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Amniotic fluid (AF) is believed to contain highly potent stem cells which make 
them a reliable source for stem cells with wider differentiation spectrum. 
However, very few studies have established amniotic fluid stem cells (AFSCs) 
from full-term AF as most AFSCs were established from mid-term AF. Here, 
the study aimed to see if rat full-term AF harbours such stem cells with 
differentiation potential not only into derivatives of the three primary germ 
layers but also the functional ones. Isolation of amniotic fluid stem cells 
(AFSCs) from rat full-term AF was carried out using immuno-selection 
(miniMACS) against c-kit, a stem cell factor receptor that is expressed during 
embryogenesis. The requirement of leukaemia inhibitory factor (LIF) to 
maintain the differentiation potential of c-kit positive cells was investigated as 
part of the cell culture condition optimization. The cells were then 
characterized with population doubling time, panels of pluripotency and 
stemness markers and spontaneous differentiation capacity by assessing 
their ability to form good quality multicellular aggregates, embryoid bodies 
(EBs). The ability of the cells to undergo directed differentiation into the 
derivatives of the three primary germ layers, specifically the ectodermal 
(neurons and glial cells), mesodermal (cardiomyocytes, adipocytes and 
osteocytes) and endodermal (insulin secreting pancreatic β-cells) cells, as 
well as their functionality were then studied. Monolayer differentiation 
protocol was used for neural differentiation where the differentiated cells 
were analysed with specific markers for early (Pax6 and Nestin), post-mitotic 
(Class III β-tubulin) and mature neuronal markers (Calbindin, MAP2, GFAP, 
TH and Synaptophysin). For mesodermal differentiation, retinoic acid (RA), 
5-Azacytidine C (5-Aza) and Vitamin C (Vc) treatments were applied prior to 
re-plating the EBs at high density. The cells were then subjected to O-Red oil 
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(fat), Alizarin Red (bone), Alcian Blue (cartilage) staining and mature cardiac 
markers analysis (cardiac troponin, SERCA and GATA6). For endodermal 
differentiation, cells were sequentially treated with Activin A, Wnt3a, FGF7, 
Cyclopamine and retinoic acid before being analysed with pancreatic 
markers (brachyury, PDX1, CXCR4, NKX 6.1, HNF4A, MafA and insulin). 
Finally, functional analyses were carried out to examine the secretion of 
functional proteins, such as dopamine and insulin from the differentiated 
cells. In this study, the isolated rat full-term AFSCs not only possessed 
similar expression profiles as highly potent stem cells, but also exhibited a 
wide differentiation capability in generating not only the derivatives of the 
three primary germ lineages but also the functional ones. This strongly 
suggests AF of full-term pregnancy as a great potential source of stem cells 
with therapeutic value and opens the opportunity towards the establishment 
of full-term AFSCs in human counterpart as a potential candidate cells to 
treat various degenerative defects. 
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Cecair amniotik (AF) dipercayai mengandungi sel-sel stem yang berpotensi 
tinggi yang sering digunakan sebagai sumber sel stem dengan spektrum 
pembezaan yang luas. Namun, tidak banyak kajian yang dijalankan pada sel 
stem cecair amnionik (AFSCs) dari AF jangka penuh dan kebanyakan data 
adalah dari AF jangka pertengahan. Di sini, kajian ini bertujuan untuk melihat 
jika AF jangka penuh tikus mengandungi sel-sel stem dengan potensi 
pembezaan kepada derivatif daripada tiga lapisan germa berfungsi.  Sel-sel 
stem cecair amnionik (AFSCs) telah diisolasikan daripada AF jangka penuh 
tikus dengan menggunakan immunon pilihan (miniMACS) terhadap C-kit, 
faktor reseptor sel stem yang didapati dalam proses embriogenesis. 
Keperluan faktor inhibitori leukemia (LIF) dalam mengekalkan potensi 
perbezaan sel-sel c-kit positif telah disiasat sebagai sebahagian daripada 
pengoptimuman keadaan kultul. Sel-sel c-kit positif kemudian dicirikan 
dengan masa pengandaan populasi, panel penanda-penanda pluripotensi 
dan kapasiti pembezaan secara spontan melalui pembentukan agregat 
multisellular, iaitu badan embrioid (EBs). Kemudian, keupayaan sel-sel c-kit 
positif untuk dibezakan kepada derivatif daripada tiga lapisan germa utama, 
seperti ectodermal (sel-sel saraf dan glia), mesodermal (sel jantung, sel 
lemak, sel tulang dan sel kondrosit) dan endodermal (β-sel pankreas), 
dianalisa serta fungsi sel-sel selepas pembezaan dinilai. Protokol monolayer 
differentiation (MD), telah digunakan untuk membezakan sel-sel c-kit positif 
kepada sel-sel saraf dan glia, di mana sel-sel yang telah diperbezakan akan 
dinilai dengan penanda-penada awal sel-sel saraf (Pax6 dan Nestin), 
penanda tamat mitosis (Kelas III β-tubulin) dan matang (Calbindin, MAP2, 
GFAP, TH dan Synaptophysin). Untuk pembezaan mesodermal, rawatan 
menggunakan asid retinoik (RA), 5-Azacytidine C(5-Aza) dan asid askorbik 
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(Vc) telah diberikan kepada EBs hari kedua, sebelum pengkulturan  
kepadatan tinggi dalam pinggan kultur pada hari keempat. Sel-sel kemudian 
diajukan kepada analisa dengan O-Red Oil (sel lemak), Alizarin red (sel 
tulang), Alcian Blue (sel kondrosit) dan dinilai dengan penanda sel jantung 
matang (Cardiac troponin, Serca dan GATA6). Manakala, untuk pembezaan 
endodermal, sel-sel c-kit positif dirawat dengan Activin A, Wnt3a , FGF7, 
Cyclopamine dan asid retinoic secara bersiri sebelum dianalisa dengan 
penanda pankreas (brachyury , PDX1, CXCR4, NKX 6.1, HNF4A, MafA dan 
insulin). Akhir sekali, analisa fungsian telah dijalankan untuk mengkaji 
rembesan protein berfungsi seperti dopamin dan insulin pada sel-sel selepas 
pembezaan. Hasil kajian menunjukkan bahawa AFSCs tikus yang dipencil 
pada penghamilan jangka penuh, bukan sahaja memiliki profil-profil penanda 
sel stem berpotensi tinggi, tetapi juga mempunyai keupayaan perbezaan 
yang luas. Mereka berupaya membeza kepada derivatif-derivatif daripada 
tiga germa utama yang berfungsi. Ini jelas menunjukkan bahawa AF pada 
penghamilan jangka penuh boleh dijadikan sumber sel-sel stem berpotensi 
tinggi yang mempunyai nilai terapeutik. Dengan penemuan ini, AFSCs 
jangka penuh dipercayai boleh dicapai dalam manusia dan berpotensi tinggi 
sebagai calon sel stem untuk merawat pelbagai kecacatan degeneratif. 



© C
OP

UPM

 
v 
 

ACKNOWLEDGEMENTS 

 
Before the writing of the first word of acknowledgments, the memory of the 
first time meeting my supervisor at a postgraduate fair, the hesitant before 
the decision to further this study was made, the jitters of attending the first 
conference in the year of 2010 and the bitter-sweet memories filled within the 
four-years duration, were all flashed back to me. Saying quotes that 
diligence is the key to success, but I beg to differ, as the completion of this 
degree would not be a success, if without the guidance and supports of 
those who I will address in the following paragraphs.  
 
 
The first person that I would like to thank upon the completion of this thesis is 
my UPM- mother, my main supervisor, Dr.Norshariza Nordin. Words wouldn’t 
be enough for me to express the gratitude towards you, who has been giving 
me infinite moral supports, patience, advices in scientific field and as well as 
the path of being a good human being. I was new to the field at the 
beginning of the study, but you are the one who had flourished me with all 
the stem cells information and basic theories behind every molecular 
technique at your best level. I would like to sincerely apologize for the 
mistakes and misunderstanding throughout the journey. However, I believe 
time has made us close as a family and I am thankful for that. 
 

 
Not to forget, I also would like to express deepest appreciation to all the co-
supervisors, Dr.Syahril who had generously helped us in financial during the 
hard time, Dr.Rajesh and Dr.Pike See who had patiently helped in the 
experimental designs and results analyses. Asides, I would like to express 
the most sincere gratitude to them for the attendance in supervisory 
committee meetings, fruitful results discussion section, and not to forget the 
time that they spent to help in manuscript preparation. 
 

 
Next, I’m grateful to my family (mother, Ng Kim Sew and sister, Hoo Mun 
Wah) who have been giving me love, confidence, trust and morale supports. 
As my mother is a single mother, upon completion of the study, I hope to 
give her a better life by supporting her financially and spending more time 
with her. To my lovely sister, thanks for listening to my problems and 
complaints in work, plus giving me positive energy endlessly. I’m thankful 
that you are around all these while to take care of mother.  
 

 
To my other half, Khai Meng thanks for being my closest partner. Your love, 
patience and caring to me is borderless; in contrast, I was being selfish and 
self-centred sometimes, but you never took the blame on me for the nasty 
moments. I couldn’t imagine if it were not you who go along with me during 



© C
OP

UPM

 
vi 
 

all the ups and downs. Life would not be more fun and meaningful without 
you by my side.  
 

 
I also would like to dedicate deepest gratitude to lecturers and lab mates 
from GRMRC, Immunology departments and my friends, specifically 
Dr.Michael Ling for the advices in troubleshooting genetic analysis, Farhana 
for teaching me the necessary laboratory techniques (PCR, Cell culture, 
miniMACs), Jiun Yee for the discussion (or argument) in scientific topics, Kai 
Leng for being my joyous lab partner, Tong for lending me the flow material 
and guiding in flow-cytometry handling, SCND group members (Carol, 
Saadah, Panda) for the help in lab management and sharing of laboratory 
materials, Melati who helped me with the HPLC techniques, Marlini for 
explaining the C-peptide ELISA to me, and Wendy for the discussion in 
pancreatic differentiation section.  
 
  
Last but not least, I would like to acknowledge Malaysian Government 
(MyBrain15) for the financial supports, in the form of school fee exemption 
and living allowance that lasted for 3.5 years. Once again, I would like to 
convey my appreciation for everyone that encouraged, supported and 
assisted along the completion of this research project. May the discovery of 
this research can benefit the future mankind.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OP

UPM

viii 

This thesis was submitted to the Senate of the Universiti Putra Malaysia and 
has been accepted as fulfilment of the requirement for the degree of Doctor 
of Philosophy. The members of the Supervisory Committee were as follows: 

Norshariza Binti Nordin, PhD 
Senior Lecturer 
Faculty of Medicine and Health Sciences 
Universiti Putra Malaysia 
(Chairman) 

Syahrilnizam Bin Abdullah, PhD 
Associate Professor 
Faculty of Medicine and Health Sciences 
Universiti Putra Malaysia 
(Member) 

Rajesh A/L Ramasamy, PhD 
Associate Professor 
Faculty of Medicine and Health Sciences 
Universiti Putra Malaysia 
(Member) 

Cheah Pike See, PhD  
Senior Lecturer 
Faculty of Medicine and Health Sciences 
Universiti Putra Malaysia 
(Member)  

BUJANG BIN KIM HUAT, PhD 
Professor and Dean  
School of Graduate Studies  
Universiti Putra Malaysia 

Date: 



© C
OP

UPM

 
x 
 

Declaration by Members of Supervisory Committee 
 
 
This is to confirm that: 
� the research conducted and the writing of this thesis was under our  

supervision; 
� supervision responsibilities as stated in the Universiti Putra Malaysia 

(Graduate Studies) Rules 2003 (Revision 2012-2013)  were adhered to. 
 
 
 
Signature:   
Name of  Chairman  
of Supervisory 
Committee: 

 
 
Dr. Norshariza Binti Nordin  

 

 
 
 
Signature: 

  

Name of  Member 
of Supervisory 
Committee: 

 
 

Associate Professor Dr. Syahrilnizam Bin Abdullah  

 

 
 
 
Signature: 

  

Name of  Member 
of Supervisory 
Committee: 

 
 

Associate Professor Dr. Rajesh A/L Ramasamy 

 

 
 
 
Signature: 

 

Name of  Member 
of Supervisory 
Committee: 

 
 

Dr. Cheah Pike See 
 

 

 

 

 

 

 



© C
OP

UPM

xi 

TABLE OF CONTENTS 

Page

ABSTRACT     i 
ABSTRAK iii 
ACKNOWLEDGEMENTS v 
APPROVAL vii 
DECLARATION ix 
LIST OF TABLES      xv 
LIST OF FIGURES      xvi 
LIST OF ABBREVIATIONS ��� 

CHAPTER

1 INTRODUCTION 1 

2 LITERATURE REVIEW 5 
2.1 Introduction to stem cells 5 

2.1.1 General properties of stem cells 5 
2.1.1.1 Self-renewability 5 
2.1.1.2 Differentiation potential 7 

2.2 Pluripotency maintenance 9 
2.2.1 Transcription factors 9 
2.2.2 Leukaemia Inhibitory Factors (LIF) 10 
2.2.3 Feeder layers 10 

2.3 Pluripotency test 11 
2.3.1 Formation of Embryoid Bodies (EBs) (In  

vitro Pluripotency Test) 12 
12 
12 
12 

2.4 13 
14 
15 
16 
16 

2.5 17 
18 
20 
21 

2.6 22 
22 

2.3.2 Formation of Teratoma (In vivo Pluripotency Test) 
2.3.3 Organotypic Model (Ex-vivo Pluripotency Test) 
2.3.4 Bio-informatic Assay for Pluripotency Test 
Types of stem cell 
2.4.1 Embryonic Stem Cells (ESCs) 
2.4.2 Induced Pluripotent Stem Cells (iPSCs) 
2.4.3 Adult stem cells 
2.4.4 Potentially pluripotent stem cells 
Three primary germ layers 
2.5.1 Ectodermal Lineage 
2.5.2 Mesodermal Lineage 
2.5.3 Endodermal Lineage 
Amniotic fluid-derived stem cells 
2.6.1 Amniotic Fluid (AF) 
2.6.2 AF cells 23 



© C
OP

UPM

xii 

2.6.3 Amnion related cells and its therapeutic purpose 24 
2.6.3.1 Amniotic Fluid Mesenchymal stem cells  

(AF-MSCs) 24 
2.6.3.2 Amniotic Fluid Epithelial cells (AECs) 25 
2.6.3.3 Amniotic Fluid Stem cells (AFSCs) 25 

2.7 Mid-term Vs full-term AFSCs 27 
2.7.1 Mid-term AFSCs 27 
2.7.2 Full-term AFSCs 29 

2.8 Formation of embryoid bodies (EBs) 31 
2.8.1 Hanging drop method 33 
2.8.2 Suspension culture method 34 
2.8.3 Microwell method 35 

2.9 Lineage-specific directed differentiation protocols 35 
2.9.1 Neural differentiation 36 
2.9.2 Mesodermal Differentiation 37 

2.9.2.1 Osteogenic differentiation 37 
2.9.2.2 Chondrogenic differentiation 39 
2.9.2.3 Adipogenic differentiation 41 
2.9.2.4 Cardiomyogenic differentiation 44 

2.9.3 Pancreatic differentiation (Endodermal Lineage) 46 

3 ENRICHMENT OF C-KIT POSITIVE CELLS AND
LEUKAEMIA INHIBITORY FACTOR (LIF) OPTIMIZATION 48 
3.1 Introduction 48 
3.2 Methods and Materials 50 

3.2.1 Cell Culture 50 
3.2.1.1 Enrichment of c-kit positive cells  

using miniMACS 50 
3.2.1.2 Routine cell culture 51 
3.2.1.3 Thawing of rat full-term AFSCs 51 
3.2.1.4 Freezing of rat full-term AFSCs 51 

3.2.2 Optimization of culture medium 52 
3.2.3 Functional pluripotency test: Spontaneous  

differentiation by single cell suspension method 52 
3.2.4 Directed neural differentiation assay 52 
3.2.5 Molecular Analyses 52 

3.2.5.1 Flow cytometry: Fluorescent-activated  
cell sorting (FACS) 52 

3.2.5.2 RNA extraction and RT-PCR 53 
3.2.5.3 Immunocytochemistry (ICC) 53 

3.3 Results & Discussion 54 
3.3.1 Enrichment of c-kit positive cells from late pregnancy  

AF 54 
3.3.2 The essentiality of LIF in culturing rat full-term  

AFSCs  56 
3.3.2.1 Cell morphology observation upon 

LIF withdrawal 57 



© C
OP

UPM

 
xiii 

 

3.3.2.2 Pluripotency protein expression upon     
 LIF withdrawal 58 
3.3.2.3 Spontaneous and directed differentiation    
 upon LIF withdrawal 59 
3.3.2.4 Postulation of LIF activated pathway 63 

3.4 Conclusion 64 

4 CHARACTERIZATION OF RAT FULL-TERM AMNIOTIC   
 FLUID STEM CELLS (AFSCS) 65 

4.1 Introduction 65 
4.2 Methods & Materials 66 

4.2.1 Routine cell culture 66 
4.2.2 Routine cell count and population doubling time 66 
4.2.3 Functional pluripotency test 67 

4.2.3.1 Spontaneous differentiation by single    
 cell suspension method 67 
4.2.3.2 Spontaneous differentiation by two    
 steps hanging drop method 67 

4.2.4 Analysis  67 
4.2.4.1 Flow cytometry: Fluorescence activated    
 cell sorting (FACS) 67 
4.2.4.2 RT-PCR 68 
4.2.4.3 ICC (Immunocytochemistry) 68 
4.2.4.4 Cytochemical Staining: Alizarin Red Stain,    
 Red O Oil Stain and Alcian Blue Stain 68 

4.3 Results and Discussion 69 
4.3.1 Population doubling time of c-kit positive cells 69 
4.3.2 Molecular characterization of c-kit positive cells 70 
4.3.3 Functional characterization of c-kit positive cells 74 

5 ECTODERMAL DIFFERENTIATION (Neurons and Glial Cells) 81 
5.1 Introduction 81 
5.2 Materials and Methods 83 

5.2.1 Monolayer differentiation 83 
5.2.2 Protein analysis 83 
5.2.3 Gene expression analysis 84 
5.2.4 Dopamine extraction (alumina precipitation) 84 
5.2.5 High-pressure liquid chromatography (HPLC) 85 

5.2.5.1 Chromatographic conditions: 85 
5.2.5.2 Equipment for checking the    
 neurotransmitter-like, dopamine in     
 neuronal like cells differentiated from    
 AFSCs 85 

5.3 Results and Discussion 85 
5.3.1 Mature neuronal markers expression 85 
5.3.2 Functional markers expression 97 



© C
OP

UPM

 
xiv 

 

6 MESODERMAL DIFFERENTIATION(Cardiomyocytes,   
 Adipocytes, Osteocytes and Chondrocytes) 103 

6.1 Materials and Method: 104 
6.1.1 Mesodermal differentiation: 104 
6.1.2 Analysis 105 

6.2 Results & Discussion: 106 
6.2.1 Differentiation with retinoic acid (RA) 106 
6.2.2 Differentiation with 5-Azacytidine (5-Aza) 109 
6.2.3 Differentiation with 5-Azacytidine (5-Aza) and    
 Vitamin C (Vc) 111 

6.3 Conclusion: 117 

7 ENDODERMAL DIFFERENTIATION (INSULIN   
SECRETING PANCREATIC Β-CELLS) 119 
7.1 Introduction: 119 
7.2 Methods and Materials 120 

7.2.1 Routine cell culture 120 
7.2.2 Pancreatic Differentiation 121 
7.2.3 Gene and Protein Analysis 122 
7.2.4 Dithizone (DTZ) staining for functional islets 122 
7.2.5 C-Peptide secretion examination (ELISA) 123 

7.3 Results and Discussion 123 
7.4 Conclusion 131 

8 FINAL CONCLUSIONS, LIMITATIONS OF STUDY   
 AND RECOMMENDED FUTURE WORK 132 

8.1 Conclusions 132 
8.2 Limitations of Study 133 
8.3 Recommended Future Work 135 

REFERENCES 136 
APPENDICES 184 
BIODATA OF STUDENT 210 
LIST OF PUBLICATIONS  
 
 
 
 
 

 

 

 



© C
OP

UPM

 
xv 
 

LIST OF TABLES 

Table          Page 

2.1 The potency, its definition and examples 8 

2.2 Assays for testing the pluripotency of stem cells 11 

2.3 The three primary germ layers and its derivatives 20 

2.4 Summary of mid-term AFSCs isolated from different species 28 

2.5 Summary of stem cells isolated from full-term AF of different 
species 31 

2.6 Cytokines and supplements applied in the in vitro osteogenic 
differentiation 39 

2.7 Cytokines and supplements applied in the in vitro chondrogenic 
differentiation 41 

2.8 Cytokines and supplements applied in the in vitro adipogenic 
differentiation 43 

3.1 List of primers for pluripotency and JAK-STAT pathway 
associated genes for RT-PCR 53 

4.1 List of primers for pluripotency associated genes for RT-PCR 68 

5.1 List of antibodies used in ICC and flow cytometry in this study 83 

5.2 List of primers for neuronal cells associated genes for RT-PCR 84 

6.1 Concentrations of 5-Aza and Vc used 105 

6.2 List of primers for cardiomyocytes associated genes for RT-
PCR 106 

7.1 Pancreatic differentiation with sequential treatment of 
morphogens according to Kroon et al., 2008 121 

7.2 List of primers for pancreatic lineage associated genes for RT-
PCR 122 

7.3 Reagents and concentration for preparing Krebs Ringer buffer. 123 

 



© C
OP

UPM

 
xvi 

 

LIST OF FIGURES 

Figure         Page 

2.1 Two mechanisms of self-renewability, the intrinsically 
asymmetric cells division and symmetric cell division 7 

2.2 Implantation of the human blastocyst 18 

2.3 Formation of primitive streak and the mesoderm that separates 
epiblast and primitive endoderm. 18 

2.4 Formation of ectodermal lineage from epiblast which eventually 
develops into surface ectoderm, neural crest and neural tube. 19 

2.5 The four regions of mesoderm, the axial mesoderm of the 
prechordal plate and notochord, paraxial mesoderm, 
intermediate mesoderm and lateral plate mesoderm  21 

2.6 The schematic diagram of endoderm development. 22 

2.7 Morphology of different types of cells in AF. 24 

2.8 The cavitation process of EBs. 32 

2.9 EBs formation through hanging drop formation 34 

2.10 EBs formation through suspension culture 34 

2.11 EBs formation through microwell culture 35 

2.12 Morphology of brown fat and white fat   42 

2.13 Schematic overview outlining differentiation approaches 
presently used for cardiomyocyte differentiation from hESCs 45 

2.14 Methods for obtaining pancreatic β-cells from human ES/iPS 
cells. 47 

3.1 Cell morphology and c-kit expression of AF cells after immuno-
selection of c-kit.  56 

3.2 AFSCs exhibiting similar morphology (AF-type cells) when 
cultured with or without LIF  57 

3.3 ICC analysis of Oct4 during early and late passage of culture 
medium supplement with and without LIF. 58 



© C
OP

UPM

 
xvii 

 

3.4 FACS analysis of Oct4 and Nanog expression on cells of early 
and late passage cultured in medium supplemented with and 
without LIF. 59 

3.5 The EBs formation of cells cultured with LIF and without LIF up 
to passage 40. 60 

3.6 Expression of the lineage specific markers of the three primary 
germ layers cells upon EBs formation derived from the late 
passage cells cultured with and without LIF. 61 

3.7 The expression of the early and post-mitotic neuronal markers 
of late passage AFSCs, which were cultured with and without 
LIF, upon MD. 62 

3.8 RT-PCR and ICC analyses of pluripotency markers of cells 
cultured with and without LIF. 63 

4.1 Cell doubling time of rat c-kit positive cells within P20-P50 69 

4.2 Expression of pluripotency associated markers. 71 

4.3 Expression of surface markers.  73 

4.4 A good quality EB. 76 

4.5 Formation of embryoid bodies (EBs) from the two c-kit positive 
lines. 77 

4.6 Expression of lineage-specific markers in differentiated cells.   79 

5.1 Bright field images of rat full term AFSCs undergoing 
monolayer differentiation from day 6 to day 16. 86 

5.2 Expression of neuronal associated markers after 2 hours 
induction of MD. 88 

5.3 Expression of neuronal associated markers after 2 days MD 
induction. 89 

5.4 Expression of neuronal associated markers after 4 days of MD 
induction. 90 

5.5 Expression of neuronal markers after 6 days of MD induction. 91 

5.6 Expression of neuronal markers after 8 days of MD induction. 92 

5.7 Expression of neuronal markers after 10 days of MD induction. 93 

5.8 Expression of neuronal markers after 12 days of MD induction. 94 



© C
OP

UPM

 
xviii 

 

5.9 Expression of neuronal markers after 18 days of MD induction. 95 

5.10 Summary of the differential expression of neuronal and glial 
markers. 96 

5.11 RT- PCR analysis of differentiated cells upon MD induction. 96 

5.12 FACS analysis of differentiated cells upon MD induction. 97 

5.13 Immunocytochemnistry (ICC) of mature dopaminergic markers 
in differentiated cells upon day 10 of MD induction. 100 

5.14 HPLC of medium extracted from neuronal culture on day 8. 101 

6.1 Morphological observation of plated EBs upon treatment with 
different concentrations of RA. 107 

6.2 ICC examination of class III beta tubulin and brachyury on day-
5 plated EBs. 108 

6.3 RT-PCR examination on cardiomyogenic markers. 110 

6.4 Detection of functional cardiomyogenic marker, cTnT with ICC. 110 

6.5 Morphological observation of cardiomyocytes cluster and 
detection of spontaneous beating clusters. 111 

6.6 Expression of functional adipogenic, osteogenic and 
cardiomyogenic markers upon variable treatments of 5-Aza and 
Vc. 113 

6.7 RT-PCR examination on cardiomyogenic markers. 115 

6.8 Expression of functional markers for adipogenic, chondrogenic, 
cardiomyogenic and osteogenic derivatives at different time 
points. 117 

7.1 The bright field morphology of rat full term AFSCs differentiated 
into pancreatic-like cells on day 1, day 6, day 9 and day 12 at 
10x and 20x magnification. 124 

7.2 The expression of pancreatic genes. 126 

7.3 The expression of meso-endodermal markers. 127 

7.4 The expression of mature pancreatic marker. 128 

7.5 The DTZ staining on day 12 derived islet-like cells. 128 

7.6 : The C-peptide secretion upon day 12 of differentiation. 130 



© C
OP

UPM

 
xix 

 

LIST OF ABBREVIATIONS 

5-Aza 5-azacytidine 

AECs Amniotic fluid epithelial cells 

AF Amniotic fluid

AFCs Amniotic fluid cells 

AF-MSCs Amniotic fluid mesenchymal stem cells 

AFSCs Amniotic fluid stem cells 

AF-type Amniotic fluid type 

ANP Atrial natriuretic peptide 

Ap2 Adipocytes protein 2 

Asc-2-P Ascorbic acid 2-phosphate 

ASCl1 Achaete–scute homologue 1 

bFGF Basic fibroblast growth factors 

BM-MSCs Bone marrow mesenchymal stem cells 

BMPs Bone morphogenic proteins  

BRn2 Brain specific homeobox and POU domain 2 

BSP Bone sialoprotein 

C/EBPa CAAT/enhancer-binding proteins  

cAMP Cyclic adenosine monophosphate 

CDC25A Cell division cycle 25 homolog A 

CDK6 Cyclin dependent kinase 6 

CeBPβ CCAAT/Enhancer-Binding Protein Beta-2 Isoform 

ChAT Choline acetyltransferase 

c-kit Type III tyrosine kinase receptor of the stem cell factor, 
also known as CD117 



© C
OP

UPM

 
xx 
 

CLC B-cell stimulating factor-3  

CMs Cardiomyocytes 

c-Myc v-myc avian myelocytomatosis viral oncogene homolog 

CNTF Ciliary neurotrophic factor  

CO2 Carbon dioxide 

Col11 Collectin sub-family member 11  

CT-1 Cardiotropin-1  

cTnI Cardiac troponin I 

c-TnT Cardiac troponin-T  

CXCR4 Chemokine receptor type 4 

D Day 

DA Dopamine 

DAPI 4',6-diamidino-2-phenylindole 

DAT Dopamine transporter 

DE Definitive endoderm  

DHBA 3,4-dihydroxyhenzene benzylamine 

DIA Differentiation inhibiting activity 

DKK-1 Dickkopf 

DM Diabetes mellitus 

DMEM Dulbecco's Modified Eagle's medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DTZ staining Dithizone staining 

E  Embryonic day 

EBM Embryoid body medium (without LIF) 



© C
OP

UPM

 
xxi 

 

EBs Embryoid bodies

ECD Electrochemical detector 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor  

ELISA Enzyme-linked immuno assay 

END-2 Visceral endoderm-like cell line  

ERK  Extracellular signal-regulated kinases  

ESCMs Embryonic stem cell derived cardiomyocytes 

ESCs Embryonic stem cells 

ESM Embryonic stem cell medium (with LIF) 

E-type Epithelioid- type 

FABP4 Fatty acid binding protein 4  

FACS Fluorescent-activated cell sorting 

FBS Fetal bovine serum 

FITC Fluorescein isothiocyanate 

FSCs Fetal stem cells

F-type Fibroblastic-type 

GAGs Glycosaminoglycan 

GATA4 GATA binding protein 4 

GFAP Glial fibrillary acidic protein 

GIRK2 Protein-regulated inward-rectifier potassium channel 2 

GJA1 Gap junction alpha-1 protein 

GLP Glucagon-like peptide 

GLUT4 glucose transporter type-4  



© C
OP

UPM

 
xxii 

 

GMEM Glasgow Minimum Essential medium 

GP130 Glycoprotein 130  

HAFFT Human amniotic fluid fibroblastoid-type cells 

HD Hanging drop 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hESCs Human embryonic stem cells 

HGF Hepatocyte growth factor 

HPLC High performance liquid chromatography 

HSCs Hematopoietic stem cells

IBMX Isobutylmethylxanthin  

ICC Immunocytochemistry 

ICM Inner cell mass 

IGF Insulin growth factor

IL-6 Interleukin-6 

ILV Indolactam V 

INS-1 Insulin-1 

iPSCs Induced pluripotent stem cells 

ITS Insulin, transferrin, selenious acid 

JAK Januse Kinase 

K2HPO4 Dipotassium Phosphate  

KAAD-CYC 3-Keto-N-(aminoethyl-aminocaproyl-dihydro- 
cinnamoyl) cyclopamine 

KCL Potassium Chloride 

Kdm5b Lysine (K)-specific demethylase 5B 

KGF Keratinocyte growth factor 

Klf4 Kruppel-like factor 4 



© C
OP

UPM

 
xxiii 

 

LIF Leukemia inhibitory factor 

LIFr Leukemia inhibitory factor receptor 

Lin28 Protein Lin-28 homolog A 

LRRK-2 Leucine-rich repeat kinase 2

MACS Magnetic-activated cell sorting (MACS) 

MafA v-maf avian musculoaponeurotic fibrosarcoma 
oncogene homolog A 

MafB v-maf avian musculoaponeurotic fibrosarcoma 
oncogene homolog B 

MAP Mitogen-activated protein  

MAP2 Microtubule-associated protein 2

MAPCs Multipotent adult progenitor cells 

MD Monolayer differentiation 

MEF Mouse embryonic fibroblast 

mESC Mouse embryonic stem cells 

Mest Mesoderm specific transcripts gene  

MgSO4 Magnesium Sulphate  

MIAMI cells Marrow-isolated adult multi-lineage inducible cell 

MLC-2a Myosin light chain-2a 

MLC-2v Myosin light chain-2v 

MMP13 Matrix metallopeptidase 13  

MSCs Mesenchymal stem cells 

myT1l Myelin transcription factor 1 like 

NA Norepinephrine 

NaCl Sodium Chloride  

Nanog Homeobox transcription factor nanog 



© C
OP

UPM

 
xxiv 

 

NCAM Neural cell adhesion molecule 

NeuroD Neurogenic helix loop helix protein  

NF Neurofilamant  

NGN3 Neurogenin 3 

Nkx2.5 Homeobox protein nkx2.5 

Nkx6.1 Homeobox protein nkx6.1 

NPCs Neural precursor cells 

NSCs Neural stem cells 

Oct4 Octamer-binding transcription factor 4 

OPC Oligodendrocytes precursor cells  

OSM Oncostatin M  

OSX Osterix  

P Passage 

PBS Phosphate buffer saline 

PCL Poly-ε-caprolactone 

PD Parkinson’s disease 

PDX1 Duodenal homoeobox-1 

PE Phycoerythrin 

PEC1 hESCs derived pancreatic progenitor cells 

PI Propidium iodide

PI3K signaling Phosphatidylinositol 3-kinase signaling 

PLLA Poly-L-lactic acid  

PPAR Peroxisome proliferation-activated receptors  

RA Retinoic acid 

rCMs Rat cardiomyocytes 



© C
OP

UPM

 
xxv 

 

RET trk, trkB, and RET

Rex1 Known as Zfp-42, zinc-finger protein-42 

RGD Arginine, glycine, aspartic acid 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPE Retinal pigment epithelium 

RPMI Roswell park memorial institute 

Runx2 Runt-related transcription factor 2 

SCF Stem cell factor 

SDIA Stromal cell-derived inducing activity 

SERCA Sacroendoplasmic reticulum calcium transport ATPase  

Shh Sonic hedgehog 

SOS Sodium octyl sulphate 

Sox1 Sex determining region Y-box 1 

Sox2 Sex determining region Y-box 2 

SSEA1 Stage specific embryonic antigen1 

SSEA3 Stage specific embryonic antigen3  

SSEA4 Stage specific embryonic antigen4  

STAP Stimulus triggered acquisition of pluripotency cells  

STAT Signal transducer and activator of transcription 

Tbx3 T-box transcription factor 

Tert Telomerase reverse transcriptase  

TGF-β Transforming growth factor-beta 

TH Tyrosine hydroxylase 

trk Tropomyosin receptor kinase 



© C
OP

UPM

 
xxvi 

 

trkB Tropomyosin receptor kinase B 

Vc Vitamin C 

VEGF Vascular endothelial growth factor 

VM Ventral midbrain  

VMAT Vesicular monoamines transporters 

VSELs Very small embryonic-like cells 

W Weeks 

WHO World Health Organization  

α-MHC α- myosin heavy chain 

β-MHC β-myosin heavy chain 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OP

UPM

 
1 
 

CHAPTER 1 

1 INTRODUCTION 

Stem cells are characterized by two unique properties; the self renewability 
and their differentiation potential, which make them a great promising 
candidate for regenerative medicine. Since the discovery of stem cell biology, 
different types of stem cells have been isolated and characterized, ranging 
from the unipotent spermatogonial stem cells to pluripotent embryonic stem 
cells (ESCs). Among all, only certain types of stem cells, such as ESCs and  
mesenchymal stem cells (MSCs), have been used in clinical trials in the last 
decade; while, hematopoietic stem cells (HSCs), that have been applied to 
replace cancer patients’ normal growing blood cells during chemotherapy 
(Stanevsky et al. 2009), remained to be the only successful stem cell for 
clinical use. 

The clinical applications of both ESCs and induced pluripotent stem cells 
(iPSCs) are still limited. Although ESCs entered clinical trials in 2010, they 
remain controversial to some, as their generation involves the destruction of 
embryos. Another serious concern is the safety issues of ESCs, as they can 
form tumours upon transplantation (Kielman et al. 2002; Ishikawa et al. 
2003). There are also issues with clinical applications of iPSCs. Most iPSCs 
studies are restricted to laboratories as the generation of iPSCs can be 
expensive, labour intensive and inefficient due to poor pluripotency 
conversion (Wolfrum et al. 2010). Similar to ESCs, iPSCs also are 
associated with mutagenesis and tumorigenesis (Gore et al. 2011; Hussein 
et al. 2011; Lister et al. 2011). Meanwhile, MSCs have lower differentiation 
capacity, which are restricted to mesodermal lineages, thus has limited their 
potential use in clinical applications (Malatesta et al. 2008; Ding et al. 2011). 
Their limited life-span (lesser than 10 passages) in culture is another 
drawback for their use in clinical applications (Taléns-Visconti et al. 2006a; 
Yang et al. 2011; Sancho-Martinez et al. 2012). Hence, it is still an immense 
task before mesenchymal stem cells could be widely applied in clinical 
settings primarily due to their limited differentiation capacity and their shorter 
lifespan (Rosenbaum et al. 2008; Trounson et al. 2011; X. He et al. 2012). 

Clearly, the discovery of stem cells that possess similar differentiation 
potential as ESCs, but safer would be highly desirable. A number of new 
stem cells types that are categorized as potentially pluripotent stem cells 
have been reported; including very small embryonic like cells (VSELs), 
multipotent adult progenitor cells (MAPCs) and marrow isolated adult multi-
lineage inducing cells (MIAMIs) (reviewed in Gao et al. 2013). Generally, 
these cells have greater differentiation potential than multipotent cells, where 
they can differentiate into the cell derivatives of the three primary germ layers. 
They also exhibit, to some degree, markers that are expressed in the 
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standard pluripotent stem cells, the ESCs (D’Ippolito et al. 2004; Kucia et al. 
2007; Ratajczak et al. 2008; Zuba-Surma et al. 2009; Ratajczak et al. 2011).  
Regardless of the bright side, many challenges still need to be tackled before 
their usage in clinical application could be applied, as these cells are newly 
discovered where the isolation, characterization and long-term maintenance 
can be technically challenging (D’Ippolito et al. 2004; Ratajczak et al. 2008; 
Zuba-Surma et al. 2009; Gao et al. 2013). 

Stem cells have been isolated from various body compartments and cavities, 
such as the cardiac cavity, dental pulp or to a greater extend the extra-
embryonic compartment (Hilmi et al. 2008; Dobreva et al. 2010; Makino and 
Fukuda 2011). Triggered by the idea that amniotic fluid is harbouring a rich 
source of foetal and maternal cells, scientists have isolated various types of 
stem cells from amniotic fluid; such as amniotic fluid mesenchymal stem cells 
(AF-MSCs) and amniotic fluid epithelial stem cells (AECs)  (Fauza 2004; 
Abdulrazzak et al. 2010). However, the majority of studies were targeted on 
the isolation of multipotent stem cells with a simple one-stage or two stage 
protocols. This had resulted in the isolation of multipotent stem cells with low 
passage number and limited differentiation potential (Prusa et al. 2004; 
Antonucci et al. 2009; Mauro et al. 2010; Da Sacco et al. 2010; Klemmt et al. 
2011; Yadav et al. 2011; Janz et al. 2012; Jezierski et al. 2012; Hartmann et 
al. 2013; Pratheesh et al. 2013). 

Interestingly,  the additional step of magnetic activated cell sorting (MACS) 
against c-kit (stem cells receptor), a type of broad multipotent stem cells, 
termed amniotic fluid stem cells (AFSCs), were first successfully isolated 
from amniotic fluid collected from mid-pregnancy in 2007 (De Coppi et al. 
2007). These AFSCs express Oct4, indicating their pluripotency status (De 
Coppi et al. 2007; Perin et al. 2008; Gekas et al. 2010; Bollini et al. 2011; Bai 
et al. 2012; Maraldi et al. 2014).  Additionally, Tert, which is responsible for 
indefinite replicative capacity, is also expressed in these cells (Mosquera et 
al. 1999; Kim et al. 2007a). The doubling time for AFSCs  is 36 hours, and 
they can be cultured for more than 250 populations  (De Coppi et al. 2007; 
Phermthai et al. 2010a). AFSCs may have good prospects in cell therapy, 
because they possess similar developmental potential as ESCs, they are not 
ethically controversial and they are likely to be safer in clinical settings as 
they do not form tumours upon transplantation (De Coppi et al. 2007; 
Pozzobon et al. 2010; Chen et al. 2011). Their discovery not only gives an 
alternative source for stem cells, but also marks a potentially significant 
advancement in regenerative medicine (Siddiqui and Atala 2004; Da Sacco 
et al. 2010). 

Most previous studies have focused to isolate stem cells from mid-term AF 
collected via amniocentesis, including from human, dog, pig, horse and 
buffalo (De Coppi et al. 2007; Chen et al. 2011; Filioli Uranio et al. 2011; 
Yadav et al. 2011; K Dev et al. 2012; Kapil Dev et al. 2012; Pratheesh et al. 
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2013). Nonetheless, there are concerns about the potential risks posed by 
the mid-term AF acquisition through amniocentesis, such as complications 
associated with infection of the amnion sac from the needle, leakage of the 
sac and most seriously, miscarriage (Leschot et al. 1985; Kong et al. 2006).  
Although the advancement of technology has greatly reduced the risk, but 
exploring the possibility of isolating AFSCs from full-term amniotic fluid, can 
increase the accessibility of getting the AF samples, since they are large in 
volume (estimately 600ml) and the full-term AF are generally meant to be 
discarded (Abramovich 1970). Thus, AF from full-term pregnancy could be 
an alternative source to isolate AFSCs.  

Only a small number of studies reported the isolation of stem cells from full-
term pregnancy, namely from human (You et al. 2008; You et al. 2009), 
horse (Iacono et al. 2012), cow (Rossi et al. 2014) and dog (Fernandes et al. 
2012; Choi et al. 2013). According to previous literature, the isolation step 
done was rather simple, which the primary AF cells were cultured in a 
standard culturing medium in serum supplemented with certain growth 
factors through one- or two-stage culture methods. However, these isolated 
AF-MSCs or AFSCs exhibited mesenchymal-like morphology limited 
differentiation potential (You et al. 2008; You et al. 2009; Fernandes et al. 
2012; Iacono et al. 2012; Choi et al. 2013; Rossi et al. 2014).  

Different from the previous studies on stem cells derived from full-term AF 
studies, the additional step of magnetic activated cell sorting (MACS) against 
c-kit (stem cells receptor) was applied in this study, in order to isolate a purer 
stem cell population from full-term AF. Then, the isolated c-kit positive cells 
were optimized with the requirement of Leukaemia Inhibitory Factor (LIF) in 
culture. These isolated full-term AFSCs are believed to have higher 
differentiation potential and stemness than those isolated from single- and 
two-staged protocols as previously described. Moreover, LIF supplemented 
culture is believed to be essential to maintain the differentiation potential of 
the cells. Finally, these cells are hoped to behave similarly as those isolated 
from mid-term AF through immuno-selection against c-kit.  

Research questions:  

1. Does rat full-term AF harbour highly potent stem cells, similar to those 
isolated from mid-term AF?  

2. Do the isolated stem cells possess a wide differentiation spectrum to 
differentiate into derivatives from the three primary germ layers, 
specifically into the functional ones?  

3. Besides, does the isolated full term AFSC require LIF in culture, similar to 
ESCs, in order to maintain them in undifferentiated state?  
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Hypothesis:  

Rat full-term amniotic fluid harbours highly potent stem cells with the ability to 
differentiate into functional derivatives of the three primary germ layers.  

General Objective and the specific aims 

In this study, the general objective is to enrich broadly multipotent AFSCs 
lines which were isolated in the lab previously using magnetic activated cell 
sorting (MACS) against c-kit (stem cells receptor), and to explore the 
differentiation potential of the isolated AFSCs into derivatives of the three 
primary germ layers. The specific objectives are:

1. To evaluate the effects of c-kit and LIF for AFSCs culture.   
2. To molecularly and functionally characterize the established AFSCs.  
3. To explore the ectodermal differentiation potential of AFSCs and to 

evaluate their functional neurogenic capabilities.  
4. To examine the mesodermal differentiation potential of the AFSCs into 

cardiomyocytes, osteocytes, chondrocytes and adipocytes.  
5. To unravel the endodermal differentiation capacity of AFSCs and to 

assess their functional pancreatic potential.  
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