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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
of the requirement for the degree of Doctor of Philosophy  

ISLANDING DETECTION IN GRID-CONNECTED PHOTOVOLTAIC 
DISTRIBUTED GENERATION USING INVERTER DC-LINK VOLTAGE

By

MOHAMMED SAIDU KUMO 

April 2017 

Chair: Prof. Ir. Norman Bin Mariun, PhD 
Faculty: Engineering 

There is an increase in the spread of Distributed Generation (DG) in the form of solar 
photovoltaic (PV), wind turbines, fuel cells, etc. as renewable energy resources, giving 
numerous advantages if connected to the existing electric grid system. However, their 
integration into the grid introduces certain problems to the conventional distribution 
system, of which islanding detection is the most important. Islanding a situation in 
which a DG powers its local load while in the absence of the grid supply. The 
occurrence of islanding causes numerous problems to the DG, the grid and the 
maintenance personnel. Therefore, its occurrence must be detected within two seconds. 
The aim of this thesis is to study the viability of using the inverter DC-Link voltage as 
a parameter for passive islanding detection. The most significant shortcoming of 
passive islanding detection methods is the presence of large non-detection zone (NDZ), 
which is a region of power mismatch between the DG and the local load where islanding 
cannot be timely detected. For the study, a detailed model of 100 kW, 480V, grid-
connected PV DG is implemented in MATLAB/Simulink. Then the response of DC-
Link voltage to system load variations in islanding and grid-connected modes were 
studied. Furthermore, its responses to islanding on three inverter interface controllers, 
the constant power controller (CPC), the constant current controller (CCC) and the 
open-loop controller (OLC) were evaluated. The NDZ of the DC-Link voltage was 
determined using the UL 1741 test conditions on the IEEE 1547 anti-islanding (AI) test 
circuit. The effectiveness of any AI method depends on its NDZ, therefore the NDZ of 
DC-Link voltage was improved using the Detrending Algorithm. The effect of non-
islanding grid-side faults on DC-Link voltage was equally examined. The system 
performance is verified with the MATLAB time-domain simulations. DC-Link voltage 
was found to be viable for passive islanding detection with an NDZ of +20%. The NDZ 
is improved to ± 1.0% by detrending the DC-Link voltage, which is a novel 
achievement. An AI detection system using DC-Link voltage and detrended DC-Link 
voltage as inputs was able to detect the occurence of islanding within 33 ms against the 
2 seconds required by the standards. Detrended DC-Link voltage responds to each non-
islanding event distinctively. To sum it up, DC-Link voltage is viable for being a 
parameter for passive islanding detection as it is very fast in detecting islanding, 
discriminative from non-islanding faults and has almost zero NDZ. The fact is validated 
in comparison with work done with wavelet analysis based on a neuro-fuzzy system. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PENGESAN PULAU DALAM GRID YANG BERHUBUNG DENGAN 
PENJANA PENGEDARAN FOTOVOLTAIK MENGGUNAKAN INVERTER 

DC-RANGKAIAN VOLTAN

Oleh 

MOHAMMED SAIDU KUMO 

April 2017 

Pengerusi: Prof. Ir. Norman Bin Mariun, PhD 
Fakulti: Kejuruteraan 

Terdapat peningkatan dalam kemajuan Penjanaan Agihan(PA) sama ada dalam bentuk 
Solar Fotovoltaik (PV), turbin angin, sel bahan api, dan lain-lain sebagai sumber tenaga 
boleh diperbaharui, memberi banyak kelebihan jika disambungkan kepada system grid 
elektrik sedia ada. Walaubagaimanapun, penyatuannya kedalam grid memperkenalkan 
masalah tertentu kepada sistem penjanaan konvensional, yang mana paling utama 
sekali ialah pengesanan “islanding”. Pengesan “islanding” adalah suatu keadaan 
dimana DG mengkuasakan beban tempatannya ketika ketiadaan bekalan kuasa grid. 
Hal ini mengakibatkan pelbagai masalah kepada DG, grid dan kakitangan 
penyelenggaraan. Oleh itu, “islanding”  perlu dikesan dalam masa dua saat. Tujuan tesis 
ini adalah untuk mengkaji daya maju menggunakan inverter DC-rangkaian voltan 
sebagai parameter untuk mengesan “islanding”  pasif. Kelemahan yang paling nyata 
untuk kaedah pengesanan islanding pasif adalah dengan kehadiran zon bukan-
pengesanan (NDZ) besar, yang merupakan kawasan kuasa tidak sepadan diantara DG 
dan beban tempatan dimana islanding tidak dapat dikesan. Untuk kajian ini, perincian 
model terdiri daripada 100 kW, 480V, grid-berkaitan PV DG digunakan dalam 
MATLAB/Simulink. Kemudian, tindak balas DC-rangkaian voltan kepada variasi 
sistem beban dalam islanding dan mod grid-berkaitan telah dikaji. Tambahan, 
tindakbalasnya untuk islanding keatas tiga pengawal muka inverter; pengawal kuasa 
berterusan (CPC), pengawal arus malar (CCC) dan pengawal gelung-terbuka (OLC) 
dinilai. NDZ pada DC-rangkaian voltan dipilih menggunakan ujian kondisi UL 1741 
pada ujian litar IEEE 1547 anti-islanding. Keberkesanan kaedah AI bergantung kepada 
NDZ, maka NDZ pada DC-rangkaian voltan bertambah baik menggunakan Algoritma 
Detrending. Kesan kepada kesalahan grid-sisi bukan-islanding keatas DC-rangkaian 
voltan telah diperiksa betul-betul. Prestasi sistem telah disahkan menerusi simulai 
masa-domain MATLAB. DC-rangkaian voltan didapati berdaya maju untuk mengesan 
islanding pasif dengan NDZ sebanyak +20%. NDZ meningkat kepada hampir sifar 
daripada detrending DC-rangkaian voltan kepada detrended DC-rangkaian voltan yang 
mana baru. Sistem pengesanan AI menggunakan DC-rangkaian voltan dan detrennded 
DC-rangkaian voltan sebagai input mampu mengesan pulau dalam tempoh 33 mili saat
berbanding 2 saat yang dikehendaki oleh piawaian. detrennded DC-rangkaian voltan 
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bertindak balas keatas setiap kejadian bukan-islanding itu sendiri. Kesimpulannya, 
voltan DC-link adalah berdaya maju sebagai parameter untuk pengesanan islanding 
pasif kerana ia adalah sangat cepat dalam mengesan islanding, mampu membezakan 
kesalahan bukan-islanding dan mempunyai hampir sifar NDZ.  Fakta ini disahkan 
melalui perbandingan kerja yang telah dilakukan dengan analisis wavelet berdasakan 
sisten neuro-fuzzy. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

There is an increase in the spread of Distributed Generation (DG) in the form of solar 
photovoltaic (PV), wind turbines, fuel cells, etc. as renewable energy resources giving 
numerous advantages if connected to the existing electric grid system. However, their 
integration into the grid introduce certain problems to the conventional distribution 
system, which has only one-directional power flow, from the power substation to the 
end user. With the integration of DGs power flow direction reversal may also be 
experienced in some feeders.  This research will focus on the islanding phenomenon, 
being among the major problems faced by the grid integration of DGs (Ghaderi & 
Kalantar, 2011). Over the years, researchers have been working on different islanding 
detection methods, with the sole aim of finding a suitable technique that has the least 
non-detection zone (NDZ). NDZ is a condition of DG output power versus local load 
power mismatch within which islanding is not timely detectable. The integration of DG 
systems with the grid raises a number of relaying and protection-related issues with the 
AC host system. One of the most important issues is the detection of unintentional 
islanding of the grid-tied DG systems.  

Islanding is a situation in which a DG continues powering its local load in the absence 
of the grid supply (Faqhruldin, 2013). This is usually caused by grid-side faults which 
result in negative consequences on the distribution systems including poor power 
quality, danger to utility maintenance personnel, and equipment damage (Akhlaghi, 
Ghadimi, & Akhlaghi, 2014). The IEEE 1547 Standard on Interconnecting Distributed 
Resources to Electric Power Systems - 2003 requires fast shut-down of grid-connected 
DG systems when they are isolated from the main utility power system, within a 
maximum of two seconds (IEEE, 2009). Methods of detecting islanding can be broadly 
classified into three: passive (Abo-Khalil, Al-Qawasmi, & Aly, 2013; Freitas, Huang, 
& Xu, 2005; H.H. Zeineldin & Kirtley, 2009), active (Freitas, Xu, Affonso, & Huang, 
2005; H. H. Zeineldin & Kennedy, 2009) and communication based (H. H. Zeineldin 
& Salama, 2011) islanding detection techniques. The passive methods are based on 
measurements of DG parameters at the Point of Common Coupling (PCC) while active 
methods based their techniques on injection of a disturbance at the DG output at the 
same time monitoring some parameter(s) for the detection of islanding. 
Communication-based techniques rely on communication systems between the utility 
and the DGs using a transmitter at the grid side, that is, the power substation and 
receivers at the DG sites. Communication-based methods for islanding detection are 
very effective, with zero NDZ although very expensive to implement on small DGs. 
Active islanding detection techniques are complex, have negligible NDZ, but 
associated with power quality degradation. On the other hand, passive islanding 
detection techniques are simple, with no power quality issues but are associated with 
large NDZ (Xu, W., Mauch, K., and Martel, 2004).   
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Islanding detection methods that aim at reducing the NDZ using different methods have 
been proposed over the past years (Faqhruldin, 2013).  All previous researchers on
islanding detection use parameters of the PCC, the inverter AC voltage and its 
derivatives. However, (Vahedi, Noroozian, Jalilvand, & Gharehpetian, 2011) presented 
a study of islanding detection using a parameter from the DC side of the DG system, 
the inverter DC-Link voltage in conjunction with the PCC voltage in an active islanding 
detection technique. As iterated above, the active method though has little or reduced 
NDZ, is characterized by complexity, power quality disruption and the interference 
with the hardware of inverter controller structure. Another study of islanding detection 
using the inverter DC-Link voltage was also performed by (Banu & Istrate, 2014). In 
that study, the standard methods recommended by both IEEE 1547 and UL 1741 for 
islanding detection were not adhered to. It has therefore become necessary to conduct 
a study on passive islanding detection method using the inverter DC-Link voltage as an
islanding detection parameter, in accordance with the standard requirements.  

1.2 Statement of Problem 

Most of the developed anti islanding (AI) methods focused on the inverter AC voltage 
and its derivatives as parameters for islanding detection, however, two research works 
are reported in the literature that use the inverter DC-link voltage as a parameter for 
islanding detection: 

The research work of Vahedi et. al. 2011 uses the inverter DC-Link voltage in 
conjunction with the inverter Point of Common Coupling (PCC) voltage (Vpcc) in active 
islanding method. The strong point of this approach is the small Non-Detection Zone 
(NDZ) while still has the limitations of complexity, power quality issues and 
infringement of the inverter hardware.

Similarly, Banu & Istrate, 2014 also use the inverter DC-Link voltage
 
in passive 

islanding detection method. The advantages of this approach include simplicity, 
absence of power quality issues, and that the technique is based on only parameter 
measurements. However, the method has a number of limitations including large NDZ, 
and non-adherence to IEEE 1547 as well as the UL 1741 AI standards.

In the light of the above, it therefore becomes necessary to conduct a study on passive 
islanding detection method that imbibes the advantage of the active method and 
enhances the shortcomings of passive method using the inverter DC-Link voltage as an 
islanding detection parameter in accordance with industry standard requirements. 

1.3 Aim and Objectives of the Study 

This research focuses on establishing the viability of inverter DC-Link voltage as a 
parameter for passive islanding detection and finding a novel islanding solution for 
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grid-connected photovoltaic distributed generation using the DC-Link voltage of a 
Voltage Source Inverter (VSI), discriminative of non-islanding transients faults.  To 
realize this, a detailed mathematical model of the system, consisting of PV arrays, VSI, 
static load and an electric distribution system is to be drived, for designing the control 
system. The system performance is verified by simulating the overall system in 
MATLAB/Simulink and SimPowerSystems. The main objectives of the research are as 
follows: 

i. To study and validate the response of inverter DC-Link voltage to local load 
dynamics in islanding and non-islanding conditions using three inverter 
interface controller schemes. 

ii. To evaluate the NDZ of the DC-Link voltage using the UL 1741 standard test 
conditions on the IEEE 1547 Anti-Islanding Test Circuit. 

iii. To improve the NDZ of the DC-Link voltage in order to enhance its 
effectiveness for the detection of the occurrence of islanding using the 
Detrending Algorithm.

iv. To investigate the behavior of the detrended DC-Link voltage for islanding and  
non-islanding grid-side fault conditions. 

1.3 Scope of the Thesis 

The scope of the research work is given in the following: 
i. Implementation of a 100 kW, 480 V, three-phase, grid-connected photovoltaic 

distributed generation study system in MATLAB/Simulink and Simpower 
systems. 

ii. Performance evaluation of the DC-Link voltage to load variations in islanding 
and non-islanding conditions.  

iii. NDZ determination and improvement of the DC-Link voltage . 
iv. Evaluation of the effectiveness of the proposed NDZ reduction method in 

comparison with results obtained using other passive islanding detection 
techniques based on the IEEE 1547 and UL 1741 test conditions.

1.5  Thesis Layout 

Chapter 1 (Introduction), gives the background of the research study, highlights of the 
significance of islanding detection in grid-connected distributed generation, 
classifications of islanding, statement of the problem, and objectives of the study. 

Chapter 2 (Literature Review) covers the review of the previous islanding detection 
methods with their merits and demerits. 

Chapter 3 (Methodology) outlines the study system model and its control system 
structure. Also, a step by step design and parameter calculations of the system and the 
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islanding test bench in accordance with IEEE 1547 and UL 1741 are given. The 
implementation in MATLAB/Simulink, comprising different standard tests are 
discussed. The complete structure of the procedures for accomplishing the set 
objectives is also explained in details. 

Chapter 4 (Results and Discussions) presents entirely the results obtained with the 
discussions of the research findings and validation. 

Chapter 5 (Conclusion and Future Research) drives the overall inference on the 
research study, discusses the contributions of the research to the body of knowledge 
and outlines recommendations for future studies. 
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