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Reinforced concrete (RC) deep beams can be defined as the main structural component 

used in buildings and bridges to transfer heavy loads. Due to their relatively low shear 

span to depth ratio (less than 2.0), a linear strain distribution cannot be applied, thus 

there is a need for a rational model to address this nonlinearity. Numerous codes of 

practice and research recommended the use of the strut-and-tie model (STM) to 

analyse the discontinuity regions (D-regions) and consequently deep beams. The STM 

is an effective shear design method based on the lower-bound plasticity theorem. The 

significance of this method is that in D- regions, the STM model can predict the shear 

strength of members with better accuracy than traditional flexure theory.  

 

 

Since the last decades, using carbon fibre reinforced polymer (CFRP) as strengthening 

material for RC beams has become a topic of interest among researchers and CFRP 

has been suggested for structures including concrete deep beams. Moreover, RC 

structures may be subjected to various dynamic loading types. Considering all these 

loading types, it is important to understand the effect of loading rate on such structures. 

Nevertheless, scarce studies have been reported regarding the loading rates effect. In 

view of these cases, STM is not being able to predict the shear strength of deep beams, 

effectively. 

 

 

Thus, the objective of this study is to modify the STM to analyse concrete deep beams 

for the two cases. This study also highlights the development of an energy absorption 

capacity model of concrete beams under different loading rates. 

 

 

An STM of unstrengthened concrete deep beam is modified in two cases: (1) deep 

beam strengthened with FRP sheet under static loads, and (2) deep beam subjected to 

different loading rates. Unlike existing STMs, this study implements two FRP failure 
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modes, namely FRP debonding and tensile rupture failure mode. Moreover, the 

particle swarm optimization (PSO) algorithm was used to search for the optimum set 

of unknown coefficients which are stress distribution and concrete tensile reduction 

factors. The optimum proposed model was built based on the data collected from 

existing experimental programs and the proposed finite element models. 

 

 

The proposed models have been verified against experimental data collected from this 

study and existing literature. The proposed STM approaches exhibit efficiency in 

assessing ultimate shear strength capacity comparison with the experimental results 

and can be used as design guides. The experimental results show that the growth of 

energy absorption of CFRP-strengthened RC deep beams varies from approximately 

15% to 51% for shear span-to-effective depth ratios of 1.0 to 1.75 and 15% to 86% for 

shear reinforcement ratios of 0% to 0.4%, respectively. The results show that the PSO 

technique is suitable for assessing structural engineering problems and can be used as 

an efficient tool to explore the optimal solutions for different structural problems. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk Ijazah Doktor Falsafah 

MODEL STRUT-AND-TIE MODIFIED UNTUK RASUK DALAM KONKRIT 

BERTETULANG DENGAN SISTEM CFRP TERIKAT DI LUARAN 

Oleh 

AMMAR NASIRI HANOON 

Mei 2017 

Pengerusi : Profesor Mohd. Saleh Jaafar, PhD 

Fakulti : Kejuruteraan 

Rasuk dalam konkrit bertetulang (RC) boleh ditakrifkan sebagai komponen struktur 

utama yang digunakan di dalam bangunan dan jambatan untuk membawa beban berat. 

Oleh kerana nisbah rentang ricih terhadap ukurdalam yang secara relatifnya rendah 

(kurang daripada 2.0), agihan terikan linear tidak boleh digunakan, dengan itu terdapat 

keperluan untuk model rasional bagi menangani ketaklelurusan ini. Banyak kod 

amalan dan penyelidikan telah mencadangkan penggunaan Strut-and-Tie Model 

(STM) untuk menganalisis kawasan terganggu (kawasan-D) dan seterusnya rasuk 

dalam. STM adalah kaedah reka bentuk ricih berkesan berdasarkan teorem keplastikan 

batasan-bawah. Kepentingan kaedah ini adalah bahawa di dalam kawasan-D, model 

STM boleh meramalkan kekuatan ricih anggota dengan ketepatan yang lebih baik 

daripada teori lenturan tradisional. 

Sejak beberapa dekad yang lalu, penggunaan polimer bertetulang gentian karbon 

(Carbon Fibre Reinforced Polymer, CFRP) sebagai bahan pengukuh untuk rasuk  RC  

telah menjadi satu topik yang menarik di kalangan penyelidik dan CFRP telah 

dicadangkan untuk struktur termasuk rasuk konkrit dalam. Selain itu, struktur RC 

mungkin tertakluk kepada pelbagai jenis pembebanan dinamik. Mengambil kira 

semua jenis bebanan ini, adalah penting untuk memahami kesan kadar pembebanan 

ke atas struktur tersebut. Namun, hanya kajian yang terhad telah dilaporkan mengenai 

kesan kadar beban. Memandangkan kes-kes ini, STM pada ketika ini tidak dapat 

meramalkan kekuatan ricih rasuk dalam dengan berkesan. 

Oleh itu, objektif kajian ini adalah untuk mengubah suai STM bagi menganalisis rasuk 

konkrit dalam untuk kedua-dua kes. Kajian ini juga menunjukkan pembangunan 

model kapasiti penyerapan tenaga rasuk konkrit di bawah kadar-kadar pembebanan 

yang berbeza. 
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STM rasuk konkrit dalam yang tidak diperkuatkan diubahsuai di dalam dua kes: (1) 

rasuk dalam diperkuatkan dengan kepingan FRP di bawah beban statik, dan (2) rasuk 

dalam tertakluk kepada kadar pembebanan yang berbeza. Tidak seperti STMs sedia 

ada, kajian ini melaksanakan dua mod kegagalan FRP, iaitu nyahikatan FRP dan mod 

kegagalan pecah tegangan. Selain itu, algoritma pengoptimuman kumpulan zarah 

(Particle Swarm Optimization, PSO) telah digunakan untuk mencari set optimum bagi 

pekali-pekali yang tidak diketahui yang berupa faktor-faktor agihan tegasan dan 

pengurangan  tegangan konkrit. Model optimum yang dicadangkan dibina berdasarkan 

data yang diperoleh daripada program eksperimen sedia ada dan cadangan model 

unsur terhingga (Finite Element Model, FEM). 

Model-model yang dicadangkan telah disahkan dengan data eksperimen yang 

dikumpul daripada kajian ini dan kepustakaan yang sedia ada. Pendekatan STM yang 

dicadangkan menunjukkan kecekapan dalam menilai kapasiti kekuatan ricih yang 

muktamad berbanding dengan keputusan eksperimen dan ianya boleh digunakan 

sebagai panduan reka bentuk. Keputusan eksperimen menunjukkan bahawa 
pertumbuhan penyerapan tenaga rasuk dalam RC diperkukuhkan-CFRP berbeza  dari 

kira-kira 15% kepada 51% untuk nisbah rentang ricih-ke- ukurdalam berkesan dengan 

nilai 1.0 hingga 1.75 dan 15% ke 86% masing-masing untuk nisbah tetulang ricih 

sebanyak  0% hingga 0.4%,. Keputusan menunjukkan bahawa teknik PSO ini sesuai 

untuk menilai masalah kejuruteraan struktur dan ianya boleh digunakan sebagai 

kaedah yang cekap untuk menyiasat penyelesaian optimum bagi masalah struktur 

yang berbeza. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background 

 

Reinforced concrete (RC) deep beams may be utilized in pile caps, bunkers, shear 

walls, floor diaphragms, and many multistorey RC buildings (Figure 1.1). As the ratio 

of shear span to effective depth ratio becomes less than two for simply supported 

beams and 2.5 for continuous beams, the theory of plane section remaining plane after 

deformation cannot be substantially utilized to determine the bending and shear 

stresses (Raju (1988); Kong (2006)). 

 

 

Considering the relatively low shear span-to-depth ratio of deep beams, their structural 

behavior greatly differs from those of slender beams. In particular, the response of 

deep beams is characterized by nonlinear stress distribution (Figure 1.2) that occurs 

even in the elastic load range. In addition, the strength of deep beams with a normal 

amount of longitudinal reinforcement is usually controlled by shear instead of flexure. 

Consequently, establishing methods of accurately predicting the shear strengths of 

deep beams have become an important research topic in this field. 

 

 

         
 

Figure 1.1 : Applications of RC deep beams 

 

 

 



© C
OPYRIG

HT U
PM

2 
 

 
 

Figure 1.2 : Strain distribution in deep and slender portion of RC beams  

(Chu and Charles (1979)). 

 

 

Several studies have been conducted to predict the shear strength of RC deep beams 

(Kong et al. (1978); Mau and Hsu (1989); Park and Kuchma (2007a)). Many 

researchers used strut-and-tie model (STM) to assess the ultimate shear strength of RC 

deep beams (Matamoros and Wong (2003); Park and Kuchma (2007a); Arabzadeh et 

al. (2009)). Several codes and standards, such as the American Concrete Institute 

(ACI318-11 (2011)) and the Canadian Standard Association (CSA-A23.3 (1994)), 

adopt the STM approach for deep beam design. Additionally, the STM has been 

applied to predict the capacity of other discontinuity region (D-region) members, such 

as corbel (Lu and Lin (2009)), dapped-end beams (Lin et al. (2003)), or joint in decked 

bulb-tee bridge (Li et al. (2013)). The STM idealizes the complex flow of stresses in 

a structural member as truss-like members. The flow of concentrated compressive 

stresses in the concrete can be represented by diagonal struts, whereas the induced 

concentrated tensile stresses can be represented by tension ties, which are resisted by 

longitudinal steel reinforcement. The regions where struts and ties intersect each other 

are called nodal zones. 

 

 

During their service life, RC structures may suffer from various deteriorations, such 

as cracks, concrete spalling, large deformation, and sometimes may collapse. Various 

factors are causing these deteriorations, such as aging, corrosion of steel 

reinforcement, increased loads, and environmental effects (Wang et al. (2006); El 

Maaddawy and Sherif (2009); Dong et al. (2010)). Therefore, strengthening such 

structures to resist possible high loading is necessary (CSA-A23.3 (1994); Sundarraja 

and Rajamohan (2009); Wang and Hsu (2009); Dong et al. (2010)). Several options 

are available for retrofitting the damaged structural elements. Fiber-reinforced 

polymer (FRP) has been widely used to retrofit or repair damaged structural elements; 

FRP was also utilized to increase the loading capacity, ductility and stiffness of the 

structures because of its corrosion resistance, light weight, high tensile strength, 

durability, and simple installation (Zwicky and Vogel (2006); Deng and Lee (2007); 

Wang et al. (2008); Tanarslan et al. (2012)). 
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In spite of the extensive research on the STM, few models applicable to CFRP-

strengthened RC deep beams have been achieved, such as the modification proposed 

by Zhang et al. (2004), Park and Aboutaha (2009), Godat and Chaallal (2013), and 

Panjehpour et al. (2014). Some of these models did not consider the effects of FRP 

scheme and its orientation. For instance, the STM proposed by Panjehpour et al. 

(2014) was established based on the strength of deep beams with side wrapping. 

However, the effects of CFRP scheme and orientation were not considered. Therefore, 

further studies were required to develop an improved understanding of the behavior 

of CFRP-strengthened RC deep beams and to develop a modeling technique that 

accurately predicted the static shear capacity. As mentioned previously, the 

assumptions of bending theory cannot be used for RC deep beams. Thus, some 

assumptions are necessary, such as the value of stress distribution along the cross 

section. This study presents the difficulty to solve such problem by conventional 

analytical methods. Therefore, using an optimization technique is important to solve 

this complex problem. 

 

 

Engineers design structures that fulfill design requirements at optimum possible cost. 

Optimization provides engineers with a variety of techniques to deal with these 

problems (Kaveh and Talatahari (2010)). These techniques can be classified into two 

main groups, namely, classical and metaheuristic approaches (Kaveh et al. (2008)). 

Classical approaches are based on mathematical programming, whereas metaheuristic 

approaches depend on ideas inspired from nature. Metaheuristic approaches are not 

affected by the conflicts of mathematical programming, such as the continuous 

objective function or requirement for calculating the gradients of objective function 

and constraints. 

 

 

Genetic algorithms (Holland (1992)), ant colony optimization (Dorigo et al. (2006)), 

harmony search (Lee and Geem (2004)), cuckoo search (Gandomi, Talatahari, et al. 

(2013)), bat algorithm (Gandomi, Yang, et al. (2013)), krill herd (Gandomi and Alavi 

(2012)), and particle swarm optimization (PSO) (Eberhart and Kennedy (1995)) are 

common metaheuristic techniques to address engineering problems. Researchers used 

PSO technique in engineering applications because of its few parameters and easy to 

carry out (Schutte and Groenwold (2003); Li et al. (2009); Hadidi et al. (2011)). PSO 

is based on the simulation of the social behavior of bird flocking. 

 

 

PSO is effective in solving engineering problems (Eslami et al. (2012)). Given its few 

parameters, this method provides high accuracy in finding suboptimal solutions in a 

reasonable amount of time. Thus, researchers are encouraged to utilize PSO for 

different optimization problems in diverse branches of knowledge. PSO has been 

successfully used in optimization problems in structural engineering (Zhang et al. 

(2004); Islam et al. (2005); Benachour et al. (2008); Jalali et al. (2012)). Chen et al. 

(2013) developed a method based on PSO and finite element (FE) analysis for the 

reliability-based design of composite structures. Kazunori Fujikake et al. (2009) 

developed a program using PSO algorithm for the cost-optimum design of RC beams. 
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A number of experimental studies works on strength and ductility capacity of RC 

structures have been carried out in the previous, which indicated that the ductility 

capacity was substantially affected by loading types and conditions (loading rates). As 

far as such as earthquake motion is concerned, the design based on ductility capacity 

is not almost reasonable. Thus, the previous studies proposed that the energy 

absorption capacity of concrete structures is well proper index for seismic safety. This 

study attempts to propose an energy absorption model by using PSO algorithm. 

 

 

1.2 Problem statements 

 

The weakness of many existing concrete structures has been demonstrated by various 

incidents over the last half century. Many of these structures were not designed to 

withstand severe loading because of various factors, such as aging, corrosion of steel 

reinforcement, and dynamic loading (Wang et al. (2006); El Maaddawy and Sherif 

(2009); Dong et al. (2010)). Several options are available for retrofitting or repairing 

structural members of the existing RC structures to overcome the design error or 

unexpected loads. The commonly used options are to bond carbon fiber reinforced 

polymer (CFRP) sheets into the damaged members to restrain cracks and to increase 

the load carrying capacity, strengthening stiffness of structures (Deng and Lee (2007); 

Wang et al. (2008)). 

 

 

The need for FRP strengthening of RC structural elements including B and D regions 

(as presented in section 2.3.2) has been on the increase since the last decade. Regions 

are parts of the structure with a complicated variation in strain. In essence, D regions 

contain the geometry. D regions are near to the concentrated forces or step changes in 

geometry, which are so-called geometrical discontinuities. The STMs are widely used 

in certain types of structural elements in reinforced concrete and in regions with 

complexity of the stress state, called regions ‘‘D’’, where the distribution of 

deformations in the cross section is not linear. 

 

 

Based on the above finding, the following problems have been drawn. 

 

1. Aside from research conducted on the behavior of RC deep beams using FRP 

as strengthening, few studies were carried out on the energy absorption and 

ductility of FRP-strengthened RC deep beams with different shear spans to 

effective depth ratio and FRP sheet scheme and orientation. 

 

2. FRP-strengthened RC deep beams under static loads. 

(a) The current design codes and guides (CSA-S806-02 (2002); ACI-440 

(2006); ISIS (2007)) provide no shear design method specifically for deep 

concrete members strengthened with FRP sheets. Designers only have 

guidance on using sectional models, which may result in uneconomical 

designs in instances where large members are used, as is the case when RC 

deep beams are designed using sectional models. 

(b) Despite the ease of its use and spread, the problem is that the STM is not 

able to predict shear strength of RC deep beams strengthened with FRP 

sheet. Moreover, very few models are applicable to FRP-strengthened RC 
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deep beams. In addition, most of these models did not consider the FRP 

scheme and its orientation. The need for rational method to predict the 

shear strength in RC deep beams with FRP strengthening is the 

significance of this research problem. However, most of the STMs 

proposed did not take inconsideration the effect of FRP failure modes, such 

as debonding and FRP tensile rupture failure modes. 

(c) The stress distribution along the diagonal strut of deep beam cannot be 

determined directly by the assumptions of the beam theory because of its 

nonlinearity. Therefore, more assumptions are needed to find the stress 

distribution factors. However, assuming these factors requires exhaustive 

traditional trial-and-error procedure to find the optimum assumption. 

Therefore, this study estimates the values of stress distribution factors 

using an optimization technique to address these nonlinearity problems. 
 

3. Unstrengthened RC deep beams under wide range of loading rates. 

Strain rate effects at the constitutive level of structural material have been well 

documented in the literature. However, investigation into the structural 

behavior under varying loading rates is very limited (Somraj et al. (2013)). To 

the best knowledge of the researcher, less STMs are currently available in the 

literature especially for RC deep beams subjected to various loading rates. 

 

4. Energy absorption capacity of RC beams under different loading rates. 

A number of experimental studies on strength and ductility capacity of RC 

structures were performed. These studies displayed that the ductility capacity 

was substantially influenced by loading types and rates. For instance, the 

design based on ductility capacity is very conservative in structures subjected 

to earthquake motion. Thus, the energy absorption capacity of RC structures is 

a proper index for seismic safety. Apart from research conducted on the energy 

absorption of concrete beams, there is no research was conducted on the energy 

absorption of RC deep beams subjected to different loading rates with different 

parameters, such as shear span to effective depth ratio, concrete compressive 

strength, and steel reinforcement ratios. 

 

 

1.3 Objectives of the study 

 

The overall objective of this study is to ascertain the behavior of strengthened RC deep 

beams with unidirectional CFRP sheets. Specifically, the objectives of this research 

are summarized as follows: 

 

1. To identify the failure modes, ultimate capacity, ductility, energy absorption 

and cracks width of unstrengthened and CFRP-strengthened RC deep beams 

with different shear spans to the effective depth ratios, CFRP scheme and 

orientation, and various shear reinforcement ratios. 

2. To propose modified STM for CFRP-strengthened RC deep beams based on 

PSO algorithm and new strut effectiveness factor for CFRP-strengthened RC 

deep beams subjected to static loads. 

3. To propose modified STM and new strut effectiveness factor for 

unstrengthened RC deep beams under different loading rates. 
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4. To propose an empirical relationship for the energy absorption capacity of RC 

deep beams under different loading rates with different parameters, such as 

shear span-to-depth ratio, concrete compressive strength, longitudinal 

reinforcement ratio, and web reinforcement ratio based on PSO technique. 

5. To assess the effectiveness of the proposed models by changing some 

parameters considered especially important to set suitable range of application. 

 

 

1.4 Approaches of the proposed STM modification 

 

Two approaches of STM modification are proposed and investigated. The first 

approach deals with the modified STM of RC deep beam strengthening with CFRP 

under static load. The second approach considered the effect of various loading rates 

on the modification of the STM of unstrengthened RC deep beams. The proposed 

models consider the effect of the combined tensile strength of longitudinal and 

transverse reinforcements, FRP sheets, and the tensile strength of concrete. A linear 

failure criterion based on modified Mohr–Coulomb theory is adopted in this study. 

The proposed model is simulated using MATLAB environment. 

 

 

1.4.1 RC deep beam strengthening with CFRP under static load 

 

The STM of unstrengthened RC deep beams proposed by Tan et al. (2001) is extended 

and modified to account the ultimate shear strength of FRP-strengthened RC deep 

beams. Tan et al. model is adopted in this study because it considers the effects of 

various shear reinforcement configurations vertical and horizontal, or inclined. Other 

than defining the stress limits for the STM components, the model uses a failure 

criterion from the Mohr–Columb theory for nodal zones (tension–compression stress 

state). The effects of FRP sheets are represented by the equivalent external forces, 

which are built in the model explicitly. In addition, the assumptions on the stress 

distribution factor acting along the diagonal strut are necessary to add the CFRP effect 

to the original unstrengthened STM because to assess the exact value of the principal 

tensile stress is difficult. Moreover, the plane section of plane theory does not hold for 

deep beams. Thus, this study aims to estimate the value of the stress distribution (k) 

and concrete tensile stress reduction (λ) factors by using PSO algorithm to address the 

nonlinearity problems and to find the optimum solution of these unknown coefficients. 

 

 

1.4.2 Unstrengthened RC deep beams under different loading rates 

 

In this approach, the STM introduced by Tan et al. (2001) is modified to account for 

the ultimate shear strength of RC deep beams under a wide range of loading rates. A 

simple and refined interaction formula to predict the ultimate dynamic shear strength 

of RC deep beams is derived. To imply and integrate the dynamic effect, the proposed 

constitutive relationships of concrete and reinforcing steel (K. Fujikake et al. (2009)) 

are considered. 
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1.5 Research hypothesis 

 

Based on the current design codes, such as American Concrete Institute building code 

(ACI318-14 (2014)), a RC deep beam should be analyzed using the STM considering 

the complex stresses flow in D regions (discontinuity regions). Based on the best 

author knowledge, studies on the ultimate shear strength and behavior of RC deep 

beams strengthened with CFRP sheet under static loads and unstrengthened deep 

beams subjected to different loading rates are scarce. As a result, the necessity to 

propose rational methods to estimate the ultimate shear strength of the RC deep beams 

has become significant in current literature topics. Therefore, this study aims 

theoretically to propose STM to assess the ultimate shear strength and suggests a new 

model using STM to design RC deep beams. 

 

 

Therefore, to develop the applicability of the STM concept for RC deep beams under 

both static with FRP strengthening and dynamic without strengthening, the following 

hypothesis are assumed: 

 

(a) The concrete strut is subjected to a uniaxial compressive stress 𝑓2 (Figure 1.3) 

inclined at an angle θ with respect to the beam axis. 

(b) The proposed model considers the effect of crushing and diagonal splitting 

concrete failure. 

(c) Perfectly, plastic behavior is assumed for the materials and for the bond at the 

FRP-concrete interface. In particular, the failure of the external reinforcement 

occurs after yielding of the internal steel reinforcement, wherein the steel 

yielding/concrete crushing takes place before FRP fracture or debonding 

failure. 

(d) The external tension FRP sheet is treated like conventional shear 

reinforcement. 

(e) The external shear reinforcement in the form of continuously bonded sheet or 

discontinuously bonded vertical strips is treated like conventional internal 

stirrups in terms of distributed forces. Its quantitative evaluation depends on 

the failure mode, i.e., bond slip or tensile fracture. 

(f) The failure of shear tension caused by the inadequate anchorage of flexural 

reinforcement is not considered. 

(g) The constitutive relationships for the stress–strain of concrete and steel 

reinforcement proposed by K. Fujikake et al. (2009) is considered in the 

current study. 
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Figure 1.3 : Strut-and-tie model for simply supported deep beams 

 

 

1.6 Scope and research approach of the study 

 

The research approach followed in this study comprised a literature survey, extensive 

experimental program, theoretical analysis using rational model and numerical 

simulations using FE analysis. Figure 1.4 shows a schematic representation of the 

research approach adopted in this study. 

 

 

A state-of-the-art literature survey was achieved to collect information on RC deep 

beams. Research gaps and limitations were categorized. The experimental program 

comprised deep beam specimen testing to examine the performance of CFRP-

strengthening technique. 
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Figure 1.4 : Schematic representation of research approach 

 

 

The current study is limited to the CFRP-strengthened RC deep beams strengthened 

with one layer of unidirection CFRP sheet. A total of 12 RC deep beam specimens 

were tested until failure under static loads. These specimens comprise unstrengthened 

and CFRP-strengthened RC deep beams. The CFRP-strengthened RC deep beams 

were side wrapping, 45° and 90° strips. The beams were cast using a single batch of 

ready-mixed concrete. The cylindrical compressive strength and cylinder splitting 

tensile strength of concrete were 41.6 and 4 MPa, respectively. Chapter 3 discusses in 

details the experimental program. 
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1.7 Thesis outline 

 

This research with six chapters was formatted in accordance with the guide to Thesis 

Preparation-March 2004, provided by the School of Graduate Studies, Universiti Putra 

Malaysia. 

 

 

Chapter 1 contains the brief literature review, statement of problem, objectives, 

research hypothesis, and scope of current study. 

 

 

Chapter 2 covers the background research regarding deep beams behavior, carbon 

fiber polymer (CFRP), loading rates, strut-and-tie model (STM), and particle swarm 

optimization (PSO) technique. 

 

 

Chapter 3 presents the details of the experimental program and the testing procedure, 

as well as geometrical and material properties and test setup used in this program. 

 

 

Chapter 4 presents the derivation steps of the proposed STMs and finite element (FE) 

analysis. 

 

 

Chapter 5 addresses the experimental and the theoretical results of this research and 

the related discussion. 

 

 

Finally, Chapter 6 presents a general conclusion of the results obtained from the 

experiments and theoretical aspect with regard to the problems and observations 

discussed throughout the thesis in addition to the recommendations for further 

research. 
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