

UNIVERSITI PUTRA MALAYSIA

ISLANDING DETECTION IN GRID-CONNECTED PHOTOVOLTAIC DISTRIBUTED GENERATION USING INVERTER DC-LINK VOLTAGE

MOHAMMED SAIDU KUMO

FK 2017 46

ISLANDING DETECTION IN GRID-CONNECTED PHOTOVOLTAIC DISTRIBUTED GENERATION USING INVERTER DC-LINK VOLTAGE

By

MOHAMMED SAIDU KUMO

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

April 2017

All material contained within the thesis, including without limitation text, logos, icon, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy

ISLANDING DETECTION IN GRID-CONNECTED PHOTOVOLTAIC DISTRIBUTED GENERATION USING INVERTER DC-LINK VOLTAGE

By

MOHAMMED SAIDU KUMO

April 2017

Chair: Prof. Ir. Norman Bin Mariun, PhD Faculty: Engineering

There is an increase in the spread of Distributed Generation (DG) in the form of solar photovoltaic (PV), wind turbines, fuel cells, etc. as renewable energy resources, giving numerous advantages if connected to the existing electric grid system. However, their integration into the grid introduces certain problems to the conventional distribution system, of which islanding detection is the most important. Islanding a situation in which a DG powers its local load while in the absence of the grid supply. The occurrence of islanding causes numerous problems to the DG, the grid and the maintenance personnel. Therefore, its occurrence must be detected within two seconds. The aim of this thesis is to study the viability of using the inverter DC-Link voltage as a parameter for passive islanding detection. The most significant shortcoming of passive islanding detection methods is the presence of large non-detection zone (NDZ), which is a region of power mismatch between the DG and the local load where islanding cannot be timely detected. For the study, a detailed model of 100 kW, 480V, gridconnected PV DG is implemented in MATLAB/Simulink. Then the response of DC-Link voltage to system load variations in islanding and grid-connected modes were studied. Furthermore, its responses to islanding on three inverter interface controllers, the constant power controller (CPC), the constant current controller (CCC) and the open-loop controller (OLC) were evaluated. The NDZ of the DC-Link voltage was determined using the UL 1741 test conditions on the IEEE 1547 anti-islanding (AI) test circuit. The effectiveness of any AI method depends on its NDZ, therefore the NDZ of DC-Link voltage was improved using the Detrending Algorithm. The effect of nonislanding grid-side faults on DC-Link voltage was equally examined. The system performance is verified with the MATLAB time-domain simulations. DC-Link voltage was found to be viable for passive islanding detection with an NDZ of +20%. The NDZ is improved to \pm 1.0% by detrending the DC-Link voltage, which is a novel achievement. An AI detection system using DC-Link voltage and detrended DC-Link voltage as inputs was able to detect the occurence of islanding within 33 ms against the 2 seconds required by the standards. Detrended DC-Link voltage responds to each nonislanding event distinctively. To sum it up, DC-Link voltage is viable for being a parameter for passive islanding detection as it is very fast in detecting islanding, discriminative from non-islanding faults and has almost zero NDZ. The fact is validated in comparison with work done with wavelet analysis based on a neuro-fuzzy system.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGESAN PULAU DALAM GRID YANG BERHUBUNG DENGAN PENJANA PENGEDARAN FOTOVOLTAIK MENGGUNAKAN INVERTER DC-RANGKAIAN VOLTAN

Oleh

MOHAMMED SAIDU KUMO

April 2017

Pengerusi: Prof. Ir. Norman Bin Mariun, PhD Fakulti: Kejuruteraan

Terdapat peningkatan dalam kemajuan Penjanaan Agihan(PA) sama ada dalam bentuk Solar Fotovoltaik (PV), turbin angin, sel bahan api, dan lain-lain sebagai sumber tenaga boleh diperbaharui, memberi banyak kelebihan jika disambungkan kepada system grid elektrik sedia ada. Walaubagaimanapun, penyatuannya kedalam grid memperkenalkan masalah tertentu kepada sistem penjanaan konvensional, yang mana paling utama sekali ialah pengesanan "islanding". Pengesan "islanding" adalah suatu keadaan dimana DG mengkuasakan beban tempatannya ketika ketiadaan bekalan kuasa grid. Hal ini mengakibatkan pelbagai masalah kepada DG, grid dan kakitangan penyelenggaraan. Oleh itu, "islanding" perlu dikesan dalam masa dua saat. Tujuan tesis ini adalah untuk mengkaji daya maju menggunakan inverter DC-rangkaian voltan sebagai parameter untuk mengesan "islanding" pasif. Kelemahan yang paling nyata untuk kaedah pengesanan islanding pasif adalah dengan kehadiran zon bukanpengesanan (NDZ) besar, yang merupakan kawasan kuasa tidak sepadan diantara DG dan beban tempatan dimana islanding tidak dapat dikesan. Untuk kajian ini, perincian model terdiri daripada 100 kW, 480V, grid-berkaitan PV DG digunakan dalam MATLAB/Simulink. Kemudian, tindak balas DC-rangkaian voltan kepada variasi sistem beban dalam islanding dan mod grid-berkaitan telah dikaji. Tambahan, tindakbalasnya untuk islanding keatas tiga pengawal muka inverter; pengawal kuasa berterusan (CPC), pengawal arus malar (CCC) dan pengawal gelung-terbuka (OLC) dinilai. NDZ pada DC-rangkaian voltan dipilih menggunakan ujian kondisi UL 1741 pada ujian litar IEEE 1547 anti-islanding. Keberkesanan kaedah AI bergantung kepada NDZ, maka NDZ pada DC-rangkaian voltan bertambah baik menggunakan Algoritma Detrending. Kesan kepada kesalahan grid-sisi bukan-islanding keatas DC-rangkaian voltan telah diperiksa betul-betul. Prestasi sistem telah disahkan menerusi simulai masa-domain MATLAB. DC-rangkaian voltan didapati berdaya maju untuk mengesan islanding pasif dengan NDZ sebanyak +20%. NDZ meningkat kepada hampir sifar daripada detrending DC-rangkaian voltan kepada detrended DC-rangkaian voltan yang mana baru. Sistem pengesanan AI menggunakan DC-rangkaian voltan dan detrennded DC-rangkaian voltan sebagai input mampu mengesan pulau dalam tempoh 33 mili saat berbanding 2 saat yang dikehendaki oleh piawaian. detrennded DC-rangkaian voltan

bertindak balas keatas setiap kejadian bukan-islanding itu sendiri. Kesimpulannya, voltan DC-link adalah berdaya maju sebagai parameter untuk pengesanan islanding pasif kerana ia adalah sangat cepat dalam mengesan islanding, mampu membezakan kesalahan bukan-islanding dan mempunyai hampir sifar NDZ. Fakta ini disahkan melalui perbandingan kerja yang telah dilakukan dengan analisis wavelet berdasakan sisten neuro-fuzzy.

ACKNOWLEDGEMENTS

All praises are due to Allah (SWT), for granting me the health and the capability to conduct this research work. May His peace and blessings be upon the best of creatures, Annabiy Muhammad (SAW) and his family.

I would like to first express my sincere gratitude to my supervisor and the Chairman of the Supervisory Committee, Professor Ir. Dr. Norman Mariun for his continuous support, invaluable advice, excellent comments and encouragements throughout the course of my Ph.D. research. I would also like to extend my appreciation and gratitude to the rest of my committee members in the persons of Associate Prof. Dr. Mohd. Amran Mohd. Radzi and Associate Prof. Dr. Noor Izzri Abdul Wahab for their guidance and supports in making the study a success.

In addition, I would like to express my appreciation to all staff of the Electrical Engineering and the members of the Centre for Advanced Power and Energy Research (CAPER) for all assistance rendered in various capacities towards making this research journey fruitful.

The support of the Department of Electrical Engineering and the Abubakar Tafawa Balewa University, Bauchi for facilitating my postgraduate studies are hereby acknowledged. I would also like to acknowledge the ETF/TETFUND for the oversea study grant.

The patience, encouragements and moral support of my wife, Zainab Mukhtar Bello, is hereby acknowledged. I would also like to acknowledge the patience and endurance of my children, for not being there for them when they needed me the most.

I would also like to thank my brothers Dr. Abubakar Mohammed Kumo and Arch. Sulaiman Mohammed Kumo for their financial and moral supports in the course of this study. This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Norman Mariun, PhD

Professor, Ir Faculty of Engineering Universiti Putra Malaysia (Chairman)

Mohd Amran Mohd Radzi, PhD Associate Professor

Faculty of Engineering Universiti Putra Malaysia (Member)

Noor Izzri Abdul Wahab, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

> **ROBIAH BINTI YUNUS, PhD** Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 6 July 2017

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iv
APPROVAL	V
DECLARATION	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INTI	RODUCTION	1
	1.1	Research Background	1
	1.2	Statement of Problem	
	1.3	Aim and Objectives of the Study	2
	1.4	Scope of the Thesis	2 2 3
	1.5	Thesis Layout	3
2	LITE	ERATURE REVIEW	5
	2.1	Introduction	5
	2.2	Distributed Generation	5
	2.3	Distributed Generation Anti-islanding Requirements	5
		2.3.1 IEEE 1547 and UL 1741 AI Definition	6
		2.3.2 AI Test Circuit Operation	7
		2.3.3 Requirements for Integrating PV Systems to the Grid	7
		2.3.4 DG Response to Voltage Fluctuations	7
		2.3.5 DG Response to Frequency Fluctuations	8
		2.3.6 DG Restoration Subsequent to a Trip	8
	2.4	Islanding	9
		2.4.1 Islanded Zones of Distribution System	9
		2.4.2 Causes of Islanding	10
		2.4.3 Negative Consequences of Islanding	10
		2.4.4 Non-Detection Zone (NDZ)	11
	2.5	Review of the Existing Methods and Parameters for Islanding	12
		Detection	14
		2.5.1 Remote Based Islanding Detection	13
		2.5.2 Active Islanding Detection Methods	15
		2.5.3 Passive Islanding Detection	18
	2.6	Summary	21
3	MFT	THODOLOGY	23
5	3.1	Introduction	23
	3.2	Design and implementation of study system	23
	5.4	3.2.1 PV Array Design and Simulink Implementation	24
		3.2.2 PV Array Design	27
		3.2.3 Voltage Source Inverter (VSI) and Control	28
			-0

	3.2.4	Sinusoidal Pulse-Width-Modulation (SPWM)	30
	3.2.5	State-Space Model of Three-Phase Grid-Connected	34
		Inverter	54
	3.2.6	LC Filter Design	36
	3.2.7	MPPT Model Simulink Implementation	38
	3.2.8	Grid Impedance	39
	3.2.9	Control System Reference Frames	40
	3.2.10	Inverter Interface Control	41
3.3		onnected DG Transfer Function	47
3.4		AB/Simulink Study System Structure	50
	3.4.1	MATLAB/Simulink Implementation of IEEE 1547/UL 1741 Anti-Islanding Test Circuit	51
3.5		earch Works Based on the 100 kW General Electric	51
2.6	(GE) M		
3.6		/ PV DG Design and Implementation in MATLAB/	52
0.7	Simulin		
3.7		rotection Requirements for Grid-Connected DGs	53
	3.7.1	UOV Relay Design and Testing	53
2.0	3.7.2	UOF Relay Design and Testing	53
3.8		1 Test Condition	54
3.9		547 AI Test System Description	55
	3.9.1	Relationship Between DC-Link Voltage and Inverter	56
	3.9.2	PCC Voltage Effects of DG Power Generation/Load Variations on	
	5.9.2	DC-Link Voltage	58
	3.9.3	DC-Link Voltage Test Scenario I	59
	3.9.4	DC-Link Voltage Test Scenario II	60
	3.9.5	Impact of DG Power Generation/Load Mismatch on	
	5.7.5	DC-Link voltage Subsequent to Islanding Condition	60
	3.9.6	Non-Detection Zone of DC-Link voltage	60
	3.9.7	Islanding Detection Using Inverter DC-Link voltage	61
	3.9.8	Detrending Algorithm for the DC-Link voltage NDZ	
	5.5.0	Improvement	62
	3.9.9	Impact of Non-Islanding Transient Fault Conditions	
	5.5.5	on the DC-Link Voltage	64
3.10	Summa		65
		-5	
RESU	LTS AN	ND DISCUSSION	66
4.1	Introduo	ction	66
4.2	Implem	entation and Validation of the Study System Model	66
	4.2.1	Baseline Performance Evaluation	66
	4.2.2	Study Model Validation	69
	4.2.3	Study System Capability to Sustain an Island	69
	4.2.4	Power Dynamics in Grid Parallel Operation and	
		Islanding Conditions	71
	4.2.5	Performance Evaluation for Grid-Connected DGs	70
		Protection	72
	4.2.6	Summary for the Study System Implementation and Validation	74

4

	4.3 DC-Link voltage Response to Inverter Load Variation in Islanding and Non-Islanding Conditions			
		4.3.1 4.3.1 Results of DC-Link voltage Test Scenarios I	75	
		4.3.2 Results of DC-Link voltage test scenario II	75	
		4.3.3 Summary for DC-Link voltage Response to Inverter	10	
		Load Variation in Islanding and Non-Islanding	80	
		Conditions	00	
	4.4	Determination of DC-Link voltage NDZ	80	
		4.4.1 Performance of DC-Link voltage Under UL 1741		
		Test Conditions	81	
		4.4.2 DC-Link Voltage's NDZ	83	
		4.4.3 Summary for DC-Link voltage's NDZ		
		Determination	83	
	4.5	Improvement of DC-Link voltage's NDZ Using Detrending	0.2	
		Algorithm	83	
		4.5.1 Validation of the Improved DC-Link voltage's NDZ	85	
		4.5.2 Summary for DC-Link voltage's NDZ Improvement	87	
	4.6	Novel islanding detection	87	
		4.6.1 Islanding Detection Using DC-Link voltage	87	
		4.6.2 Islanding detection using detrended DC-Link	89	
		voltage		
		4.6.3 Summary for Novel Islanding Detection	94	
		4.6.4 Validation	94	
		4.6.5 Negligible NDZ	97	
	4.7	Response of detrended DC-Link voltages to Non-Islanding	98	
		Grid-Side Fault Conditions	00	
		4.7.1 Response for SLTG Faults	99	
		4.7.2 Response to TLTG Faults4.7.3 Response for Three-Line Faults	99 100	
		4.7.3 Response for Three-Line Faults4.7.4 Summary for detrended DC-Link voltage's	100	
		Response to Faults	100	
	4.8	Establishment of Relationship between detrended DC-Link		
	т,0	voltage and	100	
		Summary	102	
	1.2	Summary	102	
5	CON	CLUSION AND FUTURE RESEARCH	103	
	5.1	General Conclusion	103	
	5.2	Summary of Research Contributions	103	
	5.3	Direction for Future Research	104	
REFERENCES 10:				
APPENI			111	
		STUDENT	120	
LIST OF	PUBI	LICATIONS	121	

C

LIST OF TABLES

Table		Page
2.1	Voltage variations and disconnection times for different standards	8
2.2	Frequency variations and disconnection times for different standards	8
2.3	Conditions for reconnecting DG after a trip	8
2.4	Comparison among passive anti-islanding methods Method	19
3.1	SunPower-SPR305 PV module parameters	27
3.2	MPPT design parameters	39
3.3	IEEE condition for DG UOV and UOF	53
3.4	UL 1741 testing load parameters	54
3.5	Utility allowed frequency and voltage limits	56
3.6	DG local demand dynamics	59
3.7	Circuit Breaker operations for Figure 3.33	59
3.8	DG Power mismatch	63
4.1	System design parameters	67
4.2	Power dynamics in grid-connected and islanded DG for 75 kW load.	71
4.3	Power dynamics in grid-connected and islanded DG for $125 \ kW$ load power	72
4.4	Comparison of post-islanding parameters of UL 1741 Test Condition	82
4.5	Comparison of DC-Link voltage with PCC RMS voltage and currents subsequent to the occurrence of islanding	87
4.6	PCC phase RMS voltage p.u. DC-Link voltages corresponding load power and mismatches	90
4.7	Comparison of NDZ for the proposed AI method and other passive anti-islanding methods	96
4.8	Various RLC loads values for islanding mode evaluation Source adapted from (Hashemi, Ghadimi, & Sobhani, 2013)	98
4.9	Research validation summary	98
4.10	Comparison of detrended DC-Link voltage and V_{pcc} at different	101
	power mismatches power mismatches	

LIST OF FIGURES

Figure		Page
2.1	Single-line diagram for islanding studies	6
2.2	Islanding test system (a) grid-connected mode (b) islanded mode	7
2.3	Island-forming points	9
2.4	NDZ Limits for UOV and UOF	12
2.5	Islanding detection methods classification	13
2.6	Impedance insertion scheme	14
2.7	Direct transfer trip scheme example	14
2.8	Power line carrier communication system	15
2.9	AFD distorted inverter current	17
2.10	ROCOF detection method	20
3.1	The research methodology fow-chart	23
3.2	Grid-connected DG schematic diagram	24
3.3	MATLAB/Simulink model of the PV array	25
3.4	MATLAB/Simulink model of photocurrent	25
3.5	MATLAB/Simulink model of semiconductor bandgap energy	26
3.6	MATLAB/Simulink model of PV array shunt diode	26
3.7	DC-AC Inverter circuit schematic	29
3.8	Schematic diagram of a three-phase ideal VSI. Source adapted from (Nehrir & Wang, 2009)	29
3.9	Circuit topology of a three-phase PWM grid-connected voltage source inverter	31
3.10	Operation waveforms of single-phase SPWM	32
3.11	Single-phase schematic diagram of PWM mechanism for phase-c	32
3.12	Operation waveforms of three-phase SPWM	33
3.13	MATLAB/Simulink model of DC-DC converter SPWM-based MPPT	39
3.14	MATLAB/Simulink model of MPPT	39
3.15	abc – dq0 transformation	41
3.16	Illustration of Park transformation	42
3.17	Three-phase PLL system (a) block diagram representation (b)	43
	MATLAB/Simulink block (c) MATLAB/Simulink input/output block	
3.18	Phase-locked loop (PLL) schematic diagram	43
3.19	Constant power control DG interface	45
3.20	Constant power control variant of DG interface	46
3.21	Constant current control DG interface	47
3.22	Open-loop control DG interface	47
3.23	Constant current controlled inverter blocks	48
3.24	Equivalent circuit diagram of $F(s)$ and $Z(s)$	48
3.25	Constant power controlled inverter blocks for real power control	49
3.26	Constant power controlled inverter blocks for reactive power control	50
3.27	Variant constant power controlled inverter blocks	50
3.28	MATLAB/Simulink implementation of the study system	51

 \bigcirc

3.29	MATLAB/Simulink implementation of IEEE 1547 and UL	52
2.20	1741 anti-islanding test circuit	50
3.30	UOV relay model	53
3.31	UOF relay model	54
3.32	DG power flow in (a) Grid-connected mode and (b) Islanded mode	55
3.33	Investigation of DC-Link voltage for passive islanding detection	58
3.34	DG power generation/load dynamics sub-circuit	59
3.35	NDZ determination flowchart	61
3.36	DC-Link voltage detrending	63
3.37	Islanding detection system for DC-Link voltage and detrended DC-Link voltage	64
3.38	Faulted electric power grid system	64
4.1	Baseline simulation results	67
4.2	Zoomed baseline simulation results	68
4.3	UPF operation demonstration of the study model	68
4.4	GE three-phase Inverter Results for Study Model Validation	69
4.5	System model capability for sustaining an island	70
4.6	Zoomed time axis to reveal voltage and frequency variations for matched system subsequent to islanding	70
4.7	Power dynamics for 75 kW DG load	72
4.8	Power dynamics for 125 kW DG load	72
4.9	UOV relay performance evaluation	73
4.10	UOF relay performance evaluation	74
4.11	Effects of Load dynamics on inverter DC-Link voltage in islanding and non-islanding operation modes	75
4.12	DC-Link voltage response for CPC	76
4.13	Comparison of DC-Link voltage and power response for CPC	76
4.14	Comparison of DC-Link voltage, PCC voltage and DG current response to islanding for CPC	77
4.15	DC-Link voltage response to islanding for CCC	77
4.16	Comparison of DC-Link voltage and power response for CCC	78
4.17	Comparison of DC-Link voltage, PCC voltage and DG current response to islanding for CCC	78
4.18	DC-Link voltage response to islanding for OLC	79
4.19	Comparison of DC-Link voltage and power response for OLC	79
4.20	Comparison of DC-Link voltage, PCC voltage and DG current response to islanding for OLC	80
4.21	DC-Link voltage performance under UL 1741 test conditions	81
4.22	Zoomed DC-Link voltage performance under UL 1741 test conditions	81
4.23	PCC voltage performance under UL 1741 test conditions	82
4.24	DG current performance under UL 1741 test conditions	82
4.25	DC-Link voltage NDZ	83
4.26	Detrended DC-Link subsequent to islanding	84
4.27	Zoomed detrended DC-Link voltage subsequent to islanding	85
4.28	PCC voltages corresponding to the detrended voltages mismatch	86
4.29	Zoomed PCC voltages corresponding to the detrended voltages mismatch	86

4.30	Islanding detection at 25% mismatch for DC-link voltage parameter	88
4.31	Power comparison for islanding detection at 25% mismatch for DC-link voltage parameter	88
4.32	Islanding detection algorithm for detrended DC-Link voltage	89
4.33	Islanding detection argontum for detection DC -Link voltage Islanding detection for + 5% power mismatch when DG is	90
1.55	islanded at time 1s	20
4.34	Islanding detection for -5% power mismatch when DG is islanded at time 1s	91
4.35	Islanding detection for $+ 5\%$ power mismatch grid power import	91
	when DG is islanded at time 1s	
4.36	Islanding detection for -5% power mismatch grid power export	92
	when DG is islanded at time 1s	
4.37	Islanding detection for + 5% power mismatch for excess load	92
	power for DG islanded at 1s	
4.38	Islanding detection for - 5% power mismatch for deficit in load	93
	power for DG islanded at 1s	
4.39	Islanding detection for $+ 5\%$ power mismatch for DG islanded at	93
	ls	
4.40	NDZ power mismatches within the PCC allowable voltage limits	95
4.41	Comparison for NDZ power mismatches within the PCC	95
	allowable voltage limits. Source adapted from (Shayeghi & Sobhani, 2014)	
4.42	Post-islanding detrended DC-Link voltages for different power	96
	mismatches	
4.43	Post-islanding detrended DC-Link voltages for reduced power	97
	mismatches	
4.44	PCC voltage's post-islanding responses to power mismatches.	98
	Source adapted from (Hashemi, Ghadimi, & Sobhani, 2013)	
4.45	Single-phase to ground at different power mismatches	99
4.46	Two-phase to ground and two-phase faults at different power	99
	mismatches	
4.47	Three-phase to ground and three-phase faults at different power	100
	mismatches	
4.48	Detrended DC-Link voltage and V_{pcc} against power mismatches	101

LIST OF SYMBOLS

α	Diode ideality factor
β	Inverse thermal voltage
C_A	Boost converter filter capacitor
C_{dc}	Dc capacitor
C_f	Filter capacitor
C(s)	PI regulator transfer function
e _{sabc}	Grid voltages
c_f D	Chopping factor Duty ratio
D _b	Diode rectifier
$d_{Q \ 1-3}^{*}$	Switching levels
f_g	Grid frequency
f_m	Frequency where the extreme phase shift happens
f, f_n	System nominal frequency
f_n, f_k	Sampled frequency
$ \begin{array}{c} f_s \\ F(s) \\ G \end{array} $	Inverter switching frequency Filter transfer function Solar irradiance
$G_{inv}(s)$ G_r	Inverter transfer function Reference solar irradiance
H, f_r	Distributed Generation inertia constant Change in voltage
Δf_n ΔP	Change in frequency Change in power
ΔP_{DG} ΔQ ΔV $H(s)$ I_0 l	Change in Distributed Generation power Change in Distributed Generation reactive power Change in voltage Inverter transfer function Diode reverse saturation current PV cell current
I_A	Output current of PV array
i _c	Capacitor current
I _d	Inverter input current
I _D	Diode current
I_{dref} I_{dref} , I_{qref}	Controller d-axis reference current
I_{dref}, I_{qref}	Inverter dq-axis reference currents

φ	
	Inverter default phase angle
	Distributed Generation current Inverter d-axis current
	Inverter q-axis current
	Inverter phase currents
	Load current
	Grid-injected current
	Short-circuit current
	Boltzmann's constant
	Acceleration constant
	Integral controller gain
	Proportional controller gain
	Inverter maximum peak current
	Switch inductor
	Filter inductor
	Inverter coupling filter
Lg	Grid impedance
L_{s}	Grid inductance
μ_b	Boost converter efficiency
m, m_{abc}	Modulation index
	Neutral point
	Number of series PV modules
	Number of parallel PV modules
k _V	Open-circuit voltage temperature coefficient
P _{ac}	Inverter AC side power
P_{DG}, P_G	Distributed Generation active power
P_{dref} , P_{qref}	Reference dq-axis reference real power
	Island load power
	Inverter switches
	Distributed Generation reactive power
	Reactive power of the load
	Quality Factor
	Reference dq-axis reactive power
q	Electron charge
,	Sliding phase angle
~10 <i>ad</i>	Load phase angle
	$ \begin{array}{c} \mu_b \\ m, m_{abc} \\ N \\ N_S \\ N_P \\ k_V \\ P_{ac} \\ P_{DG}, P_G \\ P_{dref}, P_{qref} \\ P_L, P_{Load} \\ Q_{1-6} \\ Q_{DG} \\ Q_L \\ Q_f \\ Q_{dref}, Q_{qref} \end{array} $

xvii

θ_m	extreme phase shift
$ heta_{SMS}$	Slip Mode Frequency Shift phase angle
RLC	Parallel resistive, inductive and capacitive loads
R_f	Filter resistance
R_g	Grid resistance
R_P	PV cell shunt resistance
R_s	PV series resistance, grid resistance
R _{th}	PV cell Thevenin resistance
$R_{th, PV}$	PV module Thevenin resistance
<i>S</i> ₁₋₆	Inverter gate pulses, switches
S _c	Capacitor bank switch
Sg	Grid-side breaker
S_{GN}, P_{DG}, P	Distributed Generation rated capacity
$S_{Q1-2}, S_{Q1-4}, S_{Q1-6}$	Inverter gates switching
T	Cell temperature
T _{IPV}	Inverter current period
T_{ps}	Sandia frequency time interval
T_r	Room temperature
$T_{V_{PV}}$	Inverter voltage period
T_{v}, T_{z}	Voltage period, dead time
ω_{DG}	Distributed Generation angular frequency
ϕ_{DG}	Distributed Generation phase angle
V ₀	Filter capacitor voltage
ν _{αβ0} V	Alpha, beta voltages PV cell terminal voltage
V _A	Output voltages of PV array
V_a, V_b, V_c, V_{ijk}	Instantaneous phase voltages
$V_{a,b,c,n}$	Phase voltages
$v_{c}(t)$	Carrier signal
V_C	Peak value of carrier signal
V_D	Inverter side DC voltage
V_{dc},i_{dc}	DC voltage, current
V _{dcmes}	Measured DC-Link voltage
V _{dcref}	Reference DC-Link voltage
v _{dqo} , i _{dq0}	Voltages and currents in synchronous reference frames

V_L	Inverter line voltage
V_m	Peak value of modulating signal
V_{\max}, V_{\min}	Maximum, minimum voltage
v_{pcc}, V, v	Point of common coupling voltage
$V_{OC,r}$	Open-circuit voltage at STC
<i>v_{sabc}</i>	Inverter output voltages
Z_s	Grid impedance
Z(s)	Load transfer function

LIST OF ABBREVIATIONS

AC	Alternating Current
AFD	Active Frequency Drift
AFDPF	Active Frequency Drift with Positive Feedback
AFDPCF	
AI	Active Frequency Detection with Pulsating Chopping Fraction
	Anti-Islanding
ANN	Artificial Neural Network
ANFIS	Artificial Neuro-Fuzzy Inference System
CB	Circuit Breaker
CCC	Constant Current Control
CPC	Constant Power Control
CPCV	Constant power control variant
CV	Constant Voltage
DC	Direct Current
DG	Distributed Generation
FF	Feed Forward
GE	General Electric
IGBT	Insulated Gate Bipolar Transistor
IC	Incremental Conductance
MPP	Maximum Power Point
MPPT	Maximum Power Point Tracking
NDZ	Non-Detection Zone
OLC	Open Loop Control
PCC	Point of Common Coupling
PI	Proportional Integral Regulator
PLL	Phase Locked Loop
P&O	Perturbed and Observe
PJD PLCC	Phase Dump Detection Power Line Carrier Communication
PLCC PV	Photovoltaic
ROCOF	Rate of Change of Frequency
ROCOP	Rate of Change of Power
SPWM	Sinusoidal Pulse-Width-Modulation
SFS	Sandia Frequency Shift
SVS	Sandia Voltage Shift
SCADA	Supervisory Control and Data Acquisition
SMS	Slip Mode Frequency Shift
UL	Underwriters Laboratory DC
UOF	Under/Over Frequency
UOV	Under/Over Voltage
VSI	Voltage Source Inverter
VSR	Voltage Shift Relay

 \bigcirc

CHAPTER 1

INTRODUCTION

1.1 Research Background

There is an increase in the spread of Distributed Generation (DG) in the form of solar photovoltaic (PV), wind turbines, fuel cells, etc. as renewable energy resources giving numerous advantages if connected to the existing electric grid system. However, their integration into the grid introduce certain problems to the conventional distribution system, which has only one-directional power flow, from the power substation to the end user. With the integration of DGs power flow direction reversal may also be experienced in some feeders. This research will focus on the islanding phenomenon, being among the major problems faced by the grid integration of DGs (Ghaderi & Kalantar, 2011). Over the years, researchers have been working on different islanding detection methods, with the sole aim of finding a suitable technique that has the least non-detection zone (NDZ). NDZ is a condition of DG output power versus local load power mismatch within which islanding is not timely detectable. The integration of DG systems with the grid raises a number of relaying and protection-related issues with the AC host system. One of the most important issues is the detection of unintentional islanding of the grid-tied DG systems.

Islanding is a situation in which a DG continues powering its local load in the absence of the grid supply (Faqhruldin, 2013). This is usually caused by grid-side faults which result in negative consequences on the distribution systems including poor power quality, danger to utility maintenance personnel, and equipment damage (Akhlaghi, Ghadimi, & Akhlaghi, 2014). The IEEE 1547 Standard on Interconnecting Distributed Resources to Electric Power Systems - 2003 requires fast shut-down of grid-connected DG systems when they are isolated from the main utility power system, within a maximum of two seconds (IEEE, 2009). Methods of detecting islanding can be broadly classified into three: passive (Abo-Khalil, Al-Qawasmi, & Aly, 2013; Freitas, Huang, & Xu, 2005; H.H. Zeineldin & Kirtley, 2009), active (Freitas, Xu, Affonso, & Huang, 2005; H. H. Zeineldin & Kennedy, 2009) and communication based (H. H. Zeineldin & Salama, 2011) islanding detection techniques. The passive methods are based on measurements of DG parameters at the Point of Common Coupling (PCC) while active methods based their techniques on injection of a disturbance at the DG output at the same time monitoring some parameter(s) for the detection of islanding. Communication-based techniques rely on communication systems between the utility and the DGs using a transmitter at the grid side, that is, the power substation and receivers at the DG sites. Communication-based methods for islanding detection are very effective, with zero NDZ although very expensive to implement on small DGs. Active islanding detection techniques are complex, have negligible NDZ, but associated with power quality degradation. On the other hand, passive islanding detection techniques are simple, with no power quality issues but are associated with large NDZ (Xu, W., Mauch, K., and Martel, 2004).

Islanding detection methods that aim at reducing the NDZ using different methods have been proposed over the past years (Faqhruldin, 2013). All previous researchers on islanding detection use parameters of the PCC, the inverter AC voltage and its derivatives. However, (Vahedi, Noroozian, Jalilvand, & Gharehpetian, 2011) presented a study of islanding detection using a parameter from the DC side of the DG system, the inverter DC-Link voltage in conjunction with the PCC voltage in an active islanding detection technique. As iterated above, the active method though has little or reduced NDZ, is characterized by complexity, power quality disruption and the interference with the hardware of inverter controller structure. Another study of islanding detection using the inverter DC-Link voltage was also performed by (Banu & Istrate, 2014). In that study, the standard methods recommended by both IEEE 1547 and UL 1741 for islanding detection were not adhered to. It has therefore become necessary to conduct a study on passive islanding detection method using the inverter DC-Link voltage as an islanding detection parameter, in accordance with the standard requirements.

1.2 Statement of Problem

Most of the developed anti islanding (AI) methods focused on the inverter AC voltage and its derivatives as parameters for islanding detection, however, two research works are reported in the literature that use the inverter DC-link voltage as a parameter for islanding detection:

The research work of Vahedi *et. al.* 2011 uses the inverter DC-Link voltage in conjunction with the inverter Point of Common Coupling (PCC) voltage (V_{pcc}) in active islanding method. The strong point of this approach is the small Non-Detection Zone (NDZ) while still has the limitations of complexity, power quality issues and infringement of the inverter hardware.

Similarly, Banu & Istrate, 2014 also use the inverter DC-Link voltage in passive islanding detection method. The advantages of this approach include simplicity, absence of power quality issues, and that the technique is based on only parameter measurements. However, the method has a number of limitations including large NDZ, and non-adherence to IEEE 1547 as well as the UL 1741 AI standards.

In the light of the above, it therefore becomes necessary to conduct a study on passive islanding detection method that imbibes the advantage of the active method and enhances the shortcomings of passive method using the inverter DC-Link voltage as an islanding detection parameter in accordance with industry standard requirements.

1.3 Aim and Objectives of the Study

This research focuses on establishing the viability of inverter DC-Link voltage as a parameter for passive islanding detection and finding a novel islanding solution for

grid-connected photovoltaic distributed generation using the DC-Link voltage of a Voltage Source Inverter (VSI), discriminative of non-islanding transients faults. To realize this, a detailed mathematical model of the system, consisting of PV arrays, VSI, static load and an electric distribution system is to be drived, for designing the control system. The system performance is verified by simulating the overall system in MATLAB/Simulink and SimPowerSystems. The main objectives of the research are as follows:

- i. To study and validate the response of inverter DC-Link voltage to local load dynamics in islanding and non-islanding conditions using three inverter interface controller schemes.
- ii. To evaluate the NDZ of the DC-Link voltage using the UL 1741 standard test conditions on the IEEE 1547 Anti-Islanding Test Circuit.
- iii. To improve the NDZ of the DC-Link voltage in order to enhance its effectiveness for the detection of the occurrence of islanding using the Detrending Algorithm.
- iv. To investigate the behavior of the detrended DC-Link voltage for islanding and non-islanding grid-side fault conditions.

1.3 Scope of the Thesis

The scope of the research work is given in the following:

- i. Implementation of a 100 kW, 480 V, three-phase, grid-connected photovoltaic distributed generation study system in MATLAB/Simulink and Simpower systems.
- ii. Performance evaluation of the DC-Link voltage to load variations in islanding and non-islanding conditions.
- iii. NDZ determination and improvement of the DC-Link voltage .
- iv. Evaluation of the effectiveness of the proposed NDZ reduction method in comparison with results obtained using other passive islanding detection techniques based on the IEEE 1547 and UL 1741 test conditions.

1.5 Thesis Layout

Chapter 1 (Introduction), gives the background of the research study, highlights of the significance of islanding detection in grid-connected distributed generation, classifications of islanding, statement of the problem, and objectives of the study.

Chapter 2 (Literature Review) covers the review of the previous islanding detection methods with their merits and demerits.

Chapter 3 (Methodology) outlines the study system model and its control system structure. Also, a step by step design and parameter calculations of the system and the

islanding test bench in accordance with IEEE 1547 and UL 1741 are given. The implementation in MATLAB/Simulink, comprising different standard tests are discussed. The complete structure of the procedures for accomplishing the set objectives is also explained in details.

Chapter 4 (Results and Discussions) presents entirely the results obtained with the discussions of the research findings and validation.

Chapter 5 (Conclusion and Future Research) drives the overall inference on the research study, discusses the contributions of the research to the body of knowledge and outlines recommendations for future studies.

REFERENCES

- Abo-Khalil, A. G., Al-Qawasmi, A., & Aly, O. A. M. (2013). A novel islanding detection method for three-phase photovoltaic generation systems. In 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1–5). Ieee.
- Ahmad, K. N. E. K., Rahim, N. A., Selvaraj, J., Rivai, A., & Chaniago, K. (2013). An effective passive islanding detection method for PV single-phase grid-connected inverter. *Solar Energy*, 97, 155–167.
- Akhlaghi, S., Ghadimi, A. A., & Akhlaghi, A. (2014). A novel hybrid islanding detection method combination of SMS and Q-f for islanding detection of inverterbased DG. 2014 Power and Energy Conference at Illinois (PECI), 1–8.
- Álvarez, I. J. B. (2011). Control of Distributed Generation for Grid-Connected and Intentional Islanding Operations. Unpublished, Ph.D. Thesis, Michigan State University.
- Bahrani, B. (2008). Islanding Detection and Control of Islanded Single and Two-Parallel Distributed Generation Units. University of Toronto.
- Balaguer, I. J., Lei, Q., Yang, S., Supatti, U., & Peng, F. Z. (2011). Control for gridconnected and intentional islanding operations of distributed power generation. *IEEE Transactions on Industrial Electronics*, 58(1), 147–157.
- Banu, I. V., & Istrate, M. (2014). Islanding Prevention Scheme for Grid-Connected Photovoltaic Systems in Matlab / Simulink. In *Power Engineering Conference* (UPEC), 2014 49th International Universities (pp. 1–6).
- Banu, I. V., Istrate, M., Machidon, D., & Pantelimon, R. (2014). A study on antiislanding detection algorithms for grid-tied photovoltaic systems. 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2014, 655–660.
- Chen, X., & Li, Y. (2014a). An Islanding Detection Algorithm for Inverter- based Distributed Generation Based on Reactive Power Control. *IEEE Transactions on Power Electronics*, 29(9), 4672–4683.
- Chen, X., & Li, Y. (2014b). An Islanding Detection Algorithm for Inverter-Based Distributed Generation Based on Reactive Power Control. *IEEE Transactions on Power Electronics*, 29(9), 4672–4683.
- Chiang, W.-J., Jou, H.-L., Wu, J.-C., Wu, K.-D., & Feng, Y.-T. (2010). Active islanding detection method for the grid-connected photovoltaic generation system. *Electric Power Systems Research*, 80(4), 372–379.
- Choudhry, M. A., & Khan, H. (2010). Power loss reduction in radial distribution system with multiple distributed energy resources through efficient islanding detection. *Energy*, *35*(12), 4843–4861. http://doi.org/10.1016/j.energy.2010.09.003
- Chowdhury, S. P., Chowdhury, S., & Crossley, P. a. (2009). Islanding protection of active distribution networks with renewable distributed generators: A comprehensive survey. *Electric Power Systems Research*, *79*(6), 984–992.
- De Mango, F., Liserre, M., Dell'Aquila, A., & Pigazo, A. (2007). Overview of antiislanding algorithms for PV systems. Part I: Passive methods. *EPE-PEMC 2006: 12th International Power Electronics and Motion Control Conference, Proceedings*, 1878–1883.
- El-Khattam, W., Yazdani, A., Sidhu, T. S., & Seethapathy, R. (2011). Investigation of the local passive anti-islanding scheme in a distribution system embedding a PMSG-based wind farm. *IEEE Transactions on Power Delivery*, *26*(1), 42–52.

- Faqhruldin, Omar N, El-saadany, E. F., & Zeineldin, H. H. (2014). A Universal Islanding Detection Technique for Distributed Generation Using Pattern Recognition. *IEEE Transactions on Smart Grid*, 5(4), 1985–1992.
- Faqhruldin, O. (2013). A Universal Islanding Detection Technique for Distributed Generation Using Pattern Recognition. the University of Waterloo.
- Freitas, W., Huang, Z., & Xu, W. (2005). A practical method for assessing the effectiveness of vector surge relays for distributed generation applications. *IEEE Transactions on Power Delivery*, 20(1), 57–63.
- Freitas, W., Xu, W., Affonso, C. M., & Huang, Z. (2005). Comparative analysis between ROCOF and vector surge relays for distributed generation applications. *IEEE Transactions on Power Delivery*, 20(2 II), 1315–1324.
- Ghaderi, A., & Kalantar, M. (2011). Investigation of influential factors on passive islanding detection methods of inverter based distributed generation. In 2011 2nd Power Electronics, Drive Systems and Technologies Conference (pp. 217–222).
- Haddadi, A., Boulet, B., Yazdani, A., & Joos, G. (2014). A mu-Based Approach to Small-Signal Stability Analysis of An Interconnected Distributed Energy Resource Unit And Load. *IEEE Transactions on Power Delivery*, 8977(c), 1–1.
- Hanif, M., Basu, M., & Gaughan, K. (2012). Development of EN50438 compliant wavelet-based islanding detection technique for three-phase static distributed generation systems. *IET Renewable Power Generation*, 6(4), 289.
- Hashemi, F., Ghadimi, N., & Sobhani, B. (2013). Islanding detection for inverter-based DG coupled with using an adaptive neuro-fuzzy inference system. *International Journal of Electrical Power and Energy Systems*, 45(1), 443–455.
- Hassan, F. A. (2007). Converter-Interfaced Distributed Generation Grid Interconnection Issues. Unpublished Ph.D. Thesis, Division of Electric Power Engineering Department of Energy and Environment Chalmers University of Technology.
- IEEE. (2003). IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, (July).
- IEEE.Standards-1547.6. (2009). IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE Std (Vol. 2014).
- Indu Rani, B., Srikanth, M., Saravana Ilango, G., & Nagamani, C. (2013). An active islanding detection technique for current controlled inverter. *Renewable Energy*, *51*, 189–196.
- Jenkins, N., Ekanayake, J. B., & Strbac, G. (2009). *Distributed Generation*. Retrieved from http://books.google.es/books?id=fmLCM-Ee2Q8C
- Jia, K., Bi, T., Liu, B., Thomas, D., & Goodman, A. (2014). Advanced islanding detection utilized in distribution systems with DFIG. *International Journal of Electrical Power & Energy Systems*, 63, 113–123.
- Karegar, H. K., & Sobhani, B. (2012). Wavelet transform method for islanding detection of wind turbines. *Renewable Energy*, 38(1), 94–106.
- Karimi, H., Nikkhajoei, H., & Iravani, R. (2008). Control of an electronically-coupled distributed resource unit subsequent to an islanding event. *IEEE Transactions on Power Delivery*, 23(1), 493–501.
- Karimi, H., Yazdani, A., & Iravani, R. (2008). Negative-Sequence Current Injection for Fast Islanding Detection of a Distributed Resource Uint. *Ieee Transactions on Power Electronics*, 23(1), 298–307.
- Karimi, M., Mokhlis, H., Naidu, K., Uddin, S., & Bakar, A. H. A. (2016). Photovoltaic penetration issues and impacts in distribution network – A review. *Renewable and Sustainable Energy Reviews*, 53, 594–605.

- Khamis, A., Shareef, H., Bizkevelci, E., & Khatib, T. (2013). A review of islanding detection techniques for renewable distributed generation systems. *Renewable and Sustainable Energy Reviews*, *28*, 483–493.
- Khodaparastan, M., Vahedi, H., Khazaeli, F., & Oraee, H. (2015). A Novel Hybrid Islanding Detection Method for Inverter-based DGs Using SFS and ROCOF. *IEEE Transactions on Power Delivery*, 8977(c), 1–1.
- Kim, J. H., Kim, J. G., Ji, Y. H., Jung, Y. C., & Won, C. Y. (2011). An islanding detection method for a grid-connected system based on the goertzel algorithm. *IEEE Transactions on Power Electronics*, 26(4), 1049–1055.
- Kim, K.-H., & Jang, S.-I. (2004). An Islanding Detection Method for Distributed Generations Using Voltage Unbalance and Total Harmonic Distortion of Current. *IEEE Transactions on Power Delivery*, 19(2), 745–752.
- Li, C., Cao, C., Cao, Y., Kuang, Y., Zeng, L., & Fang, B. (2014). A review of islanding detection methods for microgrid. *Renewable and Sustainable Energy Reviews*, 35,
- Li, Y., & Nejabatkhah, F. (2014). Overview of control, integration and energy management of microgrids. *Journal of Modern Power Systems and Clean Energy*, 2(3), 212–222.
- Liu, Z., Liu, J., & Zhao, Y. (2014). A unified control strategy for three-phase inverter in distributed generation. *IEEE Transactions on Power Electronics*, 29(3), 1176–
- Lopes, L. A. C., & Sun, H. (2006). Performance Assessment of Active Frequency Drifting Islanding Detection Methods. *IEEE Transactions on Energy Conversion*, 21(1), 171–180.
- Ma, T. T. (2010). Quantitative design of active anti-islanding controllers for powerconverter-based distributed generators. *IEEE Transactions on Industrial Electronics*, 57(10), 3448–3455.
- Mango, F. De, Liserre, M., Aquila, A. D., & Pigazo, A. (2006). Overview of Anti-Islanding Algorithms for PV Systems . Part I : Passive Methods, 1–6.
- Matic-cuka, B., & Kezunovic, M. (2014). Islanding Detection for Inverter-Based Distributed Generation Using Support Vector Machine Method. 2676 IEEE Transactions on Smart Grid, 5(6), 2676–2686.
- Merino, J., Mendoza-Araya, P., Venkataramanan, G., & Baysal, M. (2014). Islanding Detection in Microgrids Using Harmonic Signature. *IEEE Transactions on Power Delivery*, 8977(c), 1–1.
- Moeini, A., Darabi, A., Rafiei, S. M. R., & Karimi, M. (2011). Intelligent islanding detection of a synchronous distributed generation using governor signal clustering. *Electric Power Systems Research*, 81(2), 608–616. http://doi.org/10.1016/j.epsr.2010.10.023
- Mohamad, H., Mokhlis, H., Bakar, A. H. A., & Ping, H. W. (2011). A review on islanding operation and control for distribution network connected with small hydro power plant. *Renewable and Sustainable Energy Reviews*, 15(8), 3952–3962.
- Mohammadzadeh Niaki, A. H., & Afsharnia, S. (2014). A new passive islanding detection method and its performance evaluation for multi-DG systems. *Electric Power Systems Research*, *110*, 180–187.
- Najy, W. K. a, Zeineldin, H. H., Alaboudy, A. H. K., & Woon, W. L. (2011). A bayesian passive islanding detection method for inverter-based distributed generation using ESPRIT. *IEEE Transactions on Power Delivery*, *26*(4), 2687–2696.
- Nehrir, M. H., & Wang, C. (2009). *Modeling and Control of Fuel Cells: Distributed Generation Applications*. John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved. Published simultaneously in Canada. Retrieved from

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470233281.html.

- Pai, F. S., & Huang, S. J. (2001). A detection algorithm for islanding-prevention of dispersed consumer-owned storage and generating units. *IEEE Transactions on Energy Conversion*, 16(4), 346–351.
- Papadimitriou, C. N., Kleftakis, V. A., & Hatziargyriou, N. D. (2015). A novel islanding detection method for microgrids based on variable impedance insertion. *Electric Power Systems Research*, 121, 58–66.
- Pinto, S. J., & Panda, G. (2015). Wavelet technique based islanding detection and improved repetitive current control for reliable operation of grid-connected PV systems. *International Journal of Electrical Power & Energy Systems*, 67, 39–51.
- Reynen, M. B., Osman, A. H., & Malik, O. P. (2010). Using gold sequences to improve the performance of correlation based islanding detection. *Electric Power Systems Research*, 80(6), 733–738.
- Roscoe, A. J., Burt, G. M., & Bright, C. G. (2014). Avoiding the non-detection zone of passive loss-of-mains (islanding) relays for synchronous generation by using low bandwidth control loops and controlled reactive power mismatches. *IEEE Transactions on Smart Grid*, 5(2), 602–611.
- Sadeh, J., & Kamyab, E. (2013). Islanding detection method for photovoltaic distributed generation based on voltage drifting. *IET Generation, Transmission & Distribution*, 7(6), 584–592.
- Salles, D., Freitas, W., Vieira, J. C. M., & Xu, W. (2012). Nondetection index of antiislanding passive protection of synchronous distributed generators. *IEEE Transactions on Power Delivery*, 27(3), 1509–1518.
- Salles, D., Freitas, W., Vieira, J. C., & Venkatesh, B. (2014). A Practical Method for Nondetection Zone Estimation of Passive Anti-Islanding Schemes Applied to Synchronous Distributed Generators. *IEEE Transactions on Power Delivery*, 8977(c), 1–1.
- Sawas, A. (2011). Feature Selection for Fast and Reliable Passive Islanding Detection in Synchronous Generation. Masdar Institute of Science and Technology in.
- Shayeghi, H., & Sobhani, B. (2014). Zero NDZ assessment for anti-islanding protection using wavelet analysis and neuro-fuzzy system in inverter based distributed generation. *Energy Conversion and Management*, *79*, 616–625.
- Singh, M., Khadkikar, V., Chandra, A., & Varma, R. K. (2011). Grid Interconnection of Renewable Energy Sources at the Distribution Level With Power-Quality Improvement Features. *IEEE Transaction on Power Delivery*, *26*(1), 307–315.
- Sudipta Chakraborty Marcelo G. Simões, W. E. K. (2013). Power Electronics for Renewable and Distributed Energy Systems: A Sourcebook of Topologies, Control and Integration. (and M. G. S. Sudipta Chakraborty, William E. Kramer, Ed.). London: Springer-Verlag.
- Ten, C. F. (2010). Loss of Mains Detection and Amelioration on Electrical Distribution Networks. Unpublished, Ph.D. Thesis, School of Electrical and Electronic Engineering,. The University of Manchester.
- Teodorescu, R., Liserre, M., & Rodriguez, P. (2011). Grid Converters for Photovoltaic and Wind Power Systems. JohnWiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For. West Sussex: ohnWiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For.
- Tsai, M. T., & Tsai, W. I. (1999). Analysis and design of three-phase AC-to-DC converters with high power factor and near-optimum feedforward. *IEEE Transactions on Industrial Electronics*, *46*(3), 535–543.

- Vahedi, H., Gharehpetian, G. B., & Karrari, M. (2012a). Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. *IEEE Transactions on Power Delivery*, 27(4), 1973–1983.
- Vahedi, H., Gharehpetian, G. B., & Karrari, M. (2012b). Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. *IEEE Transactions on Power Delivery*, 27(4), 1973–1983.
- Vahedi, H., & Karrari, M. (2013). Adaptive fuzzy Sandia frequency-shift method for islanding protection of inverter-based distributed generation. *IEEE Transactions* on Power Delivery, 28(1), 84–92.
- Vahedi, H., Noroozian, R., Jalilvand, A., & Gharehpetian, G. B. (2011). A new method for islanding detection of inverter-based distributed generation using DC-Link voltage control. *IEEE Transactions on Power Delivery*, *26*(2), 1176–1186.
- Vanfretti, L., Chow, J. H., Aliyu, U., Dosiek, L., Pierre, J. W., Trudnowski, D., & Momoh, J. A. (2010). Estimation of the Nigerian Power System Electromechanical Modes using FDR Measurements. In the 9th International Conference on Power System Operations and Planning (ISCPSOP).
- Wang, X., Freitas, W., & Xu, W. (2011). Dynamic non-detection zones of positive feedback anti-islanding methods for inverter-based distributed generators. *IEEE Transactions on Power Delivery*, 26(2), 1145–1155.
- Williams, M. (2010). Distributed Generation/Fuel Cells: DOE Helps Expand Both Technologies and Markets. Cogeneration & Distributed Generation Journal (Vol. 15).
- Xu, W., Mauch, K., and Martel, S. (2004). An Assessment of Distributed Generation Islanding Detection Methods and Issues for Canada. *Report # CETC-Varennes* 2004-074 (TR), CANMET Energy Technology Centre – Varennes, Natural Resources Canada, 55.
- Yazdani, A., Di Fazio, A. R., Ghoddami, H., Russo, M., Kazerani, M., Jatskevich, J., ... Martinez, J. a. (2011). Modeling guidelines and a benchmark for power system simulation studies of three-phase single-stage photovoltaic systems. *IEEE Transactions on Power Delivery*, 26(2), 1247–1264.
- Yazdani, A., & Iravani, R. (2005). A generalized state-space averaged model of the three-level NPC converter for systematic DC-voltage-balancer and currentcontroller design. *IEEE Transactions on Power Delivery*, 20(2 I), 1105–1114.
- Ye, Zhihong, R. Walling, L. Garces, R. Zhou, L. Li, and T. W., & Wang, T. (2004). Study and Development of Anti-Islanding Control for Grid-Connected Inverters, National Renewable Energy Laboratory. Nrel/Sr-560-36243.
- Ye, Z., Kolwalkar, A., Zhang, Y., Du, P., & Walling, R. (2004). Evaluation of antiislanding schemes based on nondetection zone concept. *IEEE Transactions on Power Electronics*, 19(5), 1171–1176.
- Ye, Z., Walling, R., Garces, L., Zhou, R., Li, L., & Wang, T. (2004). Study and Development of Anti-Islanding Control for Grid-Connected Inverters. Nrel/Sr-560-36243.
- Yu, B., Matsui, M., & Yu, G. (2010). A review of current anti-islanding methods for photovoltaic power system. *Solar Energy*, 84(5), 745–754.
- Zeineldin, H., El-Saadany, E. F., & Salama, M. M. A. (2005). Impact of DG interface control on islanding detection. In *IEEE Power Engineering Society General Meeting*, 2005. Ieee.
- Zeineldin, H. H., El-Saadany, E. F., & Salama, M. M. A. (2006). Impact of DG Interface Control on Islanding Detection and Nondetection Zones. *IEEE Transactions on Power Delivery*, 21(3), 1515–1523.

- Zeineldin, H. H. (2009). A Q f Droop Curve for Facilitating Islanding Detection of Inverter-Based Distributed Generation. *IEEE Transactions on Power Electronics*, 24(3), 665–673.
- Zeineldin, H. H., Bhattacharya, K., & Salama, M. M. A. (2006). Impact of intentional islanding of distributed generation on electricity market prices. In *IEE Proc.-Gener. Transm. Distrib., Vol. 153, No. 2* (pp. 147–154).
- Zeineldin, H. H., & Conti, S. (2011). Sandia frequency shift parameter selection for multi-inverter systems to eliminate non-detection zone. *IET Renewable Power Generation*, 5(2), 175.
- Zeineldin, H. H., & Kennedy, S. (2009). Instability criterion to eliminate the nondetection zone of the sandia frequency shift method. 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009, 1–5.
- Zeineldin, H. H., & Kirtley, J. L. (2009). Performance of the OVP/UVP and OFP/UFP Method With Voltage and Frequency Dependent Loads. *IEEE Transactions on Power Delivery*, 24(2), 772–778.
- Zeineldin, H. H., & Salama, M. M. a. (2011). Impact of load frequency dependence on the NDZ and performance of the SFS islanding detection method. *IEEE Transactions on Industrial Electronics*, 58(1), 139–146.