody>
</table>
5.17: The intensities values of (ZnO)$_x$ (CdO)$_{1-x}$ nanosheets
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Comparison of different electronic band structures of metal, semiconductor and insulator. Eg represents the band gap energy. The boxes represent VB (blue) or CB (red) and green region represents electron occupied states and the white (uncolored) region represents unoccupied states.</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of direct band gap (left) and indirect (right) band gap structures. Eg is the band gap energy. The dotted vertical arrow indicates electronic transition that is not allowed by dipole but can be allowed with phonon assistance.</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic illustration of the quantum size confinement effect. As the size increases the energy level spacing decreases.</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Decreasing the nanocrystal diameter increases the separation between states. (a) Blue-shift in the absorption edge and a larger separation between electronic transitions for a homologous size series of CdSe nanocrystal dispersions, collected at room temperature. (b) Observation of discrete electronic transitions in optical absorption as a measure of spectroscopic information that can be uncovered in monodisperse NC samples (σ ≤ 5%) (Murray et al., 2000).</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Illustration of change in DOE as a function of physical dimension of the system, from 3D (bulk) to 2D, 1D, and 0D.</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>UV-vis spectra of three different Fe₂O₃ nanorod samples (S1, S2 and S3). The diameter/length of nanorods are (in nm): 20–30/40–50 for S1, 20–30/400–500 for S2, and 30–40/700–800 for S3, respectively (Zeng et al., 2007).</td>
<td>39</td>
</tr>
<tr>
<td>3.7</td>
<td>UV-vis absorption spectra of ZnO quantum dots (curve a) and nanorods (curve b). Inset: transmission spectrum of ITO (indium tin oxide), a common semiconductor substrate for different devices (Yanhong et al., 2004).</td>
<td>40</td>
</tr>
<tr>
<td>3.8</td>
<td>Absorption spectra of TiO₂ nanoparticles in ethanol with different water concentrations. From bottom to top the concentrations of water are 0%, 0.33%, 0.66% and 1%. (Martini et al., 1998).</td>
<td>40</td>
</tr>
<tr>
<td>3.9</td>
<td>UV-vis electronic absorption spectra of nanostructured WO₃ films with different thickness (Wang et al., 2000).</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>UV-vis-NIR absorption spectra of a SnO₂ colloid after autoclavage for 3 h at 270°C under Ar/H₂ and subsequent exposure to air for the indicated periods of time. The spectra have been acquired in 1-mm cuvettes (Nütz and Haase, 2000).</td>
<td>42</td>
</tr>
</tbody>
</table>
3.11: Temperature dependence of PL spectra of ZnO nanorods fabricated by MOCVD on sapphire substrates with 325 nm excitation at two different excitation densities (54 and 1 kW/cm² for solid and dotted spectra, respectively). Each spectrum was normalized by its maximum peak intensity. Downward arrows indicate positions of eA₀ and X at 300 K. DAP, M, D₀X and X represent donor–acceptor–pair, biexcitons, neutral donor-bound excitons and free excitons, respectively (Zhang et al., 2004).

3.12: Absorption and fluorescence spectra of different-size TiO₂ nanoparticles: (a) specimen A (average particle diameter 2R = 2.1 nm), (b) specimen B (2R = 13.3 nm), and (c) specimen C (2R = 26.7 nm). TiO₂ loading, 0.015 g L⁻¹ for (a, b) and 0.3 g L⁻¹ for (c); pH 2.7 in all cases; excitation wavelength 270 nm (indicated by downward pointing arrow) (Serpone et al., 1995).

3.13: Short energy level diagram illustrating the relative energy levels in TiO₂ as calculated by Daude et al. (Daude et al., 1977) The arrows indicate a few of the allowed direct and indirect transitions. The level X₂a positioned at zero energy for the sake of simplicity. X denotes the edge and Γ the center of the Brillouin zone (BZ). (Serpone et al., 1995)

3.14: (a) Raman spectra along the diameter of the irradiated area of ZnO nanorods every 0.5 μm; the insert shows the origin of the relative position of the ablated area. (b) Raman spectra of the side and center (inset) of the sample(Guo et al., 2007).

4.1: Flowchart of the synthesis of metal oxide by thermal treatment method

4.2: Schematic diagram of the TGA instrument

4.3: A schematic diagram of a dispersive infrared spectrometer (Pavia et al., 2001)

4.4: Schematic diagram of energy dispersive X-ray spectrometry and its associated electronics.

4.5: Schematic diagram of X-ray Diffractometer.

4.6: Schematic diagram of TEM

4.7: Schematic diagram of SEM

4.8: Schematic diagram for the principle of UV-visible spectroscopy and steps of taking the spectra.

4.9: Typical experimental set-up for PL measurements
5.1: XRD patterns of zinc oxide nanoparticles at different calcined temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C without using PVP.

5.2: XRD patterns of zinc oxide nanoparticles with different calcined temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C at 0.03g/ml of PVP.

5.3: XRD patterns of ZnO nanoparticles at different calcination temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C at 0.05g/ml of PVP.

5.4: XRD patterns of ZnO nanoparticles at different calcination temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C at 0.04g/ml of PVP.

5.5: SEM images of ZnO at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650°C at 0.00g/ml of PVP.

5.6: SEM images of ZnO nanosheets at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.04g/ml of PVP.

5.7: TEM images and particle size distribution of ZnO nanoparticles at calcination temperatures of (a) 500 and (b) 650 °C at 0g PVP.

5.8: TEM images and particle size distribution of ZnO nanoparticles at calcination temperatures of 500, 550, 600 and 650 °C at 0.03g PVP.

5.9: TEM images and particle size distribution of ZnO nanoparticles at calcination temperatures of 500, 550, 600 and 650 °C at 0.04g/ml PVP.

5.10: TEM images and particle size distribution of ZnO nanoparticles at calcination temperatures of 500, 550, 600 and 650 °C at 0.05g/ml PVP.

5.11: FTIR spectra of (a) 0.00 g/ml of PVP and ZnO nanoparticles at (a) 30, (b) 500 °C (c) 550, (d) 600 °C and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.12: FTIR spectra of (a) 0.03g/ml of PVP and ZnO nanoparticles at (b) 500, (c) 550 °C (d) 600 °C and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.13: FTIR spectra of (a) 0.04g/ml of PVP and ZnO nanoparticles at (b) 500, (c) 550 °C (d) 600 °C and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.14: FTIR spectra of (a) 0.05g/ml of PVP and ZnO nanoparticles at (b) 500, (c) 550 °C (d) 600 °C and (e) 650 °C in the range of 280-4500 cm⁻¹.
5.15 Shows the EDX spectrum of the ZnO nanoparticles calcined at 600 °C.

5.16: Diffuse Reflectance of ZnO nanoparticles calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C

5.17: Kubelka-Munk transformed reflectance spectra of the band gaps of ZnO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.03 g/ml of PVP.

5.18: Kubelka-Munk transformed reflectance spectra of the band gaps of ZnO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04 g/ml of PVP.

5.19: Kubelka-Munk transformed reflectance spectra of the band gaps of ZnO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.05 g/ml of PVP.

5.20: PL spectra of the ZnO nanoparticles calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C in different concentration (a) for 0.03, (b) 0.04 and (c) 0.05 g/ml PVP.

5.21: Possible photoluminescence emission of a typical MX semiconductor

5.22: A proposed mechanism of the interaction between metallic ions and PVP

5.23: XRD patterns of cadmium oxide nanoparticles at different calcined temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C without using PVP.

5.24: XRD patterns of cadmium oxide nanoparticles with different calcined temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C at 0.03 g/ml PVP

5.25: XRD patterns of cadmium oxide nanoparticles with different calcined temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C at 0.04 g/ml PVP

5.26: XRD patterns of cadmium oxide nanoparticles with different calcined temperatures of (a) room temperature, (b) 500, (c) 550, (d) 600, and (e) 650 °C at 0.05 g/ml PVP

5.27: SEM images of CdO at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.00 g/ml of PVP.

5.28: SEM images of CdO nanoparticles at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.04 g/ml of PVP.

5.29: TEM images and particle size distribution of CdO nanoparticles at calcination temperatures of (a) 500 and (b) 650 °C at 0 g PVP
5.30: TEM images and particle size distribution of CdO nanoparticles at calcination of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.03g/ml PVP.

5.31: TEM images and particle size distribution of CdO nanoparticles at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.03g/ml PVP.

5.32: TEM images and particle size distribution of CdO nanoparticles at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C.

5.33: FTIR spectra of (a) 0.00g/ml of PVP and CdO nanoparticles at (a)30, (b) 500 oC (c) 550, (d) 600 oC and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.34: FTIR spectra of (a) 0.03g/ml of PVP and CdO nanoparticles at (b) 500, (c) 550 °C (d) 600 °C and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.35: FTIR spectra of (a) 0.04g/ml of PVP and CdO nanoparticles at (b) 500, (c) 550 oC (d) 600 oC and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.36: FTIR spectra of (a) 0.05g/ml of PVP and CdO nanoparticles at (b) 500, (c) 550 °C (d) 600 °C and (e) 650 °C in the range of 280-4500 cm⁻¹.

5.37 Shows the EDX spectrum of the CdO nanoparticles clacined at 600 °C.

5.38: The reflectance spectra of CdO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C.

5.39: Kubelka-Munk transformed reflectance spectra of the band gaps of CdO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.03g/ml of PVP.

5.40: Kubelka-Munk transformed reflectance spectra of the band gaps of CdO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04g/ml of PVP.

5.41: Kubelka-Munk transformed reflectance spectra of the band gaps of CdO nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.05g/ml of PVP.

5.42: PL spectra of the CdO nanoparticles calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C in different concentration (a) for 0.03, (b) 0.04 and (c) 0.05 g/ml PVP.

5.43: A proposed mechanism of the interaction between metallic ions and PVP.
5.44: XRD patterns of binary (ZnO)\textsubscript{x} (CdO)\textsubscript{1-x} nanosheets with different calcined temperatures at (a) 500, (d) 500, (c) 550, (d) 600, (e) 650 °C and (f) 500 °C at 0.04g/ml of PVP.

5.45: SEM images of (ZnO)\textsubscript{0.8}(CdO)\textsubscript{0.2} nanosheets at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.04g/ml of PVP.

5.46: SEM images of (ZnO)\textsubscript{0.6}(CdO)\textsubscript{0.4} nanoparticles at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.04g/ml of PVP.

5.47: SEM images of (ZnO)\textsubscript{0.4}(CdO)\textsubscript{0.6} nanoparticles at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.04g/ml of PVP.

5.48: SEM images of (ZnO)\textsubscript{0.2}(CdO)\textsubscript{0.8} nanosheets at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C at 0.04g/ml of PVP.

5.49: TEM images and particle size distribution of (ZnO)\textsubscript{0.8}(CdO)\textsubscript{0.2} nanoparticles at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C.

5.50: TEM images and particle size distribution of (ZnO)\textsubscript{0.6}(CdO)\textsubscript{0.4} nanosheets at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C.

5.51: TEM images and particle size distribution of (ZnO)\textsubscript{0.4}(CdO)\textsubscript{0.6} nanosheets at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C.

5.52: TEM images and particle size distribution of (ZnO)\textsubscript{0.2}(CdO)\textsubscript{0.8} nanosheets at calcination temperatures of (a) 500 and (b) 550, (c) 600 and (d) 650 °C.

5.53: FTIR spectra of (a) 0.04g/ml of PVP and (ZnO)\textsubscript{0.4}(CdO)\textsubscript{0.6} nanoparticles at (b) 500, (c) 550 °C (d) 600 °C and (e) 650 °C in the range of 280-4500 cm-1.

5.54: Shows the EDX spectrum of the (ZnO)\textsubscript{x}(CdO)\textsubscript{1-x} nanosheets calcined at 500 °C.

5.55: The reflectance spectra of (ZnO)\textsubscript{x} (CdO)\textsubscript{1-x} nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04g/ml of PVP.

5.56: Kubelka-Munk transformed reflectance spectra of the band gaps of (ZnO)\textsubscript{0.8} (CdO)\textsubscript{0.2} nanoparticles calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04g/ml of PVP
5.57: Kubelka-Munk transformed reflectance spectra of the band gaps of \((\text{ZnO})_{0.6} (\text{CdO})_{0.4}\) nanosheets calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04g/ml of PVP127

5.58: Kubelka-Munk transformed reflectance spectra of the band gaps of \((\text{ZnO})_{0.4} (\text{CdO})_{0.6}\) nanosheets calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04g/ml of PVP127

5.59: Kubelka-Munk transformed reflectance spectra of the band gaps of \((\text{ZnO})_{0.2} (\text{CdO})_{0.8}\) nanosheets calcined at different temperatures (a) 500, (b) 550, (c) 600 and (c) 650 °C at 0.04g/ml of PVP128

5.60: PL spectra of the \((\text{ZnO})_{0.8} (\text{CdO})_{0.2}\) nanosheets calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C129

5.61: PL spectra of the \((\text{ZnO})_{0.8} (\text{CdO})_{0.4}\) nanosheets calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C130

5.62: PL spectra of the \((\text{ZnO})_{0.4} (\text{CdO})_{0.6}\) nanosheets calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C130

5.63: PL spectra of the \((\text{ZnO})_{0.2} (\text{CdO})_{0.8}\) nanosheets calcined at different temperatures. (a) 500 (b) 550 (c) 600 (d) 650 °C131

5.64: A proposed mechanism of the interaction between metallic ions and PVP for (a) \((\text{ZnO})_{0.2} (\text{CdO})_{0.8}\), (b) \((\text{ZnO})_{0.4} (\text{CdO})_{0.6}\), (c) \((\text{ZnO})_{0.6} (\text{CdO})_{0.4}\) and (d) \((\text{ZnO})_{0.8} (\text{CdO})_{0.2}\) nanosheets.132

5.65: Thermogravimetric (TG) and thermogravimetric derivative (DTG) curves PVP at a heating rate of 10 °C /min. ...133

5.66: Thermogravimetric Analysis (TGA) and thermogravimetric derivative (DTG) curves for zinc and cadmium nitrate with PVP at a heating rate of 10 °C /min.134
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>KM</td>
<td>Kubelka-Munk</td>
</tr>
<tr>
<td>DI</td>
<td>Deionize water</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volte</td>
</tr>
<tr>
<td>θ</td>
<td>Bragg angle</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>E_g</td>
<td>Optical band gap</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celsius</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>d</td>
<td>Distance</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>T</td>
<td>Transmittance</td>
</tr>
<tr>
<td>λν</td>
<td>Energy</td>
</tr>
<tr>
<td>β</td>
<td>FWHM</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>CdO</td>
<td>Cadmium oxide</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet-visible absorption spectroscopy</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>a</td>
<td>Lattice parameter</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-Ray</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transforms infrared spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo gravimetric analysis</td>
</tr>
<tr>
<td>PVP</td>
<td>Poly (vinyl pyrrolidone)</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

1.1 Background of Study

Nanoscience has started when Herman Staudinger developed the concept of macromolecules during 1920s and later he received the Nobel Prize in 1953. Nanoparticles have long history of usage in pottery and medicine since ancient days. Historical evidences show that gold nanoparticles were used as drug by Chinese during 2500 BC. Red colloidal gold is still in use under the name of Swarna Bhasma and Makaradhwaja” in traditional medicine system of India called Ayurveda, which dates back to 1st millennium BC (Bhattacharya and Mukherjee, 2008). Recent scientific study of a vessel of Roman period (4th century AD) called “Lycurgus Cup,” kept in British Museum London, shows the use of nanoparticles of Gold-Silver alloy for its decoration (Freestone et al., 2007). Similarly, churches of Middle Ages used gold in colloidal state trapped within the matrix of glass to make aesthetically pleasant ruby coloured glasses of different hues and colours (due to the formation of nanoparticle of different sizes). In 16th Century Europe an aqueous form of colloidal gold called “Aurum Potabile (drinkable gold)” was thought to have curative properties for many diseases (Caseri, 2000). In 1857 Michael Faraday described methods for synthesis of stable aqueous dispersions and optical properties of gold nanoparticles (Faraday, 1857). In 1915, in his famous book “The World of Neglected Dimensions”, Wolfgang Ostwald recognized colloidal particles as unique state of matter, whose particles “are so small that they can no longer be recognized microscopically, while they are still too large to be called molecules.” However the credit of realizing the enormous potential of nanoparticles and their possible implications in different fields is given to Richard P. Feynman. In his classical lecture in 1959 at California Institute of Technology (Caltech) during Annual meeting of the American Physical Society Feynman has stated: “...........I would like to describe a field, in which little has been done, but in which an enormous amount can be done in principle. This field is not quite the same as the others in that it will not tell us much of fundamental physics (in the sense of, what are the strange particles?)......

Nanoscience is a multi-discipline field of science that has been drastically expanding since 1980s (Nalwa, 2004). Nanoscience surmount with numerous essential issues, in which many of them having potential technological applications. Putting the nanoscience into applications is described as nanotechnology. The main research areas of nanotechnology include among others physics, chemistry, materials science, biology, medicine, bioengineering, agriculture and the environmental science. Nanoscience involves a variety of submicron size materials, which are described as nanoparticles. Nanoparticles are particles with one or more dimensions at the order of 100 nm or less. It is a critical length scale at which certain novel nanosize acquires different properties compared to its molecules or bulk form. Besides “strictly nano” (1-100 nm) all submicron colloidal particles/mesoscale, i.e. particles with at least one dimension in the scale of 1-1000 nm, are referred to as nanoparticles as well, to
include organic polymers and vesicles widely used in the area of drug delivery (Uchegbu et al., 2013; Azarmi et al., 2006; Kreuter, 2007).

Metal oxide semiconductor nanoparticles possess unique morphological, structural, and optical properties at nanoscale. With a decrease in particle size, a remarkable high surface area to volume ratio is inevitable, leading to an even distribution of the particles and increase in surface active sites for chemical reactions to enhance the reaction and absorption efficiency. The enhanced surface area also increases the surface states, which changes the activity of charge carries and affects the chemical reaction dynamics. Moreover the decrease of particle size resulted in quantum size effect because of the confinement of charge carries especially the electrons. The quantum size effect splits both conduction and valence bands into discrete electronic states which influence the optical and electronic properties of the nanoparticles.

At present, ZnO and CdO semiconductor nanoparticles are regarded as two of the most important inorganic semiconductor nanomaterials because of their n-type conductivity with a wide band gap (3.3 eV and 2.2 eV respectively) which make these materials more suitable for modern technologies. ZnO and CdO have promising applications in catalysts (Elseviers and Verelst, 1999; Abd El-Salaam and Hassan, 1982), gas sensors (Mochinaga et al., 1998, Shchukin et al., 2001), and solar cells (Mane et al., 2006, Gal et al., 2000; Cai et al., 2010). Binary oxide of \((\text{ZnO})_x(\text{CdO})_{1-x}\) nanoparticles have display hexagonal and face-centered-cubic (fcc) structures respectively (Yousef et al., 2012). The present of binary oxide \((\text{ZnO})_x(\text{CdO})_{1-x}\) semiconductor nanoparticles could improve further their optical performance, excellent chemical stability, and mechanical hardness, which are good contender for optoelectronic, photocatalytic, and solar cell applications.

1.2 Problem Statement

In the past decade, nanoscale research has opened revolutionary opportunities for a wide number of technological applications. Due to their special optical, magnetic, electrical and catalytic properties, and improved physical properties like mechanical hardness, thermal stability or chemical passivity (Feldmann and Jungk, 2001). Metal oxide nanoparticles and binary oxide nanoparticles are attracting significant interest due to their extensive applications, ranging from fundamental research to applications. For example, metal oxide nanostructures are extensively used as paint pigments, cosmetics, pharmaceuticals, medical diagnostics, catalysts and supports, membranes and filters, batteries and fuel cells, electronics, magnetic and optical devices, flat panel displays, biomaterials, structured materials and protective coatings (Holmberg et al., 2002).

Metal oxide nanostructures can be prepared using various methods, such as precipitation, solvothermal, hydrothermal, sol-gel, microemulsion, combustion, electrochemical, sonochemical etc but with some imperfections for example the need for catalyst, oxidizing or reducing agents and longer reaction times, high reaction temperatures, toxic reagents and by-products which are potentially harmful to the environment. It is worth noting that the application of CdO and ZnO nanoparticles and their optical properties depending on the preparation method used. In order to achieve materials that have the desired physical and chemical properties, the preparation of CdO and ZnO nanoparticles through different routes has become an
essential focus of the related research and development activities namely ZnO and CdO nanoparticles such as sol–gel method (Kaur et al., 2006; Zhang et al., 2006; Karami et al., 2010), microemulsion method (Dong and Zhu, 2003; Sarkar et al., 2011), precipitation method, thermal decomposition (Ristić et al., 2004), hydrothermal method (Zhang et al., 2008; Wang and Li, 2006), chemical coprecipitation method (Waghulade et al., 2007), thermal evaporation (Lu et al., 2008), etc. Most of these methods have achieved particles of the required sizes and shapes, but they are difficult to employ on powder form especially in CdO nanoparticles synthesized, high purity, a large scale because of their expensive and complicated procedures, high reaction temperatures, long reaction times, toxic reagents, and their potential harm to the environment. The thermal treatment method can be considered as one of the best methods in nanoparticles formation because it is fast and cheap, high purity and characterization of metal oxide nanoparticle can be improved.

1.3 Significant of The study

Metal oxide semiconductor nanoparticles and binary metal oxide semiconductor nanoparticles are attractive subjects of continuous scientific interest and have been deeply investigated in materials sciences, because of their physical-chemical properties and their wide range of applications as sensor, solar cell, semiconductors, magnetic materials, catalysts, super hard materials, high temperature ceramics, among others. In particular, ZnO and CdO nanoparticles and binary (ZnO)x(CdO)1-x nanosheets are commonly used as catalytic materials, sensors and solar cell.

In this study, the synthesis of ZnO and CdO nanoparticles and binary oxide (ZnO)x(CdO)1-x nanosheets by means of thermal treatment method from an aqueous solution containing metal nitrates, poly(vinyl pyrrolidone), and deionized water was described. The solution was dried at 80 °C for 24 h before grinding and calcination at temperatures ranging from 500 to 650 °C. This method has the advantages of simplicity, less expensive, no unwanted by-products, and it is environmentally friendly. Possibly this method is employable on a large scale production.

1.4 Scope of The present Study

The present research work is limited to the preparation of ZnO, CdO nanoparticles and binary (ZnO)x(CdO)1-x nanosheets using metal nitrate as precursor and PVP as capping material via thermal treatment route. Furthermore, the study involves the morphological, structural and optical characterization of the as-prepared nanomaterials.

1.5 Objectives of The study

The purpose of this work is to employ thermal treatment technique to synthesize ZnO, CdO nanoparticles and binary (ZnO)x(CdO)1-x semiconductor nanosheets in PVP as capping agent. The nanomaterials produced are expected to have improve physical and chemical properties. The objectives are further splitted as follow:

1. To produce high purity CdO and ZnO semiconductor nanoparticles and binary (ZnO)x (CdO)1-x semiconductor nanosheets via thermal-treatment method.
2. To study the influence of PVP concentration on the structural, morphological and optical properties of ZnO and CdO nanoparticles.
3. To investigate the influence of calcination temperature on the structural, morphological and optical properties of ZnO and CdO nanoparticles.
4. To investigate the influence of calcination temperature on the structural, morphological and optical properties of $(\text{ZnO})_x (\text{CdO})_{1-x}$ semiconductor nanosheets.

1.6 Outline of Thesis

This dissertation is structured as follow:
Chapter 1 presents the general introduction about the research background, scope, problem statement, significant of the study and objectives of the study. Chapter 2 reports the previous works carried out by other researchers including the current and past literatures in terms of the background materials and method, also includes the application of ZnO, CdO and $(\text{ZnO})_x (\text{CdO})_{1-x}$ nanomaterials. Chapter 3 provides theoretical background to the thesis, which includes the structural and optical properties of study. Chapter 4 discusses the methodology of the study, including materials and preparation of samples. This chapter also provides a set-up of the experimental apparatus such as TGA, FTIR, EDX, XRD, TEM, SEM, UV-Visible spectroscopy and PL. In Chapter 5, detailed results and discussion on characterization of metal and binary oxide nanomaterials by using the above mentioned microscopic and spectroscopy techniques were reported. Chapter 6 contains the conclusions of the study and suggestions for future works.
REFERENCES

Bhargava, Richa, Prashant K Sharma, Amit K Chawla, Sanjeev Kumar, Ramesh Chandra, Avinash C Pandey, and Naresh Kumar. 2011. "Variation in structural, optical and magnetic properties of Zn_{1-x}Cr_O (x= 0.0, 0.10, 0.15, and 0.20) nanoparticles: Role of dopant concentration on non-saturation of magnetization." *Materials Chemistry and Physics* 125 (3):664-671.

Chen, HC, MJ Chen, YH Huang, WC Sun, WC Li, JR Yang, H Kuan, and M Shiojiri. 2011. "White-light electroluminescence from n-ZnO/p-GaN..."

140

Sahai, Anshuman, and Navendu Goswami. 2014. "Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method." *Physica E: Low-dimensional Systems and Nanostructures* 58 (0):130-137.

Oxide (CdO) nanospheres by a microwave-assisted combustion method." Powder Technology 211 (2–3):250-255.

Yao, Mingshui, Fei Ding, Yuebin Cao, Peng Hu, Junmei Fan, Chen Lu, Fangli Yuan, Changyong Shi, and Yunfa Chen. 2014. "Sn doped ZnO layered porous nanocrystals with hierarchical structures and modified surfaces for gas sensors." *Sensors and Actuators B: Chemical* 201 (0):255-265.

Yousef, Ayman, Nasser A. M. Barakat, Salem S. Al-Deyab, R. Nirmala, Bishweshwar Pant, and Hak Yong Kim. 2012. "Encapsulation of CdO/ZnO Nanoparticles in PU electrospun nanofibers as novel strategy for effective..."
immobilization of the photocatalysts." Colloids and Surfaces A: Physicochemical and Engineering Aspects 401 (0):8-16.

