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By 
 

NOR ZIDA BINTI ROSLY 
 

December 2015 
 

 

Chairman :  Shahrul Ainliah Alang Ahmad, PhD  

Faculty :  Science 
 

 

Dengue disease becomes critical global health issue after millions were infected 

worldwide every year, which lead to fatality due to late detection. Hence, a new 

technique has been explored to improve the performance of the detection in term of 

time, price, sensitivity and selectivity. In order to develop the diagnostic devices, 

electron beam (e-beam) or ultra-violet (UV) lithography were used to fabricate small-

sized patterns to provide surfaces with high sensitivity and selectivity to biomolecules. 

For this particular project, polyethylene glycol (PEG)-silane monolayer, which was the 

best-known antifouling polymer was used as a lithographic template due to its non-

polar, non-toxic and non-immunogenic properties of the surface. The monolayer 

formed was thoroughly characterized with contact angle, atomic force microscopy 

(AFM), and X-ray photoelectron spectroscopy (XPS). The AFM and contact angle data 

showed a uniform surface and hydrophilic properties of PEG-silane monolayer 

obtained which confirmed by the XPS. The e-beam and UV irradiations were 

subsequently performed, which generated the aldehyde functional groups. These offers 

conjugation sites for the immobilization of DNA dengue. Further studies were done to 

verify the presence of aldehyde functionality by testing with reducing agent and 2-

amino-1,1,1-trifluoroethane (TFEA). The TFEA test showed an increased value of 

contact angle from 42° to approximately 74°, suggesting the hydrophobicity of surface 

that corresponds to the bonding of carbon atom to three fluorine atoms was formed. 

The reduction test studied the reduction aldehyde to alcohols which resulted in the 

decrease of contact angle values. The properties of gold nanoparticles (AuNPs) on 

particles sizes, shape, morphology and elemental composition were investigated which 

was utilized as a colorimetric probe for the determination dengue-DNA. For the DNA 

hybridization, target DNA was attached directly to probe DNA that had been 

immobilized on irradiated modified surfaces in which an amine-terminus (or N-

terminus) from the DNA bound with aldehyde on modified surfaces. Gold 

enhancement process was introduced for naked eye detection after inducing 

electrostatic interaction between positively charged AuNPs and negatively charged 

target DNA to probe DNA. Control experiments were performed with mismatch DNA 

sequences to confirm the selectivity of the sensor. The effect of target DNA 

concentration was studied in the hybridization of DNA. The results obtained indicate 

an efficient and selective device have been successfully developed for label-free 

dengue detection.   
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
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EKALAPIS UNTUK PEMBANGUNAN LABEL BEBAS DENGGI BIOSENSOR 

 

Oleh 

 

NOR ZIDA BINTI ROSLY 

 

Disember 2015 
 

 

Pengerusi :  Shahrul Ainliah Alang Ahmad, PhD 

Fakulti :  Sains 
 

 

Penyakit denggi menjadi isu kesihatan global yang kritikal selepas berjuta-juta manusia 

dijangkiti di seluruh dunia setiap tahun, yang membawa kepada kematian disebabkan 

pengesanan yang lewat. Oleh itu, satu teknik baru telah diterokai untuk meningkatkan 

prestasi pengesanan dari segi masa, harga, kepekaan dan pemilihan. Dalam usaha untuk 

membangunkan diagnostik yang sebegini, alur elektron (e-beam) dan litografi sinar ultra- 

lembayung (UV) telah digunakan untuk fabrikasi corak bersaiz kecil yang mampu 

menghasilkan permukaan dengan sensitiviti yang tinggi dan pengecaman biomolekul 

tertentu. Dalam kajian ini khususnya, polietilena glikol (PEG)-silana ekalapis, yang 

merupakan polimer antifouling yang paling terkenal digunakan sebagai templat lithografi 

kerana sifatnya yang tidak berkutub, tidak beracun dan tidak imunogenik. Ekalapis yang 

terbentuk dengan sempurna dicirikan dengan ukuran sudut sentuh, mikroskopi daya atom 

(AFM), dan spektroskopi fotoelektron sinar-X (XPS). Data daripada AFM dan sudut 

sentuh menunjukkan permukaan ekalapis yang seragam dan hidrofilik ekalapisan PEG-

silana diperolehi dan ini disahkan oleh XPS. E-beam dan penyinaran UV kemudiannya 

dilaksanakan, telah menjana kumpulan berfungsi aldehid. Kumpulan ini menyediakan  

laman konjugasi untuk imobilisasi denggi DNA. Selanjutnya ujian telah dilakukan untuk 

mengesahkan kehadiran kumpulan berfungsi aldehid dengan 2-amino-1,1,1-

trifluoroethane (TFEA) dan ujian penurunan. Ujian TFEA menunjukkan terdapat 

peningkatan sudut sentuh daripada 42 ° kepada kira-kira 74 °, mencadangkan 

kehidrofobikan permukaan yang sepadan dengan ikatan atom karbon yang mempunyai 

tiga atom fluorin. Ujian penurunan dikaji menunjukkan aldehid menurun kepada alcohol 

yang menghasilkan penurunan bacaan sudut sentuh. Sifat-sifat nanopartikel emas 

(AuNPs) ke atas saiz zarah, bentuk, morfologi dan komposisi unsur telah dikaji yang 

digunakan sebagai kajian kolorimetrik bagi menentukan denggi DNA. Untuk 

penghibridan DNA, sasaran DNA telah diikat langsung dengan prob DNA yang telah 

diimobilisasi pada permukaan radiasi diubahsuai di mana amina-terminal (atau N-

terminal) daripada DNA terikat dengan aldehid pada permukaan yang diubahsuai. Proses 

peningkatan emas telah diperkenalkan untuk pemerhatian secara mata kasar selepas 

menjalankan interaksi elektrostatik antara AuNPs bercas positif dan DNA bercas negatif 

terhadap DNA prob. Eksperimen kawalan telah dijalankan dengan urutan DNA tidak 

sepadan untuk mengesahkan pemilihan sensor. Kesan kepekatan sasaran DNA telah 

dikaji dalam penghibridan DNA. Keputusan yang diperoleh menunjukkan kejayaan 

peranti yang cekap dan selektif dibangunkan pada label bebas denggi diagnostik. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Biosensor technologies have been well developed due to demands of devices with high 

sensitivity, fast detection, small and easy to use. Sensing of biomolecule (antibodies, 

enzymes, nucleic acids) and biological systems (receptors, cells) can be performed 

through transducer (e.g optical, electrochemical, mass sensitive devices) (Wang, 2000). 

The chemical and physical transducers translate the event into important electrical signal 

such as light, current and frequency. There are two types of biosensor; classified by the 

nature of recognition event. The first type is bioaffinity devices which use a surface 

confined ligand partner (e. g antibody, oligonucleotide) for the attachment of target 

analyte. Otherwise, biocatalaytic devices based on enzyme for recognizing the target 

substrate (Junhui et al., 1997).  

Biosensors apply self-assembled monolayers (SAMs) as interfaces between solid 

surfaces and biomolecules. Self-assembled monolayers (SAMs) are formed when 

amphiphilic surfactant molecules are adsorbed spontaneously onto solid surface of 

interest by specific interaction of surface chemistry. The adsorption of molecules on 

substrate can be performed in variety of solvents (e.g polar or non polar) which allow a 

greater flexibility in molecular design, therefore, providing surfaces properties that can 

be modified and controlled. Monolayers have been witnessed as successful model 

surfaces in biosensor’s research since homogenous on thin films can be formed. 

Over the past few decades, a lot of scientific studies have witnessed dramatic changes 

for detection of deoxyribonucleic acid (DNA) sequence, genomic analyses and early 

diagnosis for critical diseases. At that time, DNA hybridization biosensor was introduced 

by recognition of nucleic acid on transducer surfaces towards the goal for a rapid, simple 

and inexpensive devices (Junhui et al., 1997). DNA biosensor can be fabricated using 

various strategies including electrical, optical and mechanical.  

Optical strategy especially fluorescent method shows a great potential due to high 

sensitivity and easy accessibility to commercialized equipment (Csa et al., 2000). 

However, this method requires expensive equipment and complex steps for label analytes 

(fluorophores) which are not suitable for shorter detection time. Therefore, label free 

naked eye detection is developed as an alternative to fluorescence technique. The 

detection is significantly simplified by simply using by naked eye or with a flat-scanner 

(so called scanometric detection). The technique used metal enhancement as a signal 

amplification process to detect conjugation between AuNPs and DNAs. The method 

shows a great potential to be developed since the analysis used instrument (e.g flat 

scanner) which is cost-effective and enhancement process takes a few minutes to operate. 
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1.2 Dengue Virus 

 

 

Dengue diagnostic devices has been rapidly developed in order to meet the requirement 

of worldwide demand due to the increase of death in tropical and sub-tropical regions, 

mostly in urban and semi-urban countries, leading to approximately 50-100 million 

infections per year. The infection occurs when the four serotypes (DEN-1, DEN-2, DEN-

3, DEN-4) transmitted in human body by Aedes aegypti mosquito, members of the 

Flavivirus family. In recent years, number of cases for Dengue fever (DF), Dengue 

hemorrhagic fever (DHF) and Dengue shock syndrome (DSS) are getting increased 

among children in some Asian and Latin American country (Weaver & Reisen, 2010).  

 

 

So far, infection with dengue virus has no apparent symptoms or clinical signs since it 

can be confused with other vector borne viral and parasitic diseases such as influenza, 

chikungunya, malaria and zika viruses (Zhang et al., 2010). There is no available vaccine 

and therapy for the treatment of dengue infection, to date, the early prevention is the only 

way to control the disease caused by dengue virus. Hence, laboratory diagnoses are 

required to identify the disease rapidly and reliably, thus treat the disease at early stage 

of infection. 

 

 

Currently, the techniques used for diagnosis of dengue infections are through virological 

detection and serological test. Virological test allows the identification of specific viral 

molecules. Meanwhile, serological test is to identify specific dengue antibodies such as 

IgG and IgM. However, the sufficient amounts of antibodies are not always presence in 

the body at early stage of infection and there are available at least 5 days after onset of 

illness. Additionally, the test should be confirmed with two or more serum sample since 

it has similarity with other Flaviviruses.  

 

 

Recently, a new technique, reverse transcription polymerase chain reaction (RT-PCR) 

was created with high sensitivity, low risk of contamination and rapid real time assays 

as compared to serological test. The technique used agarose gel electrophoresis to detect 

dengue viral RNA. However, the process is time-consuming and hazardous. The 

summary of the available techniques are shown in Table 1. 
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Table 1: Advantages and limitations of current dengue diagnostics (Peeling et al., 

2010) 

 
Diagnostic tests Advantages Limitations 

Viral isolation  - confirmed infection 

- specific 

- serotypes detection 

- needs acute sample (0-5 

days post onset) 

- needs expertise and 

appropriate equipments 

- takes more than 1 week 

- does not differentiate 

between primary and 

secondary infection 

- expensive 

RNA detection - confirmed infection 

- sensitive and specific 

- serotypes and 

genotypes detection 

- results in 24-48 hours 

- potential false-positives 

owing to contamination 

- needs acute sample (0-5 

days post onset) 

- needs expertise and 

positive laboratory 

equipment 

- does not differentiate 

between primary and 

secondary infection 

Antigen detection 

Clinical specimens (for 

example, using blood 

in an NS1 assay) 

- confirmed infection 

- easy to perform 

- less expensive than 

virus isolation and 

RNA detection 

- not sensitive as virus 

isolation or RNA 

detection 

Tissues from fatal 

cases ( for example in 

immunohistochemistry) 

- confirmed infection - not sensitive as virus 

isolation or RNA 

detection 

Serological tests 

IgM or IgG 

seroconversion 

- confirmed infection 

- least expensive  

- easy to perform 

- IgM levels can be low in 

secondary infections 

- confirmation needs two 

or more serum samples 

IgM detection (single 

sample) 

- probable Dengue 

cases detection 

- useful for 

surveillance, tracking 

outbreaks and 

monitoring 

effectiveness of 

interventions 

- IgM levels can be low in 

second infections 
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1.3 Surface lithography 

 

 

Lithography has been widely used as it offers potential applications in a wide variety of 

fields, including biosensor, biomedical, bioelectronics and fundamental studies of cell 

biology. It ables to create patterns down to smaller (micrometer to nanometer) scale 

precision are which providing surfaces with high sensitivity and specific biomolecular 

recognition. Patterning is important for modification of surfaces and it is useful to build 

functional nanostructures completely or partially on the exposed surfaces (Smith et al., 

2004). 

 

 

Lithography is performed to functionalize surfaces either by removing particular 

adsorbates (Mulder et al., 2001), placement of adsorbates (Buoninsegni et al., 1998), or 

by the particular reaction of adsorbates (Nan Li & Ho, 2008). Once the adsorbates placed 

on sub-monolayer regions, the remaining surface with the exposed area can interact with 

a new adsorbate. It creates adsorbates with various groups on the same adsorbent.  

 

 

Currently, there are many techniques exist to create patterns onto chip substrate such as 

contact lithography (dip pen lithography (DPN), atomic force microscope (AFM), 

microcontact printing (µCP), scanning–near field photolithography, soft lithography, 

electron beam (e-beam) lithography (Agarwal et al., 2003; Demers et al., 2002; Mendes 

et al., 2004; Whitesides et al., 2001; Zhang et al., 2004). Most of the techniques used 

both physical adsorption and covelent reaction.  

 

 

Microcontact printing (µCP) 

 

 

Microcontact printing (µCP) has proven a valuable technique for patterning DNA (Lange 

et al., 2004), proteins and cells (Turner & Shain, 1998). The technique were pioneered 

by Whitesides and the group where adsorbates were transferred to a surface by using 

flexible, polymeric stamps with pattern reliefs (usually made from polydimethylsiloxane, 

PDMS) (Whitesides et al., 2001). The stamps are dipped in ink (alkanethiol) and dried 

before brought to contact with a surface like gold.  However, one major limitation of 

such µCP based approaches is the uncontrollable contamination of the stamp due to 

changes in environment condition (humidity, pH) during the biomolecules transferring 

process (Tan et al., 2004).  

 

 



© C
OPYRIG

HT U
PM

5 

Figure 1: Microcontact printing by PDMS stamp on silicon surfaces (Whitesides et 

al., 2001) 

Dip-pen nanolithography (DPN) 

Dip-pen nanolithography (DPN) is a technique that performed under ambient condition 

without using any large electron magnetic field and shear effect. The technique was 

introduced by Piner and co-workers as new scanning probe lithography for fabricating 

thiol molecules on Au surfaces (Piner et al., 1999). The technique used AFM tip where 

was first coated with chemical reagents by immersing the cantilever in a solution or by 

evaporation. The coated tip was then transporting chemical reagents to nanoscopic 

regions on substrate of interest in one step, which is an advantage over serial techniques. 

Although the technique is simple but it is much more expensive due to powerful 

instrument for transporting chemical reagents from AFM tip to substrate.  
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Figure 2: Schematic illustration of dip-pen nanolithography (DPN) process 

 

 

Electron beam (e-beam) lithography 

 

 

Electron beam (e-beam) lithography has been exploited as a maskless technique for 

patterning biomolecules with featured sizes ranging from several micrometers to 

nanometer, in addition to the possibility of designing the arbitrary shapes on the surfaces. 

In general, the patterning is performed by first coating the substrate with a polymeric thin 

film or resist and then exposing it to the e-beam (Glezos et al., 2002). 

 

 

The high energy electrons present in the e-beam causes the changes in the chemical 

bonding by cross-linking or degrading the elements available at the surface. The exposed 

substrate is then rinsed with a developer solution to remove the unattached soluble 

portion of the resist. The technique is likely preferred for fabricating surfaces since it 

gives high resolution small scale patterns (Kolodziej & Maynard, 2012). Recently, the 

used of scanning electron microscope (SEM) equipped with the technique enable to scan 

electron beam spot within desired area, thus generate nanoscale pattern. 
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Figure 3: Schematic illustration of electron beam (e-beam) lithography process 

Photolithography 

Photolithography is another option for fabrication of monolayer surfaces. It has been 

employed to create a three-dimensional topography of resist layer and can provide 

chemical attachment on modified surfaces. The conventional technique utilizes an 

exposure of photo-resist layer to ultraviolet (UV) through photomask with opaque 

features (e.g. Cu grid). Commonly, UV light with wavelength 193-436 nm is performed 

in order to affect the terminal end group at the designated regions of substrate. The 

technique becomes attractive due to high resolution (sub-micrometer line width) and 

excellent control of feature dimensions. It also has a big potential to be used in industrial 

exposure tools due to the high quality and high resolution pattern such as deep UV (
< ~250 nm) (Dulcey et al., 1991).  

The principle of this method is by irradiate the top of monolayer by UV light through the 

photomask which ables to create pattern on surfaces. It has been demonstrated on various 

materials including alkylthiolates (Montague et al., 2007) and phosphonic acids as well 

as films of Au (Tizazu et al., 2009), polymers (Hurley et al., 2010) and metallic 

nanoparticles (Sun et al., 2006). Light plays an important tool for surface immobilization 

due to big success in attachment of biomolecules (Blawas & Reichert, 1998; Yang et al., 

2006). The main purpose for irradiating monolayer under UV light is to generate 

functional groups such as aldehyde and carboxylic acid that available for immobilization 

of biomolecules.  
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The UV light have ability to shorten the alkyl chain and dissociate the oxygen molecules 

and create active oxygen species such as oxygen free radical thus oxidize the alkyl chain 

( Xue & Yang, 2010). Therefore, UV lithography method is well established technique 

and can be used repeatedly on the same substrate with different protein to create multiple 

protein patterns (Lee et al., 2003). 

 
 

Figure 4: Schematic illustration of photolithography process 

 

 

1.4 Problem statements 

 

 

Dengue is a serious tropical disease that causes death to human if it is not treated 

promptly. Therefore, many strategies have been developed to detect dengue for the 

requirement of rapid detection, high sensitivity and selectivity, inexpensive and portable 

devices. However, the challenge dealing with dengue viruses is the unstable structure of 

virus and the differences among the four serotypes (DEN-1, DEN-2, DEN-3, DEN-4), 

causing the dengue viruses can not be controlled. Moreover, the existing of conventional 

techniques for dengue detection is focusing on specific anti-Dengue antibodies which are 

developed in response to Dengue viruses. Unfortunately, these antibodies produce at 

least 5 days after the onset of illness, whose the process is time-consuming for early 

detection (Vijayakumar et al., 2005). The advancement today’s technology provides new 

opportunities for improving the performance of biosensors in term of time, price, 

sensitivity and selectivity which enable it to be used as portable device.  

 

 

Optical biosensors are powerful technological developments that have a great potential 

for the direct, real-time and label-free detection of biomolecules especially nucleic acid. 

Optical biosensors are high specification, sensitivity, inexpensive, rapid and easy for 

users. The development of such sensors should be given high attention to improve the 

bio-recognition where the researchers require developing a new technique that can give 

a well respond to the selective biomolecules element such as nucleic acid without any 

interference from non-specific proteins element. 

 

 

1.5 Objective of the study 

 

 

The main objective of this study is to develop naked eye detection of DNA-dengue 

biosensor on modified 2-[Methoxy(polyethyleneoxy)propyl] trimethoxysilane (PEG-

silane) monolayer. The detection facility incorporates the use of AuNPs to form Au/DNA 
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composites. The following specific objectives are designed to achieve the main 

objective: 

i. To prepare and characterize PEG-silane monolayer on silicon oxide or glass

surfaces.

ii. To identify the reactive functional groups formed and hence the surface chemistry

by exposing e-beam or UV onto SAMs surfaces

iii. To immobilize and hybridize dengue DNA on photo-modified surfaces.

iv. To make the targeted spot visible by Au enhancement process.

v. To identify the response of various target base length and various target DNA

concentrations in hybridization process by naked eye detection.
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