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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the Degree of Master of Science 

EFFECT OF SURFACE ROUGHNESS ON HELICOPTER MAIN ROTOR 

BLADE

By

WAN NORHAFIZAN BIN WAN ROHIZAN 

April 2017 

Chair:  Assoc. Prof. Azmin Shakrine bin Mohd Rafie, PhD 

Faculty:  Engineering

This study describes the effect of surface roughness when applied on helicopter 
main rotor blade.  The study was performed in wind tunnel using scaled 
helicopter model to study the aerodynamic characteristic in vertical flight 
condition.  This is to show the feasibility of surface roughness for rotary wing 
applications.  The requirement for helicopter main rotor blades are high thrust 
and low power requirement.  Smooth profile of main rotor blade is modified by 
applying surface roughness on the upper and lower camber in transition and 
turbulent boundary layer region; starting from 25% of chord length and gradually 
extended to trailing edge (TE).  The analysis following the research shows that 
with right application of roughness will result in lower power requirement. The 
aerodynamic efficiency is enhanced at lower and upper pitch level between 7% 
to 69%. However, this came at the expense of reduced thrust at middle collective 
pitch level between 11% to 45%. Surface roughness found to have insignificant 
effect on rotor power requirement (only 2% to 5% difference). At upper range of 
collective pitch level, surface roughness is seen to delay the stall angle as well 
as increasing the lift in the stall region. Meanwhile for aerodynamic efficiency, 
thrust-to-power ratio shows less steep graph and peak ratio were pushed to 
higher pitch level. This indicates wider operating envelope and more predictable 
flight profile.  All these results may provide foundation for further research to 
further optimisation of surface roughness effect for rotary wing aircraft. 
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Abstrak tesis yang dipersembahkan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

KESAN KEKASARAN PERMUKAAN PADA BILAH ROTOR UTAMA 

HELIKOPTER 

Oleh 

WAN NORHAFIZAN BIN WAN ROHIZAN 

April 2017 

Pengerusi:  Prof. Madya Azmin Shakrine bin Mohd Rafie, PhD 

Fakulti:  Kejuruteraan

Kajian ini menerangkan kesan kekasaran permukaan apabila diaplikasikan pada 
bilah rotor utama helikopter.  Kajian dijalankan dalam terowong angin 
menggunakan model skala helicopter bagi mengkaji ciri-ciri aerodinamik dalam 
keadaan penerbangan menegak. Ini bagi membuktikan kesesuaian kekasaran 
permukaan bagi aplikasi sayap putar.  Profil asal bilah rotor diubah dengan 
meletakkan permukaan kasar di bahagian atas dan bawah, mulai daripada 25% 
chord length dan beransur-ansur ditambah sehingga ke Trailing Edge (TE).  
Analisis daripada eksperimen tersebut menunjukkan: Dengan aplikasi yang 
betul akan memberikan keperluan kuasa yang lebih rendah; Keberkesanan 
aerodinamik lebih baik dapat dicapai pada julat dongakan bawah dan tinggi 
dengan penambahbaikan antara 7% hingga 69%.  Namun, pemnambahbaikan 
ini datang dengan pengurangan tujah di julat pertengahan antara 11% hingga 
45%.  Kekasaran permukaan didapati mempunyai kesan yang tidak signifikan 
kepada keperluan kuasa rotor (hanya perbezaan antara 2% hingga 5%).  Di julat 
atas, kekasaran permukaan diperamati meningkatkan sudut pegun di samping 
meningkatkan tujah di zon pegun.  Manakala bagi keberkesanan aerodinamik, 
nisbah tujah-kepada-kuasa menunjukkan graf yang kurang curam dan nisbah 
maksimum berada di sudut dongakan yang lebih tinggi.  Keadaan ini 
menunjukkan julat operasi yang lebih lebar dan profil penerbangan yang lebih 
mudah dijangka.  Semua hasil kajian ini boleh menjadi asas untuk kajian 
seterusnya bagi lebih optimisasi kesan kekasaran permukaan untuk pesawat 
sayap putar. 
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CHAPTER 1 

INTRODUCTION 

The advent of helicopter is considered one of the most important milestones in 
aviation.  Even though the development started later and not much publicised 
compared to the development of fixed wing aircraft, the versatility of helicopter 
makes it a choice among civilian and military operators.  It is also observed that 
aerodynamics of helicopter is largely influenced by rotor blade aerodynamics, 
and aerodynamic design of its airframe has lesser influence on flight 
performance compared to fixed wing aircraft.  Therefore, this study is focused on 
helicopter rotor blades in order to enhance flight performance. 

1.1 Background 

Helicopter is a type of rotorcraft (also known as rotary wing aircraft) that uses 
rotating wings (known as blades) to fly.  As mentioned by Johnson (2013), the 
rotor blades rotate depicting a disk in horizontal (or almost horizontal) plane.  A 
helicopter with its rotating blades can generate aerodynamic forces via its motion 
relative to the air.  Given this feature (which is unique to a rotorcraft), these forces 
can be produced even though the velocity of the airframe is zero, in contradiction 
of fixed-wing aircraft in which the airframe needs translational velocity to sustain 
flight (Johnson, 2013). 

According to Seddon and Newman (2011), the history of rotary-winged flight can 
be traced from 400 B.C. with a toy known as Chinese top or bamboo-copter 
(Figure 1.1).  It was constructed with a shaft attached to wings inclined to the 
rotation plane normal to the shaft.  When spun between the hands and released, 
it generated thrust which allow it to fly for a short time.  Even though simple, it 
provided inspiration for invention of helicopters.   

Figure 1.1: Chinese Bamboo-copter

(Source: kaleidoscope.cultural-china.com/en/144Kaleidoscope1053.html)
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A famous artist and inventor Leonardo da Vinci conceived his design of a 
helicopter (Figure 1.2).  Similar to many of his ideas, the design never left the 
drawing board, but the drawings and notes charted exactly how a helicopter 
would operate.  With the purpose of compressing air to obtain flight, the helical 
screw on his design formed a basis on how a helicopter rotor blade would be. 

Figure 1.2:  Leonardo da Vinci’s “Helicopter”
(Source: http://www.aerospaceweb.org/design/helicopter/history.shtml)

Meanwhile, Sir George Cayley wrote an aeronautical paper which laid the 
foundation for future helicopter development (Seddon and Newman, 2011).  He 
envisioned an air vehicle consisting of two pairs of contra-rotating rotors 
arranged coaxially to generate lifting thrust.  The forward propulsion of this so-
called “aerial carriage” was provided by two propellers mounted at the rear.  This 
design was the sign of many features of modern rotary-winged craft.  This 
awkward design (Figure 1.3) was an improvement compared to other 
contemporary projects; however due to unavailability of suitable propulsion, the 
project never materialised. 
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Figure 1.3:  Sir George Cayley’s “Aerial Carriage”
(Source: http://www.aviastar.org/helicopters_eng/cayley.php)

American inventor, Thomas Alva Edison was facing the same problem that 
Cayley and other aircraft experimenters had; which was lack of suitable 
propulsion (www.aviastar.org/history). In 1880, he examined the thrust vs. power 
performance.  He tested on various designs of rotor blades in order to find out 
those with the best lifting power.  With only electric motor at his disposal (since 
internal combustion engines did not yet exist), he found it as unsuitable for the 
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purpose.  With this in mind, he shifted his focus to the engine instead.  He was 
thinking of one with small weight with a good amount of horsepower.  In a notable 
attempt, he used gun cotton in the cylinder of an engine fired with a spark.  He 
attained good results, but at the expense of near-fatal injury to him and one of 
his colleagues.   

This incident forced him to abandon his helicopter experiments and focused on 
more pressing work.  Nevertheless, his work provided estimation of the required 
power-to-weight ratio for a workable helicopter to be achieved (Seddon and 
Newman, 2011).  He concluded, no helicopter would be able to fly until engines 
with power to weight ratio of 3 to 4 Ib/hp were available (Johnson, 2013).  In 
parallel with this finding, he also confirmed that the most suitable propulsion 
means for helicopter is the one with high power-to-weight ratio. 

Figure 1.4:  Paul Cornu’s “Cornu Helicopter”
(Source: http://www.aviastar.org/helicopters_eng/cornu.php) 

Meanwhile in 1906, a Frenchman, Paul Cornu pioneered first free flight of 
helicopter.  His twin-rotored helicopter (Figure 1.4) rose to between 1 and 5 feet 
of altitude for a period of 20 seconds.  This is considered a significant milestone, 
since the flight controls entirely achieved from the aircraft without any 
interference or attachment from the ground, hence giving the distinction of first 
free flight of helicopter.  Since then progressive developments have been made 
until the birth of Focke-Wulf 61 as first operational helicopter in 1936. This is later 
followed by Sikorsky's R-4 helicopter which became the first mass-produced 
helicopter in 1942.   Since then helicopter has evolved into multiple type of 
configurations; from its earlier designs of more than one main rotor, to single 
main rotor with anti-torque tail rotor arrangement, tandem rotors (Figure 1.5), 
compound helicopter (Figure 1.6), tiltrotor (Figure 1.7) and coaxial helicopter 
(Figure 1.8). 
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Figure 1.5:  Boeing CH-47 Chinook

(Source: http://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=56)

Figure 1.6:  Airbus Helicopters’ X3
(Source:  http://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=880)
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Figure 1.7:  Bell-Boeing V-22 Osprey

(Source: US Navy)

Figure 1.8:  Kamov Ka-27 “Helix”
(Source: US Navy)

  
The first true turboshaft engines developed for helicopter was built by French 
firm Turbomeca in 1948, with the creation of a turboshaft engine code-named 
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“782”.  Originally developed as auxiliary power unit, it was soon adopted to 
aircraft propulsion, and settled down as a niche power plant for turboshaft driven 
helicopters back in the 1950s.  However, in 1951, Charles Kaman with his K-225 
synchropter modified to receive newly-developed Boeing T50 turboshaft engine 
became the first ever turboshaft-powered helicopter to fly (www.faa.gov).   

Figure 1.9: Turboshaft Gas Turbine Schematics

(Source: Nkoi et al, 2013)

Turboshaft engines (Figure 1.9) is considered an important leap in helicopter 
development.  With high power-to-weight ratio, turboshaft engines allowing 
helicopter to have lighter weight while at the same time having significant higher 
lift capability.  This also translates into the benefit of higher payload. 

Because helicopters use rotating blades to generate thrust required for flight, this 
allows helicopter to hover and have vertical flight (including vertical take-off and 
landing) capability, in addition to forward and lateral flight.  Due to this unique 
feature, it can operate at areas with limited runway or at isolated or congested 
areas.  Therefore, despite having significantly slower speed than fixed wing 
aircraft, it is regarded as more versatile than fixed-wing aircrafts; and often 
tasked to perform missions that other types of aircraft were incapable, or for 
tasks which require close contact with ground such as medical transport, vertical 
replenishment or aerial firefighting. 

For military use, the function of helicopter evolved significantly for 40 years ago.  
Not only restricted to troop or logistical transport like before, it evolved into a 
formidable combat platform and able to perform its own offensive manoeuvre or 
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assisting friendly forces such as anti-tank fire support or in case of shipborne 
helicopters; assisting in identifying hostile contacts and providing guidance for 
missile fired from a friendly platform to a target located beyond the horizon, a 
capability known as Over-The-Horizon-Targeting (OTHT). 

1.2 Helicopter Rotor Blade 

As mentioned by Leishman (2000), a helicopter rotor provides three basic 
functions; to generate vertical thrust for vertical flight, to generate propulsive 
force for forward flight, and generating forces and moments for attitude and 
position control of a helicopter.  Unlike fixed wing aircraft where these functions 
are split, the helicopter rotor must provide all three within single control on the 
pilot. 

The aerodynamics often regarded as more complex than fixed wing, largely due 
to wakes trailed from each blade.  As for fixed wing aircraft, tip vortices will 
stream away from the aircraft.  However, for a helicopter in forward flight, the tip 
vortices can remain near to the rotor and following rotor blades for several rotor 
revolutions.  These tip vortices can cause fluctuating airloads which can cause 
excessive rotor vibrations and noise. 

During early days of helicopter development, blade airfoil profile was not given 
priority because of other many technical issues to solve.  Although National 
Advisory Committee on Aeronautics (NACA; precursor to National Aeronautics 
and Space Administration (NASA)) developed some airfoils dedicated for 
helicopter in the 1940s, it was only in the middle of 1960s that specially tailored 
type of airfoil sections for helicopter were widely used by manufacturers 
(Leishman, 2006).   

With regard to rotor blade design, the selection of airfoil type is proven to be 
more complex than fixed wing because the angle of attack and Mach number 
vary continuously throughout the spanwise of rotor blade and one airfoil profile 
cannot satisfy the different aerodynamic requirements.  In addition, the 
complexity of rotor control mechanism makes it difficult to embed any moving-
type high lifting device (such as adjustable slot and flap) on the rotor blade as 
opposed to fixed wing.  Given the intricacy of the system, it is obvious that any 
active based flow control method is impossible to be devised.  This causes the 
design of rotor blade remain basically solid, something unchanged for the past 
century since the early development of helicopter. 

While most airfoil designs are built around 2-D flow, the complex flow at the rotor 
tip requires 3-D flow consideration as well.  Given this, plus severe operating 
conditions and typically unsteady flow environment on helicopter meaning that 
rotor blade must be tested in wind tunnel to fully and accurately appraise the 
aerodynamic performance.
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1.3 Problem Statement

Due to complexity of the helicopter main rotor mechanism, there is little or no 
advancement in active flow control method and currently it is impractical to 
implement such approach. Therefore, passive control flow is seen more viable 
to be applied.  While previous research has been done on the application of 
surface roughness as passive control flow method, those researches were 
focused on fixed wing applications and in two-dimensional flow conditions.   
Given this, there is an opportunity to explore the applications of surface 
roughness for rotary wing applications.  Generally, main criteria for helicopter 
rotor blade is high thrust with low power requirement.  

1.4 Objective

The research goals are to come up with improvised surface roughness on 
helicopter rotor blades, which will enhance the flight performance and power 
consumption.  Specifically, the objectives are as follow: 

a. To perform wind tunnel experiment on helicopter main rotor 
blade using scaled helicopter model to study and find the aerodynamic 
characteristic in vertical flight condition. 

b. To evaluate the effect of surface roughness on helicopter main 
 rotor blade and observe the thrust and power characteristics when 
 surface roughness is applied. 

1.5 Scope 

The report will cover the result of applied surface roughness on helicopter main 
rotor blade.  For rotary wing aerodynamics, the areas of interest are the thrust 
and power which correspond to lift and drag for fixed wing.  This experiment will 
focus entirely on vertical flight condition, since it is a most complex flight regime 
for a helicopter.  It involves constant correction input which takes toll on power 
provided, therefore vertical flight (particularly hover condition) is considered as 
high power consuming flight regime.  Therefore, any improvement in vertical 
flight will subsequently enhance flight performance in other flight conditions. 

  
The limitation of the research is the restricted power supply to the rotor, with 
maximum power supplied between 44W – 49W.  This restricts rotational speed 
output between 600rpm – 900rpm, equal to linear speed between 20m/s – 40m/s 
at the rotor tip.  Due to this nature, the Reynolds Number (Re) due to flow through 
the rotor blade will be between 3.7 x 104 and 5.4 x 104.   This region is considered 
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as transitional flow region as mentioned by McArthur (2008).  The limitation is 
also on blades’ collective control mechanism, since the rotational speed variates 
with pitch level.  In addition, no frontal airflow will be used in this research.  

1.6 Thesis Layout 

The layout will be as follows: introduction is provided in Chapter 1 which includes 
a background in helicopter development and also issues regarding helicopter 
main rotor blade. 

  
Chapter 2 will cover the literature review for this thesis, which consists of 
previous research work in related area, as well as theories relevant to the study.   

In Chapter 3, the methodology of the study is described and the setup of the 
experiment will be discussed. This also covers an overview of the wind tunnel, 
apparatus and the model. Furthermore, the measurement techniques will also 
be described.   

Chapter 4 will give the results and analysis from the experiment.  Finally, the 
conclusion and recommendation will be covered in Chapter 5. 
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