UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF GIS-BASED SEBAL MODEL FOR ESTIMATION OF EVAPOTRANSPIRATION IN IRAQ

HUSSEIN SABAH JABER

FK 2017 54
DEVELOPMENT OF GIS-BASED SEBAL MODEL FOR ESTIMATION OF EVAPOTRANSPERSION IN IRAQ

By

HUSSEIN SABAH JABER

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfillment of the Requirements for the Degree of Doctor of Philosophy

April 2017
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial use of material may only be made with the expression, prior, written permission of Universiti Putra Malaysia (UPM).

Copyright © Universiti Putra Malaysia
DEDICATION

This dissertation is dedicated to my father, who taught me the meaning of life, patience, and who provided unconditional support with my studies all the way since I entered this life. It is also dedicated to my mother, who has always given me courage to pursue my dreams.

I dedicate this work and give special thanks to my main supervisor Prof. Dato’ Dr. Shattri Mansor. This dissertation is dedicated to my wife and my brothers, who have supported me during this research.
The abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF GIS-BASED SEBAL MODEL FOR ESTIMATION OF EVAPOTRANSPIRATION IN IRAQ.

By

HUSSEIN SABAH JABER

April 2017

Chairman: Prof. Dato’ Shattri Mansor, PhD
Faculty: Engineering

A change in weather parameters and climate will result in a significant change in evapotranspiration. Iraq suffers from problems such as reduction in water availability and unpredictable climate change that would affect irrigated agriculture and evapotranspiration. Therefore, estimation of evapotranspiration and standardized measurement are important because evapotranspiration (ET) is the means for exploiting irrigation and irrigation is considered as the backbone of the peasant society.

Most of the studies in Iraq depend on traditional methods to estimate evapotranspiration. These conventional methods are not practical for large areas because it is difficult and costly. Therefore, this research aims to use remote sensing (satellite imagery data) and GIS as modern technologies to estimate evapotranspiration.

In this research, the proposed model has been developed based on equations of SEBAL by using GIS to make a simplified model for estimation of evapotranspiration automatically that leads to a reduction in cost and time and saves effort. Subsequently, the proposed GIS-based SEBAL model was evaluated with field data by using regression coefficient. The area surrounding the Al-Hindiyah barrage has been selected as a study area because it is one of the most significant water resources in the middle part of Iraq. A series of Landsat OLI (Operational Land Imager) satellite images and climate data of the study area have been collected to determine actual evapotranspiration using the GIS-based model. In addition, actual evapotranspiration has been used to assess irrigation performance based on several indicators and to analyze water balance depending on the curve number method in GIS for the study area, respectively.
The results indicate that the proposed GIS-based SEBAL model for estimation of actual evapotranspiration has reasonable agreement with the field data based on the values of coefficient of variance (CoV) equal to (0.75%, 2.2%, 0.68% and 2.27%) indicates that the predicted results of the SEBAL model have high accuracy and consistency. The mean value of the SEBAL model was close to 1.0 (0.99, 0.98, 0.99 and 1.01), which indicated a good correlation between the measured and estimated Et. Therefore, the SEBAL model efficiently estimated the Et.

In addition, the results of irrigation performance were poor depending on comparison values of irrigation performance indicator results with recommended values of these indicators. Moreover, the results showed a close agreement between rainfall and runoff based on the value of the CoV values between Q observed/ Q proposed less than Q observed/ Q calculated indicates that the proposed model results have high accuracy and consistency than existing model. Therefore, the proposed model efficiently estimated the runoff.

Furthermore, the change of water content (ΔS) for the total study area was observed to have positive values that indicated that there was a percolation of groundwater in the crop root zone that can be used when water was insufficient.

This study concludes that the development of the GIS-based SEBAL model for calculating actual evapotranspiration provides an efficient and cost-effective means for estimation of evapotranspiration and it was verified that SEBAL will perform better if it is supported with field data. In addition, there should be a consensus between the period when water is provided from the source and the period when it is needed to increase the irrigation performance. This study provides the possibility of simulating the runoff either on a daily, monthly, seasonal or an annual scale for each rainfall. It can be useful for estimating runoff at places where observed runoff records are not available.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN MODEL SEBAL BERASASKAN-GIS UNTUK ANG-GARAN PENYEJATPELUHAN DI IRAQ

Oleh

HUSSEIN SABAH JABER

April 2017

Pengerusi : Profesor Dato Shattri Mansor, PhD
Fakulti : Kejuruteraan

Perubahan parameter cuaca dan iklim akan menyebabkan perubahan penyejatpeluhan yang ketara. Iraq mengalami masalah seperti pengurangan ketersediaan air dan perubahan iklim yang tidak menentu yang akan menjejaskan pertanian pengairan dan penyejatpeluhan. Oleh itu, anggaran penyejatpeluhan dan pengukuran yang seragam adalah penting kerana penyejatpeluhan (ET) adalah cara untuk mengeksploitasi pengairan dan pengairan dianggap sebagai tulang belakang kepada masyarakat petani.

Kebanyakan kajian di Iraq bergantung kepada kaedah tradisional untuk menganggarkan penyejatpeluhan. Kaedah konvensional tidak praktikal untuk kawasan yang besar kerana ia sukar dan mahal. Oleh itu, kajian ini bertujuan untuk menggunakan penderiaan jarak jauh (data imej satelit) dan GIS sebagai teknologi moden untuk menganggarkan penyejatpeluhan.

Dalam kajian ini, cadangan reka bentuk SEBAL telah dibangunkan dengan menggunakan GIS untuk membuat suatu model mudah untuk menganggarkan penyejatpeluhan yang membawa kepada pengurangan dalam kos dan masa dan memajukan usaha. Kemudiannya, model SEBAL berasaskan-GIS yang dicadangkan telah dinilai dengan data lapangan dengan menggunakan pekali regresi. Kawasan di sekitar empangan rendah Al-Hindiyah telah dipilih sebagai kawasan kajian kerana ia adalah salah satu sumber air yang paling penting di bahagian tengah Iraq. Satu siri imej satelit Landsat OLI (Operational Land Imager) dan data iklim kawasan kajian telah dikumpulkan untuk menentukan penyejatpeluhan sebenar menggunakan model berasaskan-GIS. Di samping itu, penyejatpeluhan sebenar telah digunakan untuk menilai prestasi pengairan berdasarkan beberapa petunjuk dan untuk menganalisis keseimbangan air bergantung pada kaedah keluk angka dalam GIS untuk kawasan kajian, masing-masing.
Keputusan menunjukkan bahawa model SEBAL berasaskan-GIS yang dicadangkan untuk anggaran penyejatpeluhan sebenar mempunyai persetujuan yang berpatutan dengan data lapangan berdasarkan (CoV) ialah antara (0.75%, 2.2%, 0.68% and 2.27%). Tambahan lagi, hasil prestasi pengairan adalah tidak baik bergantung kepada nilai perbandingan petunjuk prestasi pengairan dengan nilai-nilai petunjuk yang disyorkan. Selain itu, keputusan menunjukkan persetujuan rapat antara hujan dan air larian berdasarkan nilai Cov=0.10 yang diperolehi. Tambahan pula, ΔS bagi kese- luruhan kawasan kajian telah diperhatikan sebagai mempunyai nilai-nilai positif yang menunjukkan bahawa terdapat penelusan air bawah tanah di zon akar tanaman yang boleh digunakan apabila air tidak mencukupi.

Kajian ini menyimpulkan bahawa pembangunan model SEBAL berasaskan-GIS untuk mengira penyejatpeluhan sebenar menyediakan cara yang cekap dan kos-efektif untuk anggaran penyejatpeluhan dan ia telah mengesahkan bahawa SEBAL akan berprestasi lebih baik jika ia disokong dengan data lapangan. Di samping itu, perlu ada konsensus di antara tempoh apabila air disediakan dari sumber dan tempoh apabila ia diperlukan untuk meningkatkan prestasi pengairan. Kajian ini menyediakan kemungkinan simulasi air larian sama ada pada skala harian, bulanan, bermusim atau tahunan bagi setiap kali hujan. Ia mungkin menjadi berguna untuk menganggarkan air larian di tempat-tempat di mana rekod air larian yang diperhatikan tidak
ACKNOWLEDGEMENTS

First of all praise is due "Allah" for giving me the strength to complete this work.

I would like to express my sincere gratitude to my supervisor Prof. Dato. Dr. Shattri Mansor for his parental kindness, helpful advices, valuable suggestions, and encouragement throughout my study in general and my research in particular.

I would like also to express my sincere gratitude and deep thanks to my co-supervisor Asst. Prof. Dr. Biswajeet Pardhan and Asst. Prof. Dr. Noordin Ahmad for their valuable time dedication to help and provide scientific guidance for me and valuable suggestions also for their unlimited support to complete my thesis.

I would like to express my thanks to the university of Baghdad and university putra Malaysia (UPM) for their help me during the time of study and for their generosity to provide the data for this study.

Finally, I would like to offer my deep thanks and gratitude to my family and friends for their care, unlimited support, and encouragement to me without whom I couldn't complete my study.
I certify that a Thesis Examination Committee has met on 26 April 2017 to conduct the final examination of Hussein Sabah Jaber on his thesis entitled "Development of GIS-Based Sebal Model for Estimation of Evapotranspiration in Iraq" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Hussain bin Hamid, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Helmi Zulhaidi bin Mohd Shafri, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Abdul Halim bin Ghazali, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Nitin Kumar Tripathi, PhD
Professor
Asian Institute of Technology
Thailand
(External Examiner)

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 8 August 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Dato' Shattri Mansor, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

BiswaJeet Pradhan, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Noordin Ahmad, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:
- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: ______________________

Name and Matric No: Hussein Sabah Jaber, GS 39885
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee: Dato' Professor Dr. Shattri Mansor

Signature:
Name of Member of Supervisory Committee: Assoc. Prof. Dr. Biswajeet Pradhan

Signature:
Name of Member of Supervisory Committee: Dr. Noordin Ahmad
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Background

1.2 Problem Statement

1.3 Objectives

1.4 Thesis Outline

2 LITERATURE REVIEW

2.1 Introduction

2.2 GIS and Remote Sensing Applications for Water Resources Management

2.3 Evapotranspiration

2.4 Methods of Evapotranspiration Estimation

2.4.1 Empirical Methods

2.4.2 Water Balance

2.4.3 Pan Evaporation Measurement

2.4.4 Energy balance and micro-climatological methods

2.4.5 Evapotranspiration Estimation Utilizing Techniques in Remote Sensing

2.5 Assessment of Irrigation Performance by Remote Sensing and GIS

2.6 Runoff-Rainfall Modelling

2.6.1 Runoff-Rainfall Modelling Using Curve Number (CN) Method

2.6.2 Other Method Based on Soft Computing for Runoff-Rainfall Modelling

2.6.3 Other Method Based on GIS and Hydrological Models for Runoff-Rainfall Modelling

2.7 Summary and Research Gap.

2.7.1 Research Gap

3 METHODOLOGY

3.1 Research Study Area

3.1.1 Geographical Location

3.1.2 Climatic Parameters

3.1.3 Irrigated Land and Crop Types

3.1.4 Irrigation System

3.2 Data Acquisition

x
3.2.1 Ancillary Data 34
3.2.2 Satellite Images Data 35
3.2.3 Digital Elevation Model and Derivation of land slope 36
3.3 Overall Methodology 37
3.4 SEBAL Theoretical Underpinning 39
3.4.1 Net Radiation Estimation 39
3.4.2 Soil Heat Flux (G) Estimation 41
3.4.3 Sensible Heat Flux (H) Estimation 42
3.4.4 Latent Heat Flux (λET) Estimation 44
3.5 SEBAL Development in GIS 45
3.5.1 Net Radiation Model 45
3.5.2 Soil Heat Flux Model 46
3.5.3 Sensible Heat Flux Model 47
3.5.4 Latent Heat Flux and Reference Evapotranspiration Fraction (ETrF) Model. 48
3.6 Methods of Evapotranspiration Calculations: 50
3.6.1 Actual (ETa) and Potential Evapotranspiration (ETp) calculations Methods: 50
3.6.2 Pan Evaporation measurement 51
3.7 Irrigation Performance analysis 52
3.7.1 Overall Consumed Ratio (ep) 53
3.7.2 Relative Water Supply (RWS) 54
3.7.3 Depleted Fraction (DF) 54
3.7.4 Crop Water Deficit (CWD) 54
3.7.5 Relative Evapotranspiration (RET) 54
3.8 Data and Procedure Used for Rainfall-Runoff Modelling. 55
3.8.1 Preparation of soil texture in GIS 56
3.8.2 Derivation of land use classification map 57
3.8.3 Runoff Equations Formulation 60
3.8.4 Mean Monthly Rainfall Map. 62
3.9 Water Balance Analysis 63

4 RESULTS AND DISCUSSION 64
4.1 Introduction 64
4.2 Evapotranspiration parameters results using SEBAL model 64
4.2.1 SEBAL Parameters Digital Maps for March Month: 64
4.2.2 SEBAL Parameters Digital Maps for May Month 70
4.2.3 SEBAL Parameters Digital Maps for July Month 76
4.2.4 SEBAL Parameters Digital Maps for September Month: 81
4.2.5 Final Maps of actual evapotranspiration results using SEBAL. 87
4.3 Evaluation of SEBAL Model Results. 90
4.3.1 Comparison SEBAL data with field data 90
4.4 Irrigation Performance Indicators Results 94
4.4.1 Overall consumed ratio (ep) 97
4.4.2 Relative water supply (RWS) 97
4.4.3 Depleted fraction (DF) 98
4.4.4 Crop water deficit (CWD) 98
4.4.5 Relative evapotranspiration (RET) 98
4.5 Rainfall- runoff modelling and water balance analysis results 100
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions
 5.1.1 Development of a geospatial SEBAL based on GIS for estimation of evapotranspiration.
 5.1.2 Evaluating of a hybrid GIS-SEBAL for estimation of evapotranspiration.
 5.1.3 Assessment of irrigation performance for the selected study area.
 5.1.4 Investigation of runoff-rainfall modelling for analyzing of water balance.

5.2 Recommendations

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pros and cons of ET estimation methods.</td>
</tr>
<tr>
<td>3.1</td>
<td>Main soil characteristics.</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of the average climatic parameters data for the study area.</td>
</tr>
<tr>
<td>3.3</td>
<td>Crop water requirements (mm).</td>
</tr>
<tr>
<td>3.4</td>
<td>Dates of cultivated for main crops of study area</td>
</tr>
<tr>
<td>3.5</td>
<td>Average climate data of the studied period</td>
</tr>
<tr>
<td>3.6</td>
<td>Diverted water to sections during the studied period.</td>
</tr>
<tr>
<td>3.7</td>
<td>Series of Landsat images over the study area.</td>
</tr>
<tr>
<td>3.8</td>
<td>Values of derived actual evapotranspiration (ETa) for study area.</td>
</tr>
<tr>
<td>3.9</td>
<td>Data sources used to carry out rainfall-runoff modeling.</td>
</tr>
<tr>
<td>3.10</td>
<td>Support Vector Machine (SVM) accuracy assessment.</td>
</tr>
<tr>
<td>3.11</td>
<td>Maximum Likelihood (ML) accuracy assessment.</td>
</tr>
<tr>
<td>3.12</td>
<td>Spectral Angle Mapper (SAM) accuracy assessment.</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between the model predictions and measured for March.</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison between the model predictions and measured for May.</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison between the model predictions and measured for July.</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison between the model predictions and measured for September.</td>
</tr>
<tr>
<td>4.5</td>
<td>Results of mean monthly potential evapotranspiration for the selected month.</td>
</tr>
<tr>
<td>4.6</td>
<td>Results of mean monthly actual evapotranspiration for the selected month.</td>
</tr>
<tr>
<td>4.7(a)</td>
<td>Values of average monthly change in storage.</td>
</tr>
<tr>
<td>4.7(b)</td>
<td>Results of monthly irrigation performance assessment indicators.</td>
</tr>
<tr>
<td>4.8</td>
<td>Results of seasonally irrigation performance assessment indicators.</td>
</tr>
<tr>
<td>4.9</td>
<td>CN values of the study area.</td>
</tr>
<tr>
<td>4.10</td>
<td>The comparison between the proposed model and the existing hydrological model (Masoud, 2015) of rainfall-runoff.</td>
</tr>
<tr>
<td>4.11</td>
<td>Values of precipitation and irrigation for selected months.</td>
</tr>
</tbody>
</table>
4.12(a) Values of evapotranspiration and discharge for selected months. 107
4.12(b) Values of Crops water requirement for selected months. 108
4.13 Values of average monthly change in storage (ΔS). 108
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Location of the Study Area.</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Main canals and crop for the study area</td>
<td>33</td>
</tr>
<tr>
<td>3.3</td>
<td>(a) DEM of the study area (b) land slope derived from DEM.</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Schematic diagram of the methodology.</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Surface Energy Balance.</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Net Radiation Calculation Flow.</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Soil Heat Flux Estimation Flow.</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>Sensible Heat Flux Estimation Flow.</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Reference ETrF Estimation Flow.</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>SEBAL Tools in GIS.</td>
<td>49</td>
</tr>
<tr>
<td>3.11</td>
<td>Schematic diagram of irrigation performance analysis.</td>
<td>50</td>
</tr>
<tr>
<td>3.12</td>
<td>Research Activities for rainfall-runoff modelling.</td>
<td>53</td>
</tr>
<tr>
<td>3.13</td>
<td>Soil texture of the study area derived from USGS soil GIS layer.</td>
<td>56</td>
</tr>
<tr>
<td>3.14</td>
<td>Land cover map derived from Landsat OLI.</td>
<td>57</td>
</tr>
<tr>
<td>3.15</td>
<td>Average monthly rainfall map.</td>
<td>58</td>
</tr>
<tr>
<td>3.16</td>
<td>Map classification by ML.</td>
<td>58</td>
</tr>
<tr>
<td>3.17</td>
<td>Map classification by using SAM.</td>
<td>58</td>
</tr>
<tr>
<td>3.18</td>
<td>Land use map.</td>
<td>60</td>
</tr>
<tr>
<td>3.19</td>
<td>Mean Monthly (March) rainfall map.</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>SEBAL model parameters maps for March. (a) Soil Heat Flux, (b) Sensible Heat Flux, (c) Net Radiation, (d) ETrF, (e) Surface Emissivity, (f) Surface Albedo, (g) NDVI, (h) LST, (i) ETinst, (j) ETr24.</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>SEBAL model parameters maps for May. (a) Soil Heat Flux, (b) Sensible Heat Flux, (c) Net Radiation, (d) ETrF, (e) Surface Emissivity, (f) Surface Albedo, (g) NDVI, (h) LST, (i) ETinst, (j) ETr24.</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>SEBAL model parameters maps for July. (a) Soil Heat Flux, (b) Sensible Heat Flux, (c) Net Radiation, (d) ETrF, (e) Surface Emissivity, (f) Surface Albedo, (g) NDVI, (h) LST, (i) ETinst, (j) ETr24.</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>SEBAL model parameters maps for September. (a) Soil Heat Flux, (b) Sensible Heat Flux, (c) Net Radiation, (d) ETrF, (e) Surface Emissivity, (f) Surface Albedo, (g) NDVI, (h) LST, (i) ETinst, (j) ETr24.</td>
<td>86</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Daily actual evapotranspiration (ETa) maps. (a) ETa for March, (b) ETa for May, (c) ETa for July, (d) ETa for Sep.</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Comparison between SEBAL and Pan measurement for March.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison between SEBAL and Pan measurement for May.</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison between SEBAL and Pan Measurement for July.</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Comparison between SEBAL and Pan Measurement for Sep.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Daily Potential evapotranspiration maps for the study area.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>(a) Curve number, (b) slope adjusted curve number.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Average runoff depth derived from land use and soil information in GIS.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Relationship between mean annual rainfall and modelled runoff coefficient.</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>The comparison between Q observed and Q calculated (Q Masoud).</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>The comparison between Q observed and Q proposed.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>ANNs</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>ANFIS</td>
<td>Adaptive Neuro-Fuzzy Inference System</td>
</tr>
<tr>
<td>CN</td>
<td>Curve Number</td>
</tr>
<tr>
<td>CWD</td>
<td>Crop water deficit</td>
</tr>
<tr>
<td>DF</td>
<td>Depleted fraction</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>ETM+</td>
<td>Enhanced Thematic Mapper Plus</td>
</tr>
<tr>
<td>EBEC</td>
<td>Energy-budget eddy covariance</td>
</tr>
<tr>
<td>FAO</td>
<td>Food Agricultural Organization</td>
</tr>
<tr>
<td>FAR</td>
<td>Field application ratio</td>
</tr>
<tr>
<td>FFBP</td>
<td>Feed Forward Back Propagation</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GEP</td>
<td>Gene Expression Programming</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LULC</td>
<td>Land Use Land Cover</td>
</tr>
<tr>
<td>LC</td>
<td>Land Cover</td>
</tr>
<tr>
<td>LISS-III</td>
<td>Linear Imaging and Self Scanning–III</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MAE</td>
<td>mean absolute errors</td>
</tr>
<tr>
<td>MRE</td>
<td>mean relative errors</td>
</tr>
<tr>
<td>MBE</td>
<td>Mean Bias Errors</td>
</tr>
<tr>
<td>METRIC</td>
<td>Mapping Evapotranspiration with high Resolution and Internalized Calibration</td>
</tr>
<tr>
<td>MLR</td>
<td>Multi Linear Regression</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic Atmospheric Administration.</td>
</tr>
<tr>
<td>NSE</td>
<td>Nash–Sutcliffe efficiency</td>
</tr>
<tr>
<td>NDWI</td>
<td>Normalized Difference Water Index</td>
</tr>
<tr>
<td>OLI</td>
<td>Operational Land Imager</td>
</tr>
<tr>
<td>PF</td>
<td>Penman –FAO</td>
</tr>
<tr>
<td>PM</td>
<td>Penman Monteith</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RS</td>
<td>Remote sensing</td>
</tr>
<tr>
<td>RIS</td>
<td>Relative Irrigation supply</td>
</tr>
<tr>
<td>RET</td>
<td>Relative evapotranspiration</td>
</tr>
<tr>
<td>RHmean</td>
<td>Relative Humidity average</td>
</tr>
<tr>
<td>RWS</td>
<td>Relative water supply</td>
</tr>
<tr>
<td>SEBAL</td>
<td>Surface Energy Balance Algorithm for Land</td>
</tr>
<tr>
<td>SEBS</td>
<td>Soil Energy Balance System</td>
</tr>
<tr>
<td>SEBI</td>
<td>Surface energy balance index</td>
</tr>
<tr>
<td>S-SEBI</td>
<td>Simplified surface energy balance index</td>
</tr>
<tr>
<td>SVAT</td>
<td>Soil vegetation atmosphere transfer</td>
</tr>
<tr>
<td>TSEB</td>
<td>Two-source energy balance</td>
</tr>
<tr>
<td>SDISTA</td>
<td>Semi-distributed time area</td>
</tr>
<tr>
<td>SWAT</td>
<td>Soil and Water Analysis Tool</td>
</tr>
<tr>
<td>SDISTA</td>
<td>Semi-distributed time area</td>
</tr>
<tr>
<td>SWAT</td>
<td>Soil and Water Analysis Tool</td>
</tr>
<tr>
<td>WDVI</td>
<td>Weighted Difference Vegetation Index</td>
</tr>
<tr>
<td>WUE</td>
<td>Water Use Efficiency</td>
</tr>
<tr>
<td>ETp</td>
<td>the evapotranspiration’s potential in mm</td>
</tr>
<tr>
<td>Pe</td>
<td>the value of (effective) precipitation in mm</td>
</tr>
<tr>
<td>Vc</td>
<td>volume of supplied water used for irrigation</td>
</tr>
<tr>
<td>Pg</td>
<td>gross precipitation in mm</td>
</tr>
<tr>
<td>ETc</td>
<td>Crop Evapotranspiration</td>
</tr>
<tr>
<td>Kc</td>
<td>Crop Coefficient</td>
</tr>
<tr>
<td>Rn</td>
<td>Net Radiation</td>
</tr>
<tr>
<td>R</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>R²</td>
<td>Coefficient of Determination</td>
</tr>
<tr>
<td>Rs ↓ and Rs ↑</td>
<td>Incoming and reflected shortwave radiations</td>
</tr>
<tr>
<td>RL ↓ and RL ↑</td>
<td>Incoming and outgoing long wave radiations</td>
</tr>
<tr>
<td>Gsc</td>
<td>The solar constant equal to 1,367 W m⁻²</td>
</tr>
<tr>
<td>θ</td>
<td>Solar inclination angle in radians</td>
</tr>
<tr>
<td>de-s</td>
<td>the relative distance between Earth and Sun in astronomical units</td>
</tr>
<tr>
<td>τₜ.sw</td>
<td>One-way atmospheric transitivity</td>
</tr>
<tr>
<td>Es</td>
<td>Surface emissivity</td>
</tr>
<tr>
<td>Ts</td>
<td>Surface temperature</td>
</tr>
</tbody>
</table>
\(\rho \) Air density (kg/m\(^3\))
\(C_p \) Air specific heat (1004 J/kg/K)
\(dT \) (K) the temperature difference (\(T_1 - T_2 \)) between two heights (\(z_1 \) and \(z_2 \))
\(\text{rah} \) The aerodynamic resistance to heat transport (s/m).
\(k \) Constant value (von Karman)
\(u_x \) Wind’s speed measured in m/s at a particular height
\(z_{om} \) The momentum roughness length (m).
\(u^* \) The friction velocity
\(\lambda \cdot ET \) An instantaneous value for the time of the satellite overpass (W/m\(^2\))
\(\text{ETinst} \) The instantaneous ET (mm/hr)
\(\lambda \) The amount of heat absorbed for a kilogram of water that evaporates (J/kg)
\(\text{ETrF} \) Reference ET Fraction
\(\text{ETr-24} \) The cumulative 24-hour ET for the day of the image
\(F \) Actual Retention (mm)
\(S \) Retention (mm).
\(Q \) Runoff Depth (mm).
\(P \) Total Rainfall (mm)
\(I \) Initial Abstraction (mm).
\(\Delta S \) The change in the amount of water stored in the surface layer (root zone (mm month \(^{-1}\)).
\(T_s \) Surface Temperature
\(e_a \) Actual vapor pressure (kPa).
\(e_s \) Saturation vapor pressure (kPa).
\(G \) Soil heat flux (MJ m\(^{-2}\) d\(^{-1}\)).
\(H \) Soil heat flux (MJ m\(^{-2}\) d\(^{-1}\)).
\(R_n \) Net radiation at the crop surface (MJ m\(^{-2}\) d\(^{-1}\)).
\(R_s \) Solar radiation (MJ m\(^{-2}\) d\(^{-1}\)).
\(T_{mean} \) Average air temperature (°C)
\(U_2 \) Wind speed measured at 2 m height (m s\(^{-1}\)).
\(Z \) Altitude of the location (m).
\(\text{ETa} \) Actual Evapotranspiration.
\(ep \) Overall consumed ratio.
CHAPTER 1
INTRODUCTION

1.1 Background

Evapotranspiration (ET) is one of the major components in the hydrological cycle (Telis & Koutsogiannis, 2007). Hence, estimation of this parameter and standardized measurement related to ET possesses high degree of importance. ET varies by location, climate, crop type, soil type, and moisture availability. Evapotranspiration increases with increasing radiation, decreasing humidity, increasing temperature, and increasing wind speed. The increase in evapotranspiration should be of necessary concern to permit studies to estimate the increases and integrate in water management strategies. It is vital to put forth the effort to know the impact of climate change on evapotranspiration and use the information for developing adaptations in water resources management (Allen et al. 2005).

Remote sensing-based surface energy flux modeling is good for mapping spatially distributed ET for large area application, where conventional measurement are not practical. Various models are available and these models have some limitations and are mostly applied to agricultural areas mainly for quantifying crop evapotranspiration for irrigation management. Remote sensing offers data valuable to estimate surface energy fluxes in the thermal infrared portion of the spectrum (Bastiaanssen et al., 2001; Bos et al., 2005).

The mean for exploiting irrigation is evapotranspiration (ET). Irrigation is considered as the backbone of the peasant society. This society constitutes the largest percentage of the world population. It is estimated that around 70 percent of global water usage is demanded for irrigation, which in turn contributes to approximately 30 to 40 percent of the world’s food production (Bastiaanssen et al., 2000). Hence, the assessment of irrigation performance and analysis of water balance require the usage of effective tools. These tools enable the decision makers to study large area and at the same time analyses large number of variables related to irrigation performance and water balance. Remote sensing and GIS techniques are considered as efficient techniques that can be used for achieving such works. (Molden et al., 1998).

1.2 Problem Statement

Currently, in some countries such as Iraq, that faces challenges such as reduction in water availability and unpredictable climate change where a change in weather parameters and climate will result in a significant change in evapotranspiration. The worst-case state for water supply is decreasing rainfall, increasing temperatures, and increasing evapotranspiration that Iraq suffer from it. Therefore, estimation of evapotranspiration and standardized measurement are challenging.
Most of the studies in Iraq depend on traditional methods to estimate evapotranspiration. Measurement of evapotranspiration based on traditional methods and climate data is difficult and costly particularly on large area. Therefore, the current study aims to use remote sensing (satellite imagery data) and GIS as modern technologies to calculate evapotranspiration. Based on the best knowledge of the author of this thesis, there is no studies have been carried out to estimate of evapotranspiration parameters via remote sensing and GIS techniques in Iraq. Remote sensing techniques can be used to gather data over an entire areas, while traditional field data collecting depended on sample areas. Combination remote sensing data with field data can be an extremely active tool to study the performance of large irrigated areas and to develop spatiotemporal data. Therefore, using GIS and remote sensing techniques for estimating of evapotranspiration have many advantages, these include reduction in cost, time, efforts and providing an integrated assessment approach for irrigation. Studies focused on estimating of evapotranspiration are very significant because these studies help in irrigation management practices. In current study, Geographic Information Systems (GIS) -based Surface Energy Balance Algorithm for Land (SEBAL) model has been developed and used to estimate of evapotranspiration as the first time in Iraq.

The SEBAL model has been developed by using GIS to make a simple model for estimation of evapotranspiration that leads to minimize the cost and time. In addition, estimation of evapotranspiration from the SEBAL model is the most crucial part in this research for irrigation performance and water balance analysis. SEBAL can be applied and implemented for solving evapotranspiration and irrigation problems.

1.3 Objectives

The overall objective of this study is to develop a GIS-based SEBAL model for estimation of evapotranspiration in Iraq. Specifically, the objectives of this research are summarized as follows:

1. To develop a geospatial Surface Energy Balance Algorithm for Land (SEBAL) based on Geographic Information Systems (GIS) for evapotranspiration modelling.
2. To evaluate the hybrid GIS- SEBAL model for estimation of evapotranspiration.
3. To assess irrigation performance analysis of the study area (Al-Hindiyah Barrage, Babil city, Iraq) based on SEBAL model and several indicators.
4. To build rainfall-runoff model for analyzing of the water balance for the study area.
1.4 Thesis Outline

Chapter one presents an introduction to the research conducted which contains research background, problem statement, research objectives and the overall organization of this thesis.

Chapter two highlights the general literature review of the research. In this chapter, information about the research objectives is described.

Chapter three focuses on the research methodology as well as the materials used in the study.

Chapter four discusses the results obtained from the research objectives that are divided into four sections. The first section presents the production of evapotranspiration parameters maps in GIS. The second section contains the discussion and evaluation of the SEBAL results using field data. The third section presents the assessment of irrigation performance for the study area. The final section contains the modeling of rainfall-runoff and analyzing of water balance for the study area.

Chapter five presents the conclusions obtained from this research. Discussion on future works is also presented.
REFERENCES

Rao, K. D., Rao, V. V., & Dadhwal, V. K. (2014). Improvement to the Thornthwaite method to study the runoff at a basin scale using temporal remote sensing data. Water resources management, 28(6), 1567-1578.

