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Irrigation is the major user of total water use in Malaysia for production of rice, its 

staple food, and therefore knowledge on future changes in irrigation demands due to 

climate change is critical for managing water allocations. General Circulation Models 

(GCMs) suggest that increase in emission of greenhouse gases will have significant 

implications on a number of hydrological processes at local scale including future 

streamflow fluctuations and evapotranspiration. These issues need to be quantified and 

accounted in future irrigation allocation and planning. The present thesis describes the 

development of a decision support system (DSS) tool for modelling water allocations 

in a local rice irrigation scheme under climate scenarios. The DSS is developed with 

climate outputs from GCMs, hydrological data, irrigation canal data and crop data. 

Four basic modules; Stochastic Rainfall Generator, Reference Evapotranspiration, 

Water Demand and Water Allocation Modules were developed and integrated in the 

MATALAB graphical user interface.

Future climate scenarios for the study area were extracted from ten global climate 

models (GCMs) under three Representative Concentration Pathways (RCPs) scenarios 

(RCP4.5, RCP6.0 and RCP8.5) obtained from the Program for Climate Model 

Diagnosis and Inter-comparison (PCMDI). Future projections of multi-GCMs in 

Upper Bernam River basin have shown that temperature will increase under scenarios, 

with the largest changes during the dry season months (February–June). Projected 

increase in maximum temperature ranges from 0.7–1.6 °C, 0.5–1.9 °C and 0.8–3.3 °C, 

under RCP4.5, RCP6.0 and RCP8.5, respectively. Rainfall projections showed 

variation between the two cropping seasons. The RCP4.5, 6.0 and 8.5 respectively 

projected average changes of –2.4%, –3.2% and –3.7% for the dry season months, and 

1.0%, 0.8% and 2.4% for the wet season months. The results showed the watershed 

will likely experience warmer periods accompanied by dry climate during dry season 

months.



© C
OP

UPM

ii

The impact of climate change on the flows of the Upper Bernam River Basin was 

studied using the SWAT hydrological model. The model was evaluated using 25 years 

of records (1981-2005). Results of the coefficient of determination, (R2), Nasch-

Sutcliff, (NSE) and Percent Bias, (PBIAS) were 0.67, 0.62 and -9.4 during calibration 

period, and 0.62, 0.61 and -4.2 during validation period. Future streamflow projections 

with the validated SWAT model showed that during the dry season months, annual 

streamflow is likely to decrease by up to (−6.6%) by the late century (2080s). 

Streamflow is predicted to increase by up to 11.4% in the same future period during 

the wet season.  On the basis of these results, it can be inferred that the water resource 

of the Bernam River Basin could be sufficient up to the end of the century. However, 

these results also highlight some potential risk that climate change could impose on 

rice production during future dry season months. This requires integrated water 

management solutions to ensure sustainable rice production.  

A user-friendly climate-smart decision support system (CSDSS) model was developed 

for modeling irrigation water allocation in Tanjung Karang Rice Irrigation Scheme 

(TAKRIS) under climate change scenarios. First, climate scenarios are downscaled 

within the system by perturbing observed series using change factors derived from 

GCMs outputs. The FAO-56 Penman-Monteith model was used for estimating 

reference evapotranspiration under future forcing. A stochastic rainfall model was 

adopted to simulate future rainfall series using the first-order two states Markov Chain 

Approach based on future emission scenario forcing. Then water demand model was 

developed from reference evapotranspiration and crop coefficient. Generated 

irrigation water requirements are converted into irrigation deliveries based on canal 

command area. The model is capable of generating several realizations of irrigation 

deliveries using individual GCMs and/or multi-models (ensemble) projections. The 

model was evaluated for irrigation deliveries at the study area using one year water 

supply data. The analyses showed that the average weekly irrigation supplies for 

measured supplies (without climate change) and simulated supplies (with climate 

change) under RCP4.5, RCP6.0 and RCP8.5 scenarios were respectively, 2.69 m3/s, 

2.00 m3/s, 2.19 m3/s and 1.94 m3/s during off-season, and 2.55 m3/s, 1.47 m3/s, 1.76 

m3/s and 1.49 m3/s during main-season. The results revealed that actual supply 

(without climate climate) was higher than the model simulated supplies (with climate 

change) for all the three climate scenarios in both cropping seasons. This could be 

suggestive of poor scheduling in the scheme, leading to undue excess water supply.  

The application of the model in assessing long-term changes in irrigation water 

demands in response to the projected changes in reference evapotranspiration and 

effective rainfall is demonstrated using three future time slices (2020s, 2050s and 

2080s) with respect to baseline period (1976-2005). The results generated from the 

DSS model suggest that monthly reference evapotranspiration is likely to increase in 

all scenarios up to 14.2% under RCP8.5 during February to July. Similarly, annual 

effective rainfall is predicted to slightly increase in future although with monthly 

variations. The irrigation water needs are projected to increase in the off season 

months and decrease during the main season months. At the present, the scheme 

requires a supply of 610 mm and 404 mm depth of water, for the respective off and 

main seasons, while future requirements will reach up to 675 mm and 376 mm under 

the highest scenario (RCP8.5). The results will be helpful for water managers in 
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planning adaptation measures in those months where rainfall is predicted to be not 

sufficient to fulfill the crop water demands. 

Based on the results, it can be inferred that the DSS can serve as a practical tool for 

simulating climate scenarios based on the outputs from global climate models (GCMs) 

to carry out standard calculations for reference evapotranspiration, rice water 

requirements and irrigation demands, for daily and/or periodic water allocations under 

climate scenarios. This will allow Water Management Authorities to assess climate 

change signals and thus promote adoption of appropriate adaptation strategies that 

could potentially lead to more sustainable water management at farm level. Additional 

beauty of the model is its flexibility updating future climate scenarios as new climate 

models become available, and also, with suitable locally derived data the tool can be 

extended to other geographical locations. Finally, the DSS has some application 

limitations which are highlighted in the thesis, and this form basis for future 

improvements.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperl�an untuk ijazah �oktor Falsafah 

SISTEM SOKONGAN KEPUTUSAN PERUNTUKAN AIR UNTUK SKIM 
PENGAIRAN PADI DI BAWAH SENARIO PERUBAHAN IKLIM

Oleh 

NKULULEKO SIMEON DLAMINI 

����2017

Pengerusi : MD Rowshon Kamal, PhD
Fakulti : Kejuruteraan 

Sektor pengairan merupakan pengguna utama air di Malaysia untuk penghasilan beras 

sebagai makanan ruji, oleh itu pengetahuan mengenai perubahan masa depan dalam 

keperluan pengairan yang berpunca daripada perubahan iklim adalah penting untuk 

menguruskan peruntukan air. Model Peredaran Umum ataupun dikenali sebagai 

General Circulation Models (GCMs) mencadangkan bahawa peningkatan dalam 

pelepasan gas rumah hijau akan mempunyai implikasi yang besar ke atas beberapa 

kitaran proses hidrologi pada skala tempatan termasuk perubahan aliran sungai dan 

evapotranspirasi pada masa depan. Isu-isu ini perlu dinilai dan diambilkira dalam 

peruntukan dan perancangan pengairan pada masa depan. Tesis ini menerangkan 

mengenai pembangunan alat sistem sokongan keputusan (DSS) untuk pemodelan 

peruntukan air di skim pengairan padi tempatan di bawah senario iklim. DSS ini 

dibangunkan berasaskan output iklim dari GCMs, data hidrologi, data terusan 

pengairan dan data tanaman. Empat modul asas telah dibangunkan dan diintegrasikan 

ke dalam pengaturcaraan MATLAB iaitu; generator hujan stokastik, penyejatpeluhan 

rujukan, modul keperluan air dan peruntukan air . 

Senario iklim masa depan bagi kawasan kajian ini diambil daripada sepuluh model 

GCMs di bawah tiga senario RCPs iaitu RCP4.5, RCP6.0 dan RCP8.5 yang diperolehi 

daripada program perbandingan dan diagnosis antara model iklim (PCMDI). Unjuran 

masa depan pelbagai GCMs di hulu lembangan sungai bernam menunjukkan bahawa 

suhu dijangka meningkat di bawah semua senario, dengan perubahan terbesar pada 

bulan-bulan musim kering (Februari-Jun). Unjuran peningkatan julat suhu maksimum 

masing-masing adalah 0.7-1.6° C, 0.5-1.9° C dan 0.8-3.3° C, di bawah RCP4.5, 

RCP6.0 dan RCP8.5. Unjuran hujan menunjukkan perbezaan antara kedua-dua musim 

penanaman. Di bawah scenario RCP4.5, 6.0 dan 8.5 masing-masing dijangka 

perubahan purata -2.4%, -3.2% dan -3.7% untuk bulan-bulan pada musim kering, 

manakala 1.0%, 0.8% dan 2.4% untuk bulan-bulan pada musim hujan. Hasil kajian 

menunjukkan bahawa kawasan tadahan tersebut bermungkinan mengalami suhu yang 

lebih panas berserta iklim kering semasa musim kering. 
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Kesan perubahan iklim ke atas kadar alir bagi hulu lembangan Sungai Bernam telah 

dikaji menggunakan model hidrologi SWAT. Model ini telah dinilai dengan 

menggunakan rekod data selama 25 tahun (1981-2005). Keputusan pekali penentuan 

(R2), Nash-Sutcliff (NSE) dan Peratus Pincang (PBIAS) adalah 0.67, 0.62 dan -9.4 

semasa tempoh penentu-ukuran, dan 0.62, 0.61 dan -4.2  semasa tempoh pengesahan. 

Unjuran kadar alir sungai masa depan melalui model SWAT yang telah ditentu-sahkan 

menunjukkan bahawa ketika bulan-bulan musim kering, kadar alir sungai tahunan 

dijangka berkurangan sehingga (-6.6%) menjelang akhir abad (2080s). Kadar alir 

sungai dijangka meningkat sehingga 11.4% semasa musim hujan dalam tempoh masa 

depan yang sama. Berdasarkan keputusan ini, boleh disimpulkan bahawa sumber air 

di Lembangan Sungai Bernam dijangka mencukupi sehingga akhir abad ini. 

Walaubagaimanapun, keputusan ini juga mengetengahkan beberapa kemungkinan 

risiko yand disebabkan oleh perubahan iklim terhadap pengeluaran beras semasa bulan 

musim kering  pada masa depan. Ini seterusnya memerlukan penyelesaian pengurusan 

air bersepadu untuk memastikan kelestarian pengeluaran beras. 

Sebuah model sistem sokongan keputusan pintar iklim(CSDSS) yang mesra pengguna 

telah dibangunkan untuk permodelan peruntukan air pengairan di Skim Pengairan 

Padi Tanjung Karang (TAKRIS) di bawah scenario-scenario perubahan iklim. 

Pertamanya, scenario-scenario iklim diturun skala menggunakan sistem tersebut ke 

atas data-data cerapan dan teknik perubahan factor yang diterbitkan dari GCMs. 

Model Penman-Monteith FAO-56 telah digunakan untuk menganggarkan 

evapotranspirasi rujukan di bawah pendayaan masa depan. Sebuah model hujan 

stokastik telah digunakan untuk mensimulasi siri hujan masa hadapan menggunakan 

kaedah Markov Chain peringkat pertama berdasarkan senario pelepasan pendayaan 

masa depan. Kemudian model keperluan air dibangunkan berdasarkan kepada 

evapotranspirasi rujukan dan pekali tanaman. Keperluan air pengairan yang dijana 

ditukarkan kepada penghantaran pengairan berdasarkan kawasan perintah terusan. 

Model ini mampu menjana beberapa situasi agihan pengairan menggunakan unjuran 

GCMS individu dan / atau multi-model (ensemble). Model ini telah dinilai untuk 

agihan pengairan di kawasan kajian menggunakan data bekalan air selama satu tahun. 

Analisis menunjukkan bahawa purata bekalan pengairan mingguan untuk bekalan 

yang dicerap (tanpa perubahan iklim) dan bekalan simulasi (dengan perubahan iklim) 

di bawah scenario-scenario RCP4.5, RCP6.0 dan RCP8.5 masing-masing, adalah 2.69 

m3/s, 2.00 m3/s, 2.19 m3/s dan 1.94 m3/s semasa luar musim, dan 2.55 m3/s, 1.47 m3/s, 

1.76 m3/s dan 1.49 m3/s semasa musim utama. Keputusan mendedahkan bahawa 

bekalan sebenar (tanpa iklim ) adalah lebih tinggi daripada bekalan model simulasi 

(dengan perubahan iklim) bagi ketiga-tiga senario iklim dalam kedua-dua musim 

penanaman. Ini menunjukkan bahawa mungkin ada isu-isu penjadualan yang kurang 

cekap dalam skim ini, yang membawa kepada pembaziran bekalan air secara 

berlebihan. 

Penerapan  model dalam menilai perubahan jangka panjang dalam permintaan air 

pengairan sebagai tindak balas kepada perubahan unjuran dalam evapotranspirasi 

rujukan dan hujan telah ditunjukkan dengan menggunakan tiga tempoh masa hadapan 

(2020-an, 2050-an dan 2080-an) berbanding dengan tempoh asas (1976-2005). 

Keputusan  yang dijana daripada model DSS mencadangkan bahawa evapotranspirasi 

rujukan bulanan dijangka meningkat dalam semua senario sehingga 14.2% di bawah 
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RCP8.5 pada bulan Februari hingga Julai. Begitu juga, hujan tahunan berkesan 

diramalkan meningkat sedikit pada masa akan datang walaupun dengan variasi 

bulanan. Keperluan air pengairan dijangka meningkat pada bulan-bulan luar musim 

dan berkurang pada bulan-bulan musim utama. Pada masa ini, skim ini memerlukan 

bekalan di antara 610 mm dan 404 mm air, masing-masing untuk luar musim dan 

musim utama, manakala keperluan masa depan akan mencapai sehingga 675 mm dan 

376 mm di bawah senario yang tertinggi (RCP8.5). Keputusan-keputusan ini akan 

membantu pengurus-pengurus air dalam merancang langkah-langkah penyesuaian 

pada bulan-bulan di mana hujan diramalkan sebagai tidak mencukupi untuk 

memenuhi permintaan air tanaman.  

Berdasarkan kepada keputusan-keputusan tersebut, ia boleh disimpulkan bahawa DSS 

boleh berfungsi sebagai alat yang praktikal bagi simulasi scenario-scenario iklim 

berdasarkan output dari model-model iklim global (GCMs) untuk menjalankan 

pengiraan standard bagi evapotranspirasi rujukan, keperluan air tanaman padi dan 

keperluan pengairan, untuk agihan air harian atau berkala di bawah scenario-scenario 

iklim. Ini akan membolehkan Pihak Berkuasa Pengurusan Air menilai situasi 

perubahan iklim, dan dengan itu menggalakkan penggunaan strategi adaptasi yang 

sesuai serta berpotensi membawa kepada pengurusan air yang lebih mampan di 

peringkat kawasan tanaman. Kelebihan tambahan model ini adalah sifat fleksibilitinya 

dalam kemampuan mengemaskini senario iklim masa depan sekiranya terdapat model 

iklim baru yang tersedia, dan juga dengan data tempatan yang bersesuaian alat ini juga 

boleh dilanjutkan ke lokasi geografi yang lain. Akhir selaki, DSS ini turut mempunyai 

beberapa batasan penggunaan seperti yang diterangkan di dalam tesis, dan ini 

membentuk asas untuk penambahbaikan pada masa hadapan. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background 

Water is one of the basic natural resources upon which sustainable development 

depends to satisfy daily requirements of the world’s growing population. In recent 

years, competition for water has been on the increase to the point of physical scarcity 

of the resource (UN-Water 2010). According to global-scale water scarcity projection 

studies, up to two thirds of the world’s population is likely to live in water stressed 

watersheds by the year 2025 (Shiklomanov 1998; Rijsberman 2004; Alcamo et al. 

2007). The main driving force is attributed to the increasing demand for different land 

and water uses and the climate change phenomena.  

Irrigated agriculture remains the largest consumer of water, accounting for some 70% 

of total water withdrawals in the world (FAO 2013). The agricultural sector is faced 

with the challenge of meeting future food requirements with limited water resources. 

With a population that is expected to increase significantly by the year 2025, it is 

estimated that agricultural production will have to increase by 60% by 2025 (FAO 

2013) to satisfy the expected demands for food, fibers and other agricultural products. 

Although there are differences in opinions regarding exploring options for providing 

enough food, it is no doubt that irrigation will have to contribute significantly to 

increasing food production. At the World Food Summit in 1996, it was estimated that 

60% of future food requirements would have to be met through irrigated agriculture. 

However, irrigation is being criticized for huge amount of water losses due to poor 

performance and low efficiencies. Linked to this, are the uncertainties associated with 

global climate change which have the potential to disrupt the hydrological parameters 

such as mean streamflows, crop water requirements, frequency and intensity of rainfall 

(Xu 1999a; IPCC 2001). These issues call for attention and suitable water management 

actions on many facades, which, if left unresolved, the severity of the water problem 

will only become acute with time. 

Rice is the most common staple diet for more than half the world’s population, rich in 

energy and protein sources, providing about 75% and 60% respectively. More than 

142 million hectares are cultivated under rice, 90% of which is cultivated in the 

monsoon regions of Asia (De Wrachien 2003), and of this, 75% is produced from 

irrigated lands. In Malaysia, rice production is an important sub-sector in the national 

food security agenda. Presently, there are more than 300,000 rice farmers 

encompassing over 322,000 hectares under irrigation (Alam et al. 2010). All the key 

rice-growing areas have irrigation and drainage facilities with an average yield of 3.5 

tons per hectare (Agriculture Statistical Handbook, 2008), with a potential yield of 7.2 

tons per hectare (Singh et al. (1996). Rice is cultivated during dry season and wet 

season (double cropping) under irrigation schemes.  
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The irrigation sector has the greatest annual water withdrawals, with more than 80% 

of Malaysia’s water demands accounted for by rice irrigation use. To ensure 

sustainability of this sub-sector, the Federal Government developed the National 

Agricultural Policy which sets to transform the agricultural sector into a more efficient 

commercial sector to address three objectives; (1) to ensure attractive price to paddy 

farmers to produce rice, (2) to achieve a certain level of self-sufficiency in rice 

production, and (3) to ensure a stable and high quality of rice to consumers (NAP3 

2010; Bala et al. 2014). Through this policy, rice productivity in the eight designated 

granary areas has seen a significant increase to about 72% self-sufficiency level (Bala 

et al. 2014). Figure 1.1 shows the location of these granary areas in Peninsular 

Malaysia.  

Figure 1.1 : Location of rice granary areas in Peninsula Malaysia 
(Source: Department of Irrigation and Drainage, Malaysia, 2014) 

Agriculture is vulnerable to changes in weather conditions and future climate change 

could be unfavorable for rice production. Hydrologic changes are the most important 

impacts of climate change in the Southeast Asia region (Christensen et al. 2007; IPCC 

2007), to which Malaysia is a part. The recent assessment report (AR5) based on the 

CMIP5 simulations has shown that future rainfall projection changes are qualitatively 

similar to those in the previous assessment report (AR4) (IPCC 2013). The report 
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further highlight that in Peninsular Malaysia rainfall intensity increased during the 

southwest monsoon season, whilst during the northeast monsoon, total rainfall, 

frequency of extreme rainfall events, and rainfall intensity all increased. At the same 

time, higher temperatures in the region are predicted which will demand higher 

irrigation water requirements. 

Although Malaysia is blessed with rainfall throughout the year with an average of 

2,420 mm (Alansi 2010), it is however, not yet clear how these supposed changes will 

affect the country’s water resources systems for rice production in future. Quantitative 

studies are scarce, and the country’s climate change policy is still being developed. 

Current adaptive strategies by local farmers are largely generic and are based on 

information derived from regional studies despite clear variations in local and 

regional-scale climates. Effective adaptive measures require good understanding of 

the uncertainty of climatic variables at local levels. Application of hydrologic 

modeling on basin-wide assessments is becoming a basis for understanding the 

repercussions of climate change to ensure effective adaptation measures and resilience 

to these changes (Xu 1999b; Fowler et al. 2007). Coupled with these models, are 

climate change-based decision support tools for modeling uncertainties in water 

allocations. Such tools therefore rely on existence of climate information consistent 

with the future for successful implementation. 

1.2  Problem Statement 

Rice is one of the major crops grown in many irrigation schemes in Malaysia as it 

constitutes a major portion of diet for a large population.  Its demand for irrigation 

water is relatively high and differs from that of other field crops.  Successful irrigation 

water management approaches used by water managers should aim at managing 

irrigation water deliveries in a more efficient way, and consistent with the prevailing 

climate conditions.  

Many irrigation schemes suffer from water shortages in certain period in the cropping 

seasons, and the Tanjung Karang Irrigation Scheme (TAKRIS) is no exception. The 

inadequate and unreliable water deliveries in the main supply system often cause 

farmers to face regular water shortages for their rice fields, resulting in reduced yields 

and incomes.  A feasibility study report and other previous studies have highlighted 

some of the water management issues faced by the scheme. Frequent water shortage 

especially during the dry season months is one of the key challenges facing the 

scheme. In addition, problems are being encountered in distributing water evenly over 

the command area, and also water management practices that lead to inefficient use of 

water.  

Compounding problem is the impact associated with climate change in managing 

irrigation water management under climate scenarios. In its assessment over the past 

few decades, the Inter-governmental Panel on Climate Change (IPCC) reported three 

undeniable signals of climate change, that is, gradual changes in global average 

temperatures, rainfall patterns, and rise in sea levels (IPCC 2001; 2007). These have 
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direct implications on a number of hydrological processes including streamflow 

fluctuations, groundwater recharge, reservoir levels and irrigation demand. Changes 

in temperature directly impacts on evapotranspiration and changes in rainfall affects 

streamflow and irrigation demand patterns at catchment scale. This will likely bring 

changes in rice water demands and put additional strain on the limited available water 

resources of the Bernam River, which is a source of irrigation water for the scheme. 

Local studies by the National Hydraulic Research Institute of Malaysia (NAHRIM) 

on the impacts of climate change at country level confirmed potential increase in 

future temperature and changes in rainfall patterns (NAHRIM 2006; 2014).  

These issues therefore need to be quantified and accounted in future irrigation water 

allocation and planning. Current approaches at the scheme do not account for climate 

change related issues in water allocation for irrigation. Computer models such as 

decision support systems (DSS) are powerful tools can be used in combination with 

outputs from global climate models (GCMs) to simulate irrigation requirements and 

translate them to water deliveries under climate scenarios. However, current existing 

decision support system models, including those developed for local rice schemes, 

such as, RWM-DSS (Haque 2004), RIMIS (Rowshon 2006), PIM (Deepak 2011), 

SWAMP (Mohd 2014), have limitations as they do not account for climate scenarios 

in their modeling. This study, therefore, attempts to develop a decision support system 

(DSS) to model water demand and allocations in a rice irrigation scheme under climate 

scenarios by using outputs from the global climate models (GCMs). The tool will serve 

as a practical tool to generate climate scenarios based on the outputs from global climate 

models (GCMs) to carry out standard calculations for reference evapotranspiration, rice 

water requirements and irrigation demands, for daily and/or periodic water allocations 

under climate scenarios. This will allow Water Managers to assess climate change 

signals and thus promote adoption of appropriate adaptation strategies that could 

potentially lead to improved water use and management at farm level.

1.3  Goals and Objectives of Study 

The primary goal of the present study is to develop a water management tool to 

generate local climate scenarios for modeling of water demands and allocation, and 

thereby facilitates development of mitigation measures at a local irrigation command 

area (Tanjung Karang Irrigation Scheme). To achieve this goal, the study was 

undertaken with the following specific objectives; 

1. To develop local projected climate scenarios using the delta change factor 

methodology for streamflow modeling and water demand projections. 

2. To assess streamflow of the Bernam River Catchment in response to climate 

change impacts using the SWAT model. 

3. To develop a decision support system (DSS) for modeling irrigation demands and 

deliveries in rice field tertiary canals of the command area under climate change 

scenarios. 

4. To assess impacts of climate change on the irrigation demands for the rice 

irrigation command area.  
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1.4  Relevance and Scope of the Study   

Tanjung Karang is one of the rice irrigation schemes that contribute significantly to

the rice food for the large population of Malaysia. General issues such as regular water 

shortage during dry season months and poor water management practices are some of 

the challenges reported by local water managers and previous feasibility studies. 

Climate change is a new threat in agricultural water management. Climate change is a

global problem which cascade its impacts to regional and local-scale. The current 

existing approaches with regards to water management for irrigation to the scheme do 

not account for climate change scenarios. Instead water is supplied based on some 

design discharge originally designed for transplanted rice, and the climate change 

factor is not considered. Since this is still a run-of-the-river scheme, it is critical that 

we understand the impacts of climate change so that appropriate mitigation strategies 

could be developed for sustainable production.  

The scope of work includes the following tasks; 

� Collection of relevant information on the history, operation and maintenance 

of the paddy schemes. 

� Collection of spatial maps (landuse, soils, DEM) from various government 

agencies and generating (digitizing) new maps (shapefiles). 

� Collection of observed hydro-meteorological data from different stations 

within the study area and the watershed for calibration and validation of a 

hydrological model 

� Downloading and extraction of GCM  data from .nc file format to .mat file 

format using MATLAB Programme  

� Detailed study of/and selection of climate change downscaling techniques and 

predictor variable suitable for the study purpose. 

� Downscaling the climate variables through a specified downscaling domain 

with coordinates 

� Simulation of future streamflow of the Bernam river basin considering the 

effects of climate change on the hydrology using multiple GCMs. 

� Development of stochastic rainfall generator model for daily rainfall 

simulation under climate change scenarios using first-order Markov chain 

based on multiple GCMs and emission scenarios. 

� Development of codes, functions and user interface using MATLAB platform 

for integrating all modules of the decision support system. 

� Collection of irrigation supply data for evaluation of the decision support 

system. 

1.5  Limitations on the Scope of Study 

Although the study has achieved its objectives as set out, the following limitations on 

the scope of the study are highlighted. First, for streamflow modeling, future changes 

in landuse or vegetation cover was assumed to be stationery. However, land use 

change is generally considered one of the main factors affecting the rainfall-runoff 

relationship. It is believed that changes in landuse in the future will have a 
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corresponding impact on streamflow. Second, the study was conducted using only the 

simulation outputs from climate models (GCMs) data based on the driving carbon 

emission scenarios. A combination of GCMs data with real-time simulation data 

would be ideal in a future study. Third, the study has assumed unconstrained supply 

for irrigation water. Future modelling studies should investigate the impacts of future 

changes in reliability of water supply for irrigation at certain times during the season, 

for instance, due to low flows or seasonal droughts. Fourth, channel routing modeling 

to evaluating the hydraulic performance of the conveyance system was not carried out. 

Canal simulations is essential in future studies to better synchronize both the upstream 

(water supply) and downstream (water demand) sides. 

1.6  Outline of the Thesis 

The thesis is organized into 5 chapters as follows: Chapter 1 provides the overview of 

the pivotal role of water in food production particularly rice, highlighting the problem 

faced by the agriculture sector on having to increase production with limited water 

resources, and the need for the sector to develop scientific tools for optimizing the use 

of irrigation water. The specific objectives of the study and its contribution to water 

management are also highlighted in this chapter. 

The relevant literature to methods, techniques and approaches used in the study is 

reviewed in Chapter 2. The chapter includes an in-depth discussion of the concept of 

climate change, downscaling techniques and their applications to hydrologic modeling 

and future irrigation water demands. Applications of decision support systems as relate 

to water management are further reviewed in this chapter. 

Chapter 3 presents the methodology with background information on the study area, 

data collection and a summary of the methods used to downscale future climate data, 

models applied in assessing future streamflow and developing stochastic rainfall 

model, irrigation water demand and development of decision support system from 

climate projections.  

Chapter 4 presents the results of the study including climate change impacts on the 

future streamflow, application of the climate-smart decision support system in 

modeling water demands projections and allocation for rice tertiary canals which will 

be useful to farmers and water authorities for implementing allocation measures of

irrigation water during climate change conditions. 

Chapter 5 concludes the study highlighting its contribution and methodological 

limitations and suggests some recommendations for future work.   
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