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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Doctor of Philosophy 

MODELLING WATER AND SEDIMENT FLOW IN BRANCHING 

CHANNEL SYSTEM 

By 

NASHWAN KAMAL AL DEEN MOHAMMED 

May 2017  

Chairman: Badronnisa Binti Yusuf, PhD 

Faculty: Engineering 

Operational problems associated with branching channels and water intakes increase 

over time due to localised sediment accumulations. The success of branching channel 

projects depends on the right design to increase the unit discharge and decrease the 

sediment concentration as much as possible. In addition, a branching channel from 

rivers and channels affects the bed morphology and causes erosion and sedimentation 

in the branching junction. There is still a lack of studies on the flow pattern in movable 

bed branching channel systems for different branching channel angles and bed widths 

to quantify the amount of water and sediment concentration in the branching channel 

and investigate its effect on the bed morphology. In this study, the hydraulic 

performance of differently angled branching channels was compared in an effort to 

maximise discharge, minimise sediment concentration and decrease its effect on the 

bed morphology. 

The objectives of the study are to investigate the effect of the branching angle and the 

bed width ratio on the water and sediment flow in the branching channel and scour 

hole characteristics (scour depth and scour length). The scour hole is formed in the 

main channel just downstream from the location of the branching channel entrance. 

This study also investigated the variation in velocity vertically and horizontally at the 

junction region and determined the total energy loss coefficient across the junction 

region. The objectives of the study were implemented experimentally using a physical 

model of 30, 45, 60, 75 and 90° branching channel angles with the main flow direction. 

In addition, three bed width ratios (30, 40 and 50%) and five total discharges (7.25, 

8.5, 9.75, 11, and 12.25 L/s) were investigated for each branching angle scenario. A 

sand bed with d50 of 0.4 mm was used for all the experiments. In order to ensure 

sediment movement in the main channel at the upstream and to quantify the branching 

channel sediment concentration, a live-bed condition with flow intensity (Vu/Vc) of 

1.1–1.5 was maintained in all experiments.  
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The results indicated that branching angles of 30° and 45° increased the relative 

discharge ratios (QR) by approximately 5–10% compared with the discharge ratio for 

the 90° branching angle. The results also indicated that the branching channel sediment 

concentration and scour depth decreased as the branching channel angle decreased. 

The branching angles of 30° and 45° reduced the sediment concentrations by an 

average of 64% and 37%, respectively, compared with the concentration for the 90° 

branching angle. With respect to scour depth, the branching angle of 30° reduced the 

scour depth by approximately 14.4-46.7% compared with the scour depth for the 90° 

branching angle. The main reasons for forming the scour hole are the vortexes 

generated due to diverting some of the flow towards the branching channel and the 

downstream branching channel entrance sharp edge.  

The 30° branching angle recorded the smaller low velocity region at the beginning of 

the upstream side wall of the branching channel than other branching angles. 

Moreover, the velocity distribution in this branching angle is more uniform along the 

branching channel width than others. The outcomes from this study indicate that a 

branching angle of 30°– 45° is the best arrangement to increase the branching channel 

discharge, decrease the branching channel sediment concentration and decrease the 

scour depth at the junction region. Reducing the amount of branching channel 

sediment maintains the project efficiency of those depending on the branching channel 

flow. In addition, a high water unit discharge means a lower initial construction cost 

for the channel. Moreover, decreasing the scour depth helps to reduce the risks of a 

scouring effect on the side bank of the main channel or any nearby structures.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMODELAN ALIRAN AIR DAN ENAPAN DI DALAM SISTEM SALURAN 

BERCABANG  

Oleh 

NASHWAN KAMAL AL DEEN MOHAMMED 

Mei 2017 

Pengerusi: Badronnisa Binti Yusuf, PhD 
Fakulti: Kejuruteraan 

Masalah operasi yang berkaitan dengan saluran bercabang  dan tempat masuk air 

meningkat dengan masa kerana pengumpulan enapan setempat. Kejayaan projek 

saluran bercabang bergantung kepada reka bentuk yang untuk yang meningkatkan unit 

kadar alir dan mengurangkan kepekatan enapan sebanyak mungkin. Tambahan lagi, 

saluran bercabang dari sungai dan saluran menjejas morfologi dasar sungai dan 

menyebabkan hakisan dan pemendapan di simpang pencabangan. Kajian mengenai 

corak aliran di dalam sistem pencabangan saluran dasar sungai bergerak  bagi sudut 

pencabangan saluran dan lebar dasar sungai yang berbeza untuk menyatakan kuantiti 

jumlah air dan kepekatan enapan di dalam saluran bercabang dan menyiasat kesannya 

ke atas  morfologi dasar sungai masih berkurangan. Di dalam kajian ini, prestasi 

hidraulik saluran pencabangan bersudut berbeza telah dibandingkan dalam usaha 

untuk memaksimumkan kadar alir, meminimumkan kepekatan enapan dan 

mengurangkan kesannya ke atas  morfologi dasar sungai. 

Objektif kajian ini adalah untuk mengkaji kesan sudut  pencabangan dan nisbah lebar 

dasar sungai ke atas aliran air dan enapan di dalam saluran bercabang dan ciri-ciri 

lubang kerukan (kerukan mendalam dan kerukan panjang). Lubang kerukan terbentuk 

di dalam saluran utama di hilir berdekatan dengan lokasi masuknya 

saluran yang bercabang. Kajian ini juga menyiasat perubahan halaju secara menegak 

dan mendatar di kawasan simpang dan menentukan pekali kehilangan tenaga 

merentasi kawasan persimpangan tersebut. Objektif kajian ini telah dilaksanakan 

secara eksperimen dengan menggunakan model fizikal sistem pencabangan saluran 

30, 45, 60, 75 dan 90° dari arah aliran utama. Di samping itu, tiga nisbah lebar dasar 

sungai (30, 40 dan 50%) dan lima jumlah kadar alir (7.25, 8.5, 9.75, 11, dan 12.25 L/s) 

telah disiasat untuk setiap senario sudut pencabangan. Satu dasar sungai pasir dengan 

d50 0.4 mm digunakan untuk semua eksperimen.  Untuk memastikan pergerakan 

enapan di hulu saluran utama dan untuk mendapatkan kuantiti kepekatan enapan 
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saluran, keadaan dasar sungai hidup dengan keamatan aliran (Vu/Vc) antara 1.1 -1.5 

dikekalkan di dalam semua eksperimen. 

Keputusan menunjukkan bahawa sudut pencabangan 30° dan 45° meningkatkan 

nisbah kadar alir relatif (QR) sebanyak kira-kira 5-10% berbanding dengan nisbah 

kadar alir untuk sudut pencabangan 90°. Keputusan juga menunjukkan bahawa 

kepekatan enapan di cabang saluran dan kedalaman kerukan menurun apabila sudut 

pencabangan saluran berkurangan. Sudut pencabangan 30° dan 45° mengurangkan 

kepekatan enapan secara purata sebanyak 64% dan 37%, masing-masing, berbanding 

dengan kepekatan bagi sudut pencabangan 90°.  Berkenaan dengan kedalaman 

kerukan, sudut pencabangan 30° mengurangkan kedalaman kerukan sebanyak kira-

kira 14.4-46.7% berbanding dengan kedalam  kerokan bagi  sudut pencabangan 90°. 

Sebab-sebab utama pembentukan lubang kerukan adalah putaran yang dijanakan 

kerana pengalihan sebahagian aliran ke arah saluran yang bercabang dan sisi tajam 

laluan masuk di hilir saluran cabang. 

Sudut pencabangan 30° mencatatkan kawasan halaju rendah yang libih kecil pada awal 

dinding hulu saluran bercabang di berbanding sudut-sudut yang lain. Selain itu, agihan 

halaju untuk sudut pencabangan ini adalah lebih seragam di sepanjang kelebaran 

saluran bercabang itu berbanding yang lain.  Hasil daripada kajian ini mengesyorkan 

bahawa sudut pencabangan di antara 30°- 45° ialah susunan terbaik untuk 

meningkatkan kadar alir saluran bercabang, mengurangkan kepekatan enapan saluran 

bercabang dan mengurangkan kedalaman kerukan di kawasan persimpangan. 

Mengurangkan jumlah enapan saluran bercabang mengekalkan kecekapan projek 

yang, bergantung pada aliran saluran ber cabang. Tambahan lagi, kadar alir unit air 

yang tinggi bermakna lebih kurang kos awal pembinaan saluran.  Lebih-lebih lagi, 

mengurangkan kedalaman kerukan membantu mengurangkan risiko kesan kerukan ke 

atas tebing sisi saluran utama atau mana-mana struktur berdekatan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Open channels in irrigation and drainage projects are the most important means to 

transport water. In many cases, channels need to branch out to secondary channels so 

that it can feed lateral projects, such as irrigation and the water supply of municipality 

plants and hydro-power projects (Al Omari, 2009). Therefore, studying the branching 

channel flow system has a direct application in water resource projects (Meselhe et al., 

2016; Ramamurthy et al., 1990). Moreover, branching channel flow or river 

bifurcations are found in natural rivers as a result of the rivers’ dynamics processes 

(Kleinhans et al., 2013; Redolfi, 2015; Redolfi et al., 2016). 

There are many examples of branching channels or river bifurcations in nature, such 

as the Pannerdense Kop in the lower course of the Rhine River and the bifurcations in 

the Patia River delta in Colombia (Figure 1.1). Another example of branching flow is 

the branching of two channels from the Cumberland Marshes, Canada, as shown in 

Figure 1.2. 

 

Figure 1.1: Patia River Bifurcation (Casas, 2013). 
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Figure 1.2: Natural Branching Channel Flow from the Cumberland Marshes, 

Canada. 

Man-made branching channels from a channel or river are considered as practical 

applications of the branching channel flow system. These branching channels vary in 

their objectives, such as supplying water for the cooling systems of an energy or power 

station, supplying municipal water, supplying water for irrigation projects, or for any 

other objectives.  

Figure 1.3 shows an example of the branching channel from the Ohio River to supply 

water to a lateral project (Neary et al., 1999). Other examples of lateral projects, which 

are supplied with water from the Missouri River in North America by branching 

channels, are the MidAmerican Energy Company’s Council Bluffs Power Station, the 

Omaha Public Power District-Nebraska City Station, the St. Louis County Water 

Company to supply municipal water, and the MidAmerican Energy Company’s 

George Neal Station water intake. 

Branching channel systems can also be used to capture a portion of the main flow 

sediment particles (sediment diversion) and subsequently decrease the main flow 

sediment concentration (Brown et al., 2013; Meselhe et al., 2016). 

Miller (2004) gave another example of the practical application of  branching channel 

flow. This is represented by designing and constructing a branching channel through 

the west bank of the Mississippi River. The branching channel is used to restore the 

wetlands located in Plaquemines Parish by connecting the Mississippi river with the 

wetlands (Figure 1.4). This branching channel carries water, sediment and nutrients 

from the river to the wetlands.  



© C
OPYRIG

HT U
PM

  

3 

 

 

Figure 1.3: Lateral Water Intake from the Ohio River (Neary et al., 1999).  

 

Figure 1.4: Branching Channel through the West Bank of the Mississippi River 

(Miller, 2004). 

Branching channel flow has been studied in recent decades e.g. (Bulle, 1926; Grace & 

Priest, 1958; Taylor, 1944) and still attracts the attention of water resources 

engineering researchers as it commonly exists in many water engineering related 

projects and depends on many variables. Due to the complexity of branching flow, 
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involving many interlinked factors, generalisation of the phenomena involved is very 

difficult to achieve (Lama et al., 2002). 

1.2 Problem Statement 

The problem of the branching sediment flow always accompanies the branching 

channel system (Moradinejad et al., 2017; Raudkivi, 1993) . Over time, branching 

channels may experience a decrease in their hydraulic efficiency due to an 

accumulation of sediment particles, for instance, by building up the sediment within 

the branching channel bed from the Ohio River, as shown in Figure 1.3 (Neary et al., 

1999). The sediment concentration in the branching channel is higher than the 

concentration in the main channel. The branching channel receives more water from 

the main channel’s lower layers where the sediment particles are concentrated 

(Barkdoll, 2004). The main channel’s upper layers have higher momentum and tend 

to continue downstream past the branching channel while the lower momentum in 

lower layers are easily diverted to the branching channel (Herrero et al., 2015; Neary 

& Odgaard, 1993; Omidbeigi et al., 2009). 

The sediment particles may block filters and damage water pumps in the water supply 

and hydropower systems. In addition, irrigation network systems, especially when 

these systems depend on irrigation by drops or sprinkler systems, always need 

sediment-free water to prevent their nozzles from blockage or damage. Rehabilitation 

efforts often require the accumulated sediment to be dredged from the branching 

channels at a high cost.  

The mechanisms of the sediment transport in river bifurcations are still not well 

understood. Therefore, attempts of managing the branching channel sediment flow are 

still considered as a challenge (Sassi et al., 2013). Researchers have previously 

investigated various strategies for reducing sediment in branching channels, with a 

focus on using submerged vanes in front of the entrance to the branching channel 

(Beygipoor et al., 2013; Michell et al., 2006; Neill et al., 1997; Yalin Wang et al., 

1996). The use of submerged vanes to control and redirect the upstream sediment 

downstream in the main channel is potentially costly and may adversely affect 

navigation of the main channel (Barkdoll et al., 1999). While, designing the branching 

channels and water intakes for municipal use should be stable and maintain the 

navigation of the main channel (Kleinhans et al., 2013). Moreover, it may 

inadvertently direct ice to the branching channel (Yushi Wang et al., 2014). The 

effectiveness of the submerged vanes is also limited based on flow conditions 

(effective approach for a unit discharge ratio up to 20-30%). The limitations of using 

submerged vanes to control the branching channel sediment flow display the 

importance of investigating alternative approach to control and manage of the 

branching channel sediment by choosing an appropriate branching angle, which can 

effectively reduce the branching channel sediment discharge. 

Although bed morphology is considered as an essential element of the design of a 

branching channel (Xu et al., 2016), most of the studies related to branching channel 

flow have been carried out with the rigid boundary condition, e.g. (Mignot et al., 2014; 
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Mignot et al., 2013; Momplot et al., 2017), while most of the branching channel flow 

studies with a movable bed condition focused only on branching channel flow with a 

branching angle of 90°, e.g. (Barkdoll et al., 1999; Herrero et al., 2015). Al Omari 

(2009) and Casas (2013) reported that the effect of the branching angle of 30° and 60° 

on sediment transport in the branching channel system is lacking and should be taken 

into account in a future studies.  

In addition, the branching channel can affect the main channel flow, alter the channel 

bed mechanics and change the bed morphology. The change of the bed topography 

and the turbulence of the flow in the region of the branching channel junction, besides 

the boundary friction, contribute to the energy loss. Furthermore, the branching 

channel leads to the formation of erosion and sedimentation regions at the branching 

channel junction (Allahyonesi et al., 2008). Some researchers have reported the 

formation of scour downstream of the channel junction (Barkdoll et al., 1999; Casas, 

2013). Up to now, to our knowledge, no explicit studies investigating the effect of the 

branching channel flow with different branching angles and bed width ratios on the 

scour depth and the scour length have been done. 

Therefore, there is a real need to investigate the branching channel discharge and 

sediment concentration, with the movable bed condition, for a wide range of branching 

angles and different bed width ratios. 

Quantifying branching channel water discharge and sediment concentration and 

investigating the characteristics of the scour hole for different scenarios of branching 

angle and bed width ratio help to find the best arrangement of the branching channel 

that can increase the discharge and decrease the sediment concentration in the 

branching channel. 

1.3 Objectives of the Study 

The main objective of this study is to investigate experimentally the water and 

sediment flow and bed morphology in a branching channel system to compare the 

hydraulic performance of differently angled branching channels in an effort to 

maximise discharge, minimise sediment concentration, and reduce scour hole. The 

specific objectives of this study can be listed as follows: 

1. To quantify the water and sediment flow in a branching channel and to compare 

the results for various branching angles and bed width ratios. 

2. To investigate the characteristics of the scour hole (scour depth and scour length) 

forming at downstream of the main channel due to the branching channel system. 

3. To investigate the variation in velocity vertically and horizontally at the junction 

region of the branching channel system. 

4. To determine the total energy loss coefficient across the junction region in the 

branching channel system. 
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1.4 Significance of the Study 

This study provides more insight on the effect of a wide range of branching angles and 

bed width ratios on the water and sediment flow in branching channels, as well as on 

the scour depth, scour length, velocity distribution and total energy loss coefficient.  

The findings are useful in designing and managing channel systems with branching 

channels. Studying the flow behaviour in the branching channel and flow diversion 

location is important for water management (Yousefi et al., 2011) and for 

sedimentation management downstream of the diversion (Baker et al., 2011).  

In designing and managing branching channel systems, water resources engineers 

strive to maximise the water discharge while minimising the cross-sectional area and 

associated construction and operation costs. In hydropower projects for example, the 

generated energy amount has a direct relationship with the water discharge (Lazzaro 

et al., 2013). In systems with high sediment laden, the main challenge is to decrease 

the sediment entering the branching channel while maximising the branching channel 

water discharge. A high sediment concentration leads to an increment in the operation 

cost and a decrement in operational efficiency. For example, in the water supplying 

plants, a higher concentration of sediment means a higher filtration cost. The findings 

from this study offer an alternative approach in sediment control in a branching 

channel system through appropriate selection of branching angles and bed width ratios. 

Most of the previous studies on branching channels were limited to branching channel 

flow with rigid boundary and branching angle of 90°, despite the facts that the natural 

branching channel systems have always occurred with movable boundary and at 

various branching angles depending on the bank stability relative to the flow strength 

(Kleinhans et al., 2013). Therefore, this study on the branching channel with movable 

bed and at various angles is significant as it provides better understanding of the 

complex branching channel system in the nature. 

In a branching channel system, the formations of scours and sedimentations are also 

the main concerns as they affect the stability of the main channel banks and any 

crossing structures if any. Knowledge of the locations and the characteristics of scours 

helps engineers to select a suitable conjunction location, which is at a safe distance 

from other nearby hydraulic structures. In a case if a crossing bridge accompanying 

the branching junction area is required to connect roads on the different banks, the 

scour location and depth due to branching flow are important factors that need to be 

taken into account in the design of piers for the bridge besides the scour results from 

the pier itself. 

Moreover, the study gives comprehensive understandings on the velocity distribution 

and total energy loss coefficient at the junction region at a much wider range of 

branching angles and bed width ratios. The velocity distribution provides essential 

information on the vortexes and turbulence characteristics at the channel junction. 
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1.5 Scope and Limitations 

The scope of this research is to investigate experimentally a branching channel flow 

system with a sand bed condition. The experimental work includes five branching 

angles (30°, 45°, 60°, 75° and 90°), three branching to main channel bed width ratios 

(30%, 40% and 50%) and five different total discharges for each case (7.25 L/s, 8.5 

L/s, 9.75 L/s, 11 L/s and 12.25 L/s). The datasets are used to quantify and compare the 

different cases in terms of the branching channel water and sediment flow, scour depth, 

velocity distribution and total energy loss coefficient.  

There are many variables that can be taken into account in the investigation of 

branching channel flow, but it is difficult to consider all of them. In this study, one 

type of bed material, sand soil with a medium diameter of 0.4 mm, specific gravity of 

2.53 and standard deviation of 1.46 is used. Water and sediment are re-circulated 

during the experiment by collecting water at the ends of both the main and branching 

channels and pumping it to the upstream main channel and re-circulating again. A live 

bed load condition of the main channel at upstream with a velocity to threshold 

velocity of the sand movement of 1.1–1.5 is considered during the experiments to get 

an appropriate amount of sediment load into the branching channel to measure. The 

flow is subcritical with a Froude number around 0.3 for all the experiments.  

Investigation the velocity distribution horizontally and vertically is limited only to 

highlight the flow-dividing pattern and the low and high velocity region not for 

developing a velocity model. The model scale is limited according to the available 

main channel flume, 12.5 m long and 0.313 m wide, and the space available for the 

fabricated branching channel flume, 2.75 m long, in the hydraulic laboratory at the 

Faculty of Engineering, Universiti Putra Malaysia. 

1.6 Thesis Layout 

This thesis is composed of five chapters. Chapter One, as shown above, presents a 

background about branching channel flow and its applications, the problems 

accompanying the flow phenomena, and the objectives of the study, together with the 

significance, scope and limitations of the current research. 

Relevant literature is reviewed in Chapter Two. This Chapter extensively reviews the 

flow characteristics and the variables governing the flow in branching channels, the 

effect of the branching channel’s physical characteristics, such as the branching angle 

and bed slope, and the sediment transport behaviour in the branching channel flow 

system. The Chapter also reviews some case studies of practical applications of 

branching channels and previous modelling types, dimensions and specifications of 

branching channel flow. Finally, there is a summary of the literature review and the 

research gaps related to branching channel flow studies. 
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Dimensional analysis of the parameters governing the branching channel water 

discharge, sediment discharge, the scour depth, scour length and the total energy loss 

coefficient in the branching flow system are demonstrated in the third Chapter. Chapter 

Three also includes a description of the physical model of the branching channel 

system, the preparation of the experimental work, facilities, data collection, calibration 

of laboratory apparatus and the programme of experiments. 

The results of the experiments are presented and discussed as graphs, tables and / or 

empirical equations for each objective of the study individually in Chapter Four. 

Chapter Four also includes a comparison between different cases and their effect on 

the flow phenomena. Finally, Chapter Five presents a summary and conclusions of the 

study, as well as suggestions for some work in the future.  
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