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In today’s world, every functional society depends on electricity. As electricity becomes 

essential in daily life, demand for sustainable energy increases. However, countries with 

low wind velocity like Malaysia are unable to use conventional wind turbine for energy 

extraction. This is due to the absence of high wind velocity required to generate high 

torque that will rotate the generator of the conventional wind turbine. To extract wind

energy from low wind velocity countries, Magnus wind turbine (MWT) that utilizes 

rotating cylinder was experimentally studied. MWT utilized rotating cylinder blades to 

harvest wind energy by generating Magnus force perpendicular to the incoming air. 

Furthermore, a simple surface roughness enhancement will increase the force generated 

from the rotating cylinder. One of the problems with MWT is that the effect from using 

enhancement of surface roughness on the rotating cylinder blades on Magnus force and 

torque generated has not been fully characterized and documented. The studies also 

included force balance for scaling effect on rotating cylinder size and the smoke flow 

visualization for visual inspection of boundary layer. Therefore, this research will 

provide valuable information regarding sanded surface roughness application on MWT 

through experimental study. The MWT and single rotating cylinder are designed and 

fabricated based on past researches and patents. All experiments were carried out in a 

wind tunnel. The proof on concept experiment showed that rotating cylinder produced 

higher lift force compared to the airfoil under similar condition. Next, force balance 

experiment demonstrated that as rotating cylinder scale increased, the Magnus force 

generated also significantly increased. The most significant finding is that the surface 

roughness enhancement increased the small scale rotating cylinder performance making 

it to be on par with large scale rotating cylinder. The smoke flow visualization 

experiment illustrated that by using surface roughness enhancement, the boundary layer 

separation point is further shifted upstream and since it opposed the incoming wind flow, 

pressure region and the Magnus force are also increased. Moreover, MWT model was 

subjected to smooth surface and eight types of surface roughness enhancement on the 

rotating cylinder blades. The result shows that as frequency of rotation cylinder blades 

and wind speed increased, depending on surface roughness enhancement used, the torque 

generated will increase. Furthermore, the result shows that minimum cut-in wind speed 
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is required to rotate the rotor as the velocity ratio and relative roughness increased. In 

summary, the outcome shows significant improvement of the effect of sanded surface 

roughness on the rotating cylinder blades. The sanded surface roughness produces five 

times higher torque coefficient and rate of change torque in comparison with smooth 

surface roughness. Hence, scientific community will gain the benefits of the effect on 

rotating cylinder with sanded surface roughness and will be able to use this data for future 

research.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah

KESAN KEKASARAN PADA SILINDER BERPUTAR DAN MAGNUS 
TURBIN ANGIN DALAM KEADAAN KELAJUAN ANGIN YANG RENDAH

Oleh

OMAR FARUQI BIN MARZUKI

Mei 2017

Pengerusi : Azmin Shakrine Bin Mohd Rafie, PhD
Fakulti : Kejuruteraan

Dalam dunia hari ini, setiap masyarakat berfungsi dengan bergantung kepada tenaga 

elektrik. Elektrik menjadi perkara penting dalam kehidupan seharian, permintaan untuk 

tenaga yang mampan meningkat. Walau bagaimanapun, negara-negara dengan halaju 

angin yang rendah seperti Malaysia tidak boleh menggunakan turbin angin konvensional 

untuk mengeluarkan tenaga daripada angin. Ini kerana kelajuan angin yang tinggi 

diperlukan untuk menghasilkan tork yang tinggi untuk memutarkan penjana turbin angin

konvensional. Oleh itu, untuk mendapatkan tenaga daripada halaju angin rendah, turbin 

angin yang berlainan perlu digunakan iaitu Magnus turbin angin (MWT) yang 

menggunakan silinder berputar untuk mengeluarkan tenaga daripada angin. MWT 

menggunakan bilah silinder berputar untuk menuai tenaga angin dengan daya Magnus 

dijana serenjang dengan udara yang masuk. Tambahan pula, peningkatan kekasaran pada 

permukaan boleh meningkatkan daya yang dijana dari silinder berputar. Salah satu 

masalah dengan MWT ialah kesan kekasaran permukaan pada bilah silinder berputar 

kepada tork dan lif daya yang dijana daripada menggunakan peningkatan tidak dicirikan 

sepenuhnya dan didokumentasikan. Kajian-kajian itu juga termasuk keseimbangan daya 

untuk kesan skala pada saiz silinder berputar dan visualisasi aliran asap untuk 

pemeriksaan visual lapisan sempadan. Oleh itu, kajian ini akan memberikan maklumat 

yang berharga mengenai kesan kekasaran permukaan kertas pasir pada MWT melalui 

kajian eksperimen. MWT dan silinder berputar tunggal direka and dibuat berdasarkan 

kajian lepas dan paten. Semua eksperimen telah dijalankan di dalam terowong angin. 

Bukti mengenai konsep menunjukkan bahawa silinder berputar menghasilkan daya 

angkat yang lebih tinggi berbanding dengan aerofoil dalam keadaan yang sama. 

Seterusnya, alat daya pemberat eksperimen menunjukkan bahawa apabila skala silinder 

berputar meningkat, daya Magnus yang dijana juga meningkat dengan ketara. Penemuan 

yang paling ketara ialah peningkatan kekasaran permukaan meningkatkan prestasi 

silinder berputar kecil setanding dengan silinder berputar berskala besar. Eksperimen 

visualisasi aliran asap menggambarkan bahawa dengan menggunakan peningkatan 

kekasaran permukaan, sempadan titik pemisahan lapisan beralih lanjut kehadapan dan 

menentang aliran angin datang, dengan itu ia meningkat rantau tekanan dan peningkatan 

daya Magnus. Kemudian MWT model yang dikenakan permukaan licin dan lapan jenis 
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peningkatan kekasaran permukaan pada bilah silinder berputar menunjukkan bahawa 

kekerapan bilah silinder putaran dan kelajuan angin meningkat, bergantung kepada 

tambahan kekasaran permukaan yang digunakan, tork yang dihasilkan akan lebih tinggi. 

Tambahan pula, kajian ini mendapati kelajuan angin masuk minimum yang diperlukan 

untuk rotor berputar berkurang kerana nisbah kelajuan dan kekasaran relatif meningkat. 

Ringkasnya, keputusan menunjukkan peningkatan yang ketara keatas kesan kekasaran 

permukaan yang dicampur dengan kertas pasir pada bilah silinder berputar. Kekasaran 

permukaan yang dicampur dengan pasir menghasilkan lima kali lebih tinggi dalam pekali 

tork dan kadar perubahan tork berbanding dengan kekasaran permukaan licin. Oleh itu, 

masyarakat saintifik akan mendapat manfaat daripada kesan ke atas silinder berputar 

dengan kekasaran permukaan yang dicampur dengan pasir dan akan dapat menggunakan 

data ini untuk penyelidikan masa depan.
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CHAPTER 1

INTRODUCTION

1.1 Backgrounds

Wind energy is one of the natural resources that naturally replenished and can be used 

repeatedly. To capitalize this renewable energy, wind turbine is developed for 

harvesting the wind energy. Furthermore, wind turbine is a green energy and one of the 

sustainable energy that can fulfil current and future generation’s needs (Brundtland, 

1987).

Currently conventional wind turbine is dominated by horizontal axis wind turbine used 

airfoils shape blades for wind harvesting energy in high wind speed conditions. 

Conventional wind turbine required minimum wind speed of 4 meters per second (m/s) 

to generate minimal lift and wind speed of 16 m/s to generate optimum lift (Balat, 

2009). Thus, an innovative type of wind turbine invention is requiring to harvest wind 

energy at lower wind speed. There are several types wind turbines that can harvest wind 

energy at lower wind speed, one of the known type wind turbine is Magnus wind turbine 

prototypes (Bychkov et al., 2007).

Magnus wind turbine utilizing Magnus force generated from a rotating cylinder. Figure 

1.1 shows the Magnus force is perpendicular to the incoming air. Due to Magnus force 

effect, Magnus wind turbine (MWT) can operate under lowest wind speed condition 

and preferable under 8 m/s (Bychkov et al., 2007).

Figure 1.1: Magnus force on the rotating cylinder (Sedaghat et al., 2015).

A simple application of Magnus force used in daily life is in sport that utilizing sphere 

shape balls (Mehta and Pallis, 2001). One of it is football sport, where the player 

controls the spin on ball so that it curves during the ball travels. Figure 1.2 shows 

comparison between balls travelled direction. The no spin ball in the centre is not 

Wind 
Direction

Magnus Force Direction

Cylinder 
Rotation 
Direction
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effected by the Magnus force, as wind flow on all side is the similar. Whereas, both 

spinning balls on the sides are curves due to Magnus force. 

Figure 1.2: Curve ball effected from Magnus Force (Seifert, 2012a).

The significant different of MWT compared to conventional wind turbine is that blades 

that used to harvest wind energy. Furthermore, to increase the performance of MWT, 

innovative design of the rotating cylinder was developed. Several researcher used 

rotating cylinder with fin showed promising results improving lift and torque of MWT 

(Jinbo, Ceretta Moreira, et al., 2014; Murakami, 2010). Figure 1.3 shows the MWT 

prototype developed by Japan utilizing spiral fins that coiled around the rotating 

cylinder blades. Nonetheless, cylinder with spiral fins will increase the complexity of 

the cylinder blades design.

Figure 1.3: Spiral Magnus wind turbine prototype (MECARO Co. Ltd, 2007).

Moreover, there are several ways to further enhanced Magnus force, for example, by

adding plate to the end of cylinder and by adding airfoil fins to the surface of cylinder 

(Brooks, 1963; Modi et al., 1998; Seifert, 2012a; Takayama and Aoki, 2005; Thom, 

Magnus Force

Magnus Force

Balls travel direction
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1934; Thom and Sengupta, 1932). By using simple innovative approach of sanded

surface roughness enhancement. The effect of surface roughness on the rotating 

cylinder can be demonstrated by the increase in lift coefficient and torque as compared

to the smooth surface cylinder (Seifert, 2012b). However, the study on sanded surface 

roughness enhancement is lacking in boundary layer evaluation (Lopez et al., 2015).

Whereas, researchers (Marzabadi, 2012; Marzabadi and Soltani, 2013; Soltani et al., 

2011) found that airfoil with sanded surface roughness enhancement reduced its overall 

performance due to the influence of boundary layer transition, thus causing early 

turbulence on the airfoil. In addition, researchers (Takayama and Aoki, 2005) shows 

that boundary layer separation point played an important role in improving rotating 

cylinder performance as the groove roughness varies on the cylinder surface. Thus, the 

sanded surface roughness enhancement performance and its effect on the boundary 

layer is yet to be clearly justified by past researchers.

Nevertheless, there are still lacking in data to support the advantage of surface 

roughness enhancement (Giudice and La Rosa, 2009; Sedaghat, 2014). Hence, the 

study in surface roughness is very important in proving significant improvement in 

MWT performance with different types sanded surface roughness characteristic are 

achieved. Thus, this study chooses a simple approach in improving Magnus force by 

using sanded surface roughness on the cylinder surface to avoid in weight and 

complexity in design. It is vitally important to do experiment research, as there is still 

gap of knowledge in MWT and enhancement effect of surface roughness. Finally, the 

study utilized six-component balance and smoke flow visualization to further analysis 

the effect of sanded surface roughness. In addition, the study will produce a function

MWT model that can operate under control environment to fulfil the knowledge gaps.

Therefore, this research is hope to shed light on the effect of surface roughness on 

rotating cylinder and MWT in low wind speed conditions.    

In conclusion, six-component balance is used to observe the lift force generated from 

the vertical-axis single rotating cylinder with different size scales at wind speed 5 m/s.

Next, the smoke flow visualization experiment focus on visual analysis to determine 

the boundary layer separation point on the horizontal-axis single rotating cylinder with 

selected type of sanded surface roughness enhancement. Finally, the research focus on 

the improvement torque generated from the MWT model with different type of sanded 

surface roughness enhancement and the cut-in wind speed. The cut-in wind speed is the 

lowest wind speed required for the rotor of wind turbine to start rotate.

1.2 Problems Statement

Current state of world technology is going towards renewable and sustainable energy. 

Wind is one of the green energy that continues to naturally replenish and is sustainable 

as it is produced from temperature difference due to uneven heating of Earth’s surface

by the sun. Unfortunately, Malaysia is one of the countries with low wind speed at an

average 2 m/s to 3 m/s, whereas current conventional wind turbine requires optimum 

wind speed of 11 to 16 m/s to operate efficiently. As of current trend, conventional 

wind turbine is being developed for countries with high wind speed. Hence, the wind 

turbine with airfoil shaped blades technology is more developed and matured. Thus, to 
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overcome low wind speed problem, an innovative wind turbine technology was

invented by utilizing Magnus effect. This technology is known as Magnus wind turbine 

that uses rotating cylinder as blades. The rotating cylinder is known to produce more 

lift force compared to the airfoil shaped blades under similar wind speed condition.

However, the main problem of rotating cylinder application is limited information and 

experimental research on the subject (Sedaghat et al., 2014; Seifert, 2012a). Firstly, the 

conundrums arising from this lack of information and research would be the scaling 

effect and the effect of sanded surface roughness enhancement on the Magnus force. 

Under similar wind speed condition, there is a knowledge gap between rotating cylinder 

with sanded surface roughness enhancement and smooth surface rotating cylinder with 

different scale model sizes. This investigation is important to establish whether sanded 

surface roughness enhancement can improve the Magnus force compared to when using 

larger cylinder scales. Secondly, there is a gap in the visualization of boundary layer 

separation point effect on the rotating cylinder with surface roughness enhancement.

This observation is critical in order to understand whether the separation point will be 

earlier or delayed as it will influence the pressure region on the rotating cylinder. Lastly,

the application of sanded surface roughness enhancement on the MWT have yet to be

explored. Several types of sanded surface roughness are selected to be further 

investigated for its effect on the torque performance of MWT. This study is important 

to establish the minimum wind speed required to operate the MWT as the type of 

sanded surface roughness used varies.

1.3 Research Objectives

The objective of this study is to experimentally investigate the effects of sanded surface 

roughness on rotating cylinder blades of MWT in low wind speed condition. It

comprises of four sub-objectives, which are:

i. To proof the concept of MWT by comparing rotating cylinder with airfoil 

shaped blades under low wind speed conditions and comparing MWT model 

with previous past experiment,

ii. To evaluate the performance of vertical-axis single rotating cylinder with 

varying scale model sizes and the boundary layer effect on the horizontal-axis 

single rotating cylinder with different type of sanded surface roughness using 

smoke flow visualization, 

iii. To design MWT model, horizontal-axis single rotating cylinder, and vertical-

axis single rotating cylinder with different sizes,

iv. To improve the performance of MWT model with different types of surface 

roughness based on its’ velocity ratio, Reynold numbers, tip speed ratio and 

torque coefficient.

1.4 Scopes of Study

The limitation of the research is the models size. The MWT and scale-up rotating 

cylinder models are constrained by the wind tunnel test section size with height of 1 m 

and width of 1 m. The wind speed is limited by the wind tunnel capability. Maximum 

wind speed for open-loop wind tunnel is 40 m/s and for closed-loop wind tunnel is 50 

m/s. The wind speed is measured by anemometer and wind tunnel build-in sensor. 
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Only one selected sizes of rotating cylinder, cambered airfoil and symmetrical airfoil 

with similar dimension scaled are used to compare the lift coefficient performance. The 

Reynolds number range is 12 x 103 to 103 x 103.    

The sanded surface roughness with different relative roughness are selected from the 

market availability of commercial type sandpapers. Eight types sanded surface 

roughness are selected based of Federation of European Producers of Abrasives 

(FEPA). The sandpapers standard are P40, P60, P80, P100, P400, P600, P800 and 

P1000.

The scale-up models size are constrained to test section height as the model attached 

vertically on six-component balance for measuring Magnus force. The selected wind

speed is at 5 m/s to simulate low wind speed condition due to limitation of equipment.

Six cylinder size selected based on the aspect ratio of 7.292 due to wind tunnel test 

section constrain. The size from smaller scaled cylinder gradually increased by 1.23 

times, 1.85 times, 2.31 times, 3.19 times and finally 4.23 times. The maximum rotation 

for motor is 5051 rpm except as the cylinder size increased and the weight further 

increased. Thus, reduced the capability of the motor to cylinder sizes 3.19 times and 

4.23 times to nearly 3052 rpm. The vibration when the cylinder rotating is solved by 

using support structured that hold the cylinder end, thus stabilizer the rotating cylinder. 

For rotating cylinder scaled size Reynolds number is 9 x 103 to 38 x 103, whereas for

sanded surface roughness enhancement comparison Reynolds number is 9 x 103 to 21 

x 103.

The smoke flow visualization is used on selected surface roughness enhancement P800, 

P100, P80 and smooth surface. The visualization of boundary layer is only focusing on 

the top side cylinder due separation point between cylinder surface and incoming wind. 

The Reynolds number range is 197 x 103 to 314 x 103.

Finally, the MWT model research is focusing only on torque performance with different 

velocity ratio, Reynolds number and tips speed ratio by using different types of sanded 

surface roughness. The rotating cylinder blades can only rotates up to 1000 rpm. Above 

1000 rpm, the blades will vibrate due to only one side of the rotating cylinder blades 

are being hold by the hub. Power usage to rotate the cylinder blades is below 30 W.

However, the study is only focusing on the improvement of sanded surface roughness 

enhancement toward torque performance. The Reynolds number range is 54 x 103 to 

108 x 103.

1.5 Outlines of the Thesis

The thesis outlines have five chapters. The chapters are categorize as following, 

Chapter 1 Introduction, Chapter 2 Literature Review, Chapter 3 Methodology, Chapter 
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4 Results and Discussions, and finally, Chapter 5 Conclusions and Recommendations. 

The details of chapters contain are described as below.

Chapter 1 briefly introduced the backgrounds of study focus, motivation, problem 

statement, objective to achieve in this study, and finally scopes of study.

Chapter 2 is review on all the information and knowledge regarding to the study focus 

to fully explored and deepen the understanding in the applications of MWT, the field 

of Magnus forces, and surface roughness effect. Moreover, theory for single rotating 

cylinder and MWT are also included in this chapter.

Chapter 3 is methodology approach used to achieve the experiment and its touch 

regarding procedures and apparatus used in the study in order to accomplish the target 

objective and results. Design, fabrication, and assembly of MWT model and single 

rotating cylinder are discussed.

Chapter 4 presented the results attained during experimental study and discussed to help

in understanding the study objectives. The study results are related to past research 

findings for further understanding.

Chapter 5 is the summary of the study, the findings conclusions, contribution of the 

study, and finally, the recommendation for future study are suggested. 
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