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Nowadays, the demand for buildings and bridges with long span and light weight capable 
of withstanding any type of dynamic loading is increasing. The application of partially 
prestressing technique to reduce the yielding and damages in concrete members and 
structures offers an alternative solution to conventional reinforced concrete (RC) or fully 
prestressed concrete (FPC) approaches. Although partially prestressed concrete (PPC) 
has been widely used as a simple and economical construction technique for structures 
with medium to large span, there are no proper analytical and numerical models and 
detailed building code provisions for PPC elements. Besides, based on an extensive 
review of the literature, there is less information available about the possibility of 
identifying the damage in partially prestressed concrete beams and frame structures 
during earthquake excitation. Hence, in this study a new analytical model for PPC frame 
elements subjected to static and dynamic loads is developed. For this purpose, 
constitutive law and mathematical model for the three dimensional PPC beam-column 
element are formulated and a special finite element algorithm is developed. In order to 
develop three-dimensional nonlinear finite element formulations, the PPC frame element 
is represented by two nodes and an elastic element in between to reflect the elastic 
behavior of the member and two plastic hinges at each end of the member to reflect the 
inelastic behavior of the member. The elastic stiffness matrix of a three- dimensional 
PPC beam-column element with two nodes was developed during the present study; 
meanwhile, the elasto-plastic stiffness matrix of the three-dimensional PPC frame 
element having plastic hinges at both ends was derived using plasticity theory. Therefore, 
in order to detect the damages and determine the location of plastic hinges during 
dynamic loading in element, formulation for plasticity and yielding surface mechanism 
of PPC frame element is derived. A third degree polynomial using regression analysis 
was fitted to the results obtained from PPC section analysis to represent the mathematical 
model of the yield surface for each section. The developed analytical model and plasticity 
theory were codified and implemented in a special finite element program named 
ARCS3D in order to perform inelastic static and dynamic analysis for PPC structures.  
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In order to validate the developed analytical model, plasticity formulation and the 
developed FE computer program code, five conventional RC and PPC beams and frames 
were fabricated and tested experimentally for cyclic load using dynamic actuator. The 
results showed a good correlation between the numerical analysis and the experimental 
tests. Several parametric studies were also undertaken for low-rise, medium-rise, and 
high-rise partially prestressed concrete framed buildings subjected to 2D nonlinear 
pushover and time history analysis. Furthermore, nonlinear pushover analysis was
conducted on three-dimensional four-story RC and PPC buildings. Also, 3D nonlinear 
dynamic time history analysis was performed on the four-story RC and PPC frame 
buildings subjected to multi-directional EL-Centro earthquake accelerations. The 
functionality and effects of PPC buildings were then interpreted from different 
perspectives, such as variation of displacements, peak accelerations and plastic hinge 
formation. The results of numerical and experimental models indicated that application 
of the partially prestressed concrete members in structural systems effectively increased 
the strength and safety of the structure during dynamic loading. Also, the developed FEM 
program was able to successfully identify damage occurrence in PPC structural element 
during applied dynamic loads. To be more specific, a comparison between results shown 
that the ultimate capacity, degree of flexibility and energy dissipation capacity of the 
PPC beam specimens improved up to 70 %, 93 % and 300 % compared to the 
conventional RC beam specimen. From the experimental PPC frame results, the lateral 
load capacity and stiffness improved up to 34 % and 17 % compared to the RC frame.  
Also, no crack happened in the beam of the PPC frame under super imposed dead load. 
Furthermore, based on the parametric studies, application of PPC members in multi-
storey concrete buildings subjected to seismic loads indicated a noticeable delay in the 
failure process, however, conventional RC buildings collapsed at the first stage of 
analysis. Ultimately, this study facilitates the analysis and design procedures of the multi-
story PPC and RC buildings as well as bridges in an efficient computation time which is 
more economical compared to normal design methods.   
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: Profesor Madya Farzad Hejazi, PhD
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Pada masa kini, permintaan bagi bangunan dan jambatan berentang panjang serta ringan 
dan mampu menahan apa jua jenis pembebanan dinamik, semakin meningkat. 
Penggunaan teknik prategasan separa bagi mengurangkan alahan konkrit dan kegagalan 
dalaman anggota konkrit dan struktur, menawarkan penyelesaian alternatif kepada teknik 
konvensional konkrit bertetulang (RC) atau konkrit prategasan sepenuhnya (FPC). 
Walaupun konkrit prategasan separa (PPC) telah digunakan secara meluas sebagai teknik 
pembinaan yang menjimatkan serta mudah bagi pembinaan struktur dengan rasuk 
rentang sederhana, juga besar, namun tiada model berangka yang sesuai dan tiada analisis 
yang betul digunapakai dan tiada peruntukan kod untuk unsur-unsur bangunan terperinci 
PPC. Selain itu, berdasarkan kajian literature yang meluas, terdapat maklumat yang 
kurang yang boleh didapati mengenai kemungkinan mengenal pasti kerosakan di 
sebahagian prategasan rasuk konkrit dan kerangka struktur semasa pengujaan gempa 
bumi. Oleh itu, dalam kajian ini model analisis baru untuk unsur-unsur rangka PPC 
tertakluk kepada beban statik dan dinamik dibangunkan. Untuk tujuan ini, undang-
undang juzuk dan model matematik untuk tiga PPC dimensi unsur rasuk-tiang digubal 
dan algoritma unsur terhingga khas dibangunkan. Dalam usaha untuk membangunkan 
tiga dimensi linear rumusan unsur terhingga, elemen rangka PPC diwakili oleh dua nod 
dan elemen elastik di antara untuk menggambarkan kelakuan elastik anggota dan dua 
engsel plastik pada setiap hujung anggota untuk mencerminkan tingkah laku yang tidak 
boleh berubah ahli. Matriks kekukuhan anjal daripada dimensi unsur PPC rasuk-tiang 
tiga dengan dua nod telah dibangunkan semasa kajian ini; sementara itu, matriks 
kekukuhan elasto-plastik unsur rangka PPC tiga dimensi mempunyai plastik bergantung 
pada kedua-dua hujung diperoleh dengan menggunakan teori keplastikan. Oleh itu, untuk 
mengesan kerosakan dan menentukan lokasi engsel plastik semasa pembebanan dinamik 
dalam elemen, formulasi untuk keplastikan dan mekanisme permukaan alah elemen 
rangka PPC dibangunkan. Persamaan regresi menggunakan polinomial darjah ketiga 
telah dipadankan untuk keputusan analisa yang diperolehi daripada bahagian analisis 
PPC,  untuk mewakili model matematik permukaan hasil untuk setiap bahagian. Analisis 
model dan teori keplastikan yang dibangunkan telah dimaktub dan dilaksanakan dalam 
program unsur terhingga khusus yang dinamakan ARCS3D untuk melaksanakan analisis 
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statik tak elastik dan analisa dinamik untuk struktur PPC. Dalam usaha untuk 
mengesahkan rumusan model analisis, teori keplastikan yang dibangunkan dan kod 
program komputer FE, lima rasuk dan kerangka konvensional RC dan PPC telah direka 
dan diuji secara eksperimen untuk kenaan beban kitaran menggunakan penggerak 
dinamik. Hasil kajian menunjukkan korelasi yang baik antara analisis berangka dan ujian 
eksperimen. Beberapa kajian parametrik juga telah diambil untuk kerangka bangunan 
konkrit separa prategasan, bertingkat rendah, bertingkat sederhana, dan bertingkat tinggi 
tertakluk kepada beban  mahu-mengalah 2D tak linear dan analisis sejarah masa. 
Tambahan lagi, analisis mahu-mengalah 2D tak linear telah dijalankan ke atas bangunan 
empat tingkat, tiga dimensi, RC dan PPC. Juga, analisis dinamik sejarah masa, 3D linear, 
telah dilakukan ke atas empat tingkat kerangka bangunan RC dan PPC tertakluk kepada 
daya gempa bumi pecutan pelbagai hala EL-Centro. Fungsi dan kesan bangunan PPC 
kemudiannya ditafsirkan dari perspektif yang berbeza, seperti perubahan anjakan, 
pecutan puncak dan pembentukan engsel plastik. Keputusan model berangka dan 
eksperimen menunjukkan bahawa penyertaan daripada anggota konkrit prategasan 
separa dalam sistem struktur berkesan meningkatkan kekuatan dan keselamatan struktur 
semasa penggenaan beban dinamik. Tambahan lagi, program FEM yang dibangunkan 
berjaya mengenalpasti kejadian kerosakan di elemen struktur PPC semasa beban dinamik 
digunakan. Untuk lebih spesifik, perbandingan antara keputusan-keputusan 
menunjukkan bahawa keupayaan muktamad, tahap fleksibiliti dan kapasiti tenaga 
pelesap daripada spesimen rasuk PPC bertambah baik sehingga 70%, 93% dan 300% 
berbanding dengan spesimen rasuk konvensional RC. Daripada keputusan eksperimen 
kerangka PPC, kapasiti beban lateral dan ketegangan meningkat sehingga 34% dan 17% 
berbanding dengan kerangka RC. Tambahan lagi, tiada retak berlaku dalam rasuk 
kerangka PPC di bawah kenaan beban galas mati. Juga, berdasarkan kajian parametrik, 
penggunaan elemen  PPC di bangunan konkrit bertingkat dan tertakluk kepada beban 
seismik menunjukkan kelewatan ketara dalam proses kegagalan, bagaimanapun, 
bangunan RC konvensional runtuh pada peringkat pertama analisis. Akhir sekali, kajian 
ini memudahkan analisis dan reka bentuk prosedur bangunan PPC pelbagai tingkat dan 
bangunan RC serta jambatan dan membolehkan masa pengiraan yang cekap, yang lebih 
menjimatkan berbanding dengan kaedah reka bentuk normal.  
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CHAPTER 1 

1 INTRODUCTION

1.1 General Overview

Prestressing concrete is a widely-used technique which was introduced in the early 
1940s to overcome the natural weakness of concrete in tension (i.e. cracking and 
deflections) from externally applied loads. For the past two decades, the practice of 
prestressing tendons in prestressed beams has not been limited to bridges and 
industrial structures but also has been included in commercial and residential 
buildings. Concrete can be stressed either by pre-tensioning or post-tensioning. 
Pre-tensioned concrete is mostly used in prefabricated constructions, in which the 
members are firstly fabricated then assembled at site. As the name implies, 
prestressing strands are stretched before concrete hardening to ensure a full bond 
between concrete and prestressing strands. After releasing strands, the tensile 
forces in the pre-tensioned strands are transferred to the concrete until an 
equivalency between steel strands and concrete is achieved. This technique is 
mostly used to build parking structures, office buildings, stadiums and schools, and 
considerably decreases the total construction time and cost. On the other hand, 
post-tensioning strands are released after the concrete hardening. Post-tensioning 
would be performed using internally bonded, internally unbonded and externally 
unbonded tendons. Post-tensioning is mainly applied for strengthening and repair 
of existing structures. This method is mostly used for segmental bridges, post-
tensioned slabs, continuous beams, etc. Moreover, longer spans can be achieved 
using post-tensioning in comparison with pre-tensioning.  

The technical literature reveals that combining conventional reinforcing steels and 
prestressing steel strands to strengthen a flexural concrete member is normally 
implied by the term partially prestressed element. In current practice, partial 
prestressing is accepted as a technique in between full prestressing and 
conventional (non-prestressed) reinforcing. Prestressed strands are used to control 
deflections and crack widths. On the other hand, further non-prestressed 
reinforcement would add to the ultimate capacity without significant change in the 
cracking moment. In practice, partially prestressed concrete elements are employed 
with their design based on rational analysis, on satisfying the conditions of both 
serviceability and ultimate strength constraints and finally on the engineering 
judgment.

In comparison to reinforced concrete, with partial prestressing greater clear span 
with same member depth, enhanced crack control and smaller member sizes can be 
achieved. Moreover, steel and concrete material properties are effectively utilized.
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Based on the few number of published studies, (Abeles, 1963; Hawkins, 1977; 
Park and Thompson, 1980; Naaman, 1986; Harajli, 1993 and 2006; Au and Du,
2004; Karayannis and Chalioris, 2013; Burgueno and Sun, 2014; Rakaa and 
Astawaa, 2014; Iskhakov and Ribakov, 2015) in comparison with fully prestressed 
concrete structures, the use of partial prestressing may enhance ductility and 
energy absorption capability, improve economy, as well as reduce the camber and 
creep deformation due to prestress. In a seismic event, the reinforcing steel will 
dissipate energy in a ductile manner while the post-tensioning cables along the 
length of the frame will provide elastic action that creates a self-righting force to 
pull the joint and frame back toward its original position. Although partial 
prestressing technique has been used in many structures, dynamically, the 
structural behavior of the PPC structures is yet to be well understood.  

Hence, in this study a new analytical model for PPC frame elements subjected to 
static and dynamic loads is developed.  For this purpose, constitutive law and 
mathematical model for the three-dimensional PPC beam-column element are 
formulated and a special finite element algorithm is developed. Moreover, in order 
to detect the damages and determine the location of plastic hinges during dynamic 
loading in PPC structures, formulation for plasticity and yielding surface 
mechanism of PPC frame element is derived. Hence, the hypothesis of the current 
study is development of an approach to facilitate the analysis and design
procedures of multi-storey and long-span PPC buildings and bridges in an efficient 
computation time which is more economical in comparison with other design 
methods. 

1.2 Brief Review of Earlier Works 

Prestressed concrete members are essential in many places today in order to fully 
make use of concrete compressive strength and control deflection and cracking. 
Due to those advantages, research on the behavior of prestressed concrete members 
has seen impressive developments. Partially prestressed concrete structures bridge 
the gap between fully prestressed concrete structures and reinforced concrete
structures (Allouche et Al., 1999). To be more specific, in such a structure, tension 
and cracking in concrete due to flexure are permitted under service dead and live
loads. Hence, in the last two decades, partially prestressed techniques have been 
found to be attractive methods for engineers to design concrete bridges and 
buildings with desired form, simple and economical construction of medium to 
large span. 

The analysis of a PPC element has additional levels of difficulty compared to the 
analysis of conventional reinforced concrete (RC) and fully prestressed concrete 
(FPC) members. On the other hand, published research on nonlinear dynamic 
behavior FPC and PPC structures subjected to earthquake loading is much less 
than conventional RC structures. Therefore, this study focuses on a new 
constitutive law and mathematical model for PPC frame elements subjected to 
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static and dynamic loading.  Besides, a new mathematical model for identifying the 
damages in partially prestressed concrete beams and frame structures during 
earthquake excitation is considered. Abeles (1959 and 1963) discussed partial 
prestressing and possibilities for its practical application. He declared the essential 
features, ways of approach, philosophy of design, practical application in England, 
and differences between fully and partially prestressing techniques.  In 1977, 
Hawkins reviewed analytical and experimental studies related to seismic behavior 
of precast reinforced and fully prestressed concrete structures. Thampson and Park 
(1980) demonstrated that prestressed concrete has been widely used for structures 
carrying gravity loads but has not been as widely accepted for use in structural 
systems which resist seismic loading. They investigated the ductility of a few 
prestressed and partially prestressed concrete beams sections.  

The nonlinearity of the three-dimensional nature of PPC elements was not 
considered during this research. Naaman et al. (1986) compared experimental data 
with a proposed nonlinear analytical model to evaluate the flexural ductility of PPC
elements under only static loading conditions. Harajli (1993) examined only 
experimentally the flexural capacity of 16 PPC beam specimens strengthened by 
external prestressing tendons under firstly cyclic fatigue loading then, subjected to 
monotonically increasing load to failure. In 2006, he also presented a 
comprehensive assessment of the main parameters that influence the ultimate stress 
in un-bonded tendons and discussed the reasons behind the scatter in the 
predictions of test results in the literature. Au and Du (2004) explained the 
behavior of PPC sections under static loads. Effect of amount of steel and FRP
prestressing tendons on the ductility of the bonded partially prestressed members 
was considered for two-dimensional static analysis sections. Karayannis and 
Chalioris (2013) estimated the required partial prestressing on the basis of crack 
control of concrete. In this study, empirical formulations (ACI318 and Euro-code
2) were used instead of developing a comprehensive analytical model. They also 
offered design charts and numerical paradigms for PPC rectangular and T-shape 
beams. 

A considerable amount of work and effort was put in by Thanoon et al. (2004) and 
Hejazi (2010) to develop analytical and numerical methods for nonlinear behavior 
of conventional concrete building structures. Furthermore, formulation for 
plasticity and yielding surface mechanism of RC frame elements was derived in 
order to detect damages during dynamic loading procedure. 

Due to lack of a comprehensive analytical model, plasticity theory and FE program 
for analysis of PPC members, ABAQUS software was utilized by Burgueno and 
Sun (2014) to investigate damages during manufacturing of pre-tensioned beams. 
Damaged plasticity analysis was conducted in the ABAQUS for this purpose. 
Therefore, structural performance of PPC buildings under dynamic loads with 
respect to the plastic hinge formation mechanism in building components is not 
available. 
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1.3 Problem Statement

The growing use of prestressing technique for buildings and bridges with long span 
and light weight subjected to dynamic loads, has resulted in a need to increase the  
current knowledge of the behavior of PPC beam-column elements. Based on the 
extensive review of literature, it is observed that there is no comprehensive 
research on the three-dimensional seismic behavior of PPC structures. 
Consequently, there are crucial unresolved gaps in the understanding and 
assessment of PPC elements including:

i. There is no information about yield surface and plasticity theory for PPC 
frame elements in order to detect the damages and determine the location of 
plastic hinges during dynamic loading.

ii. Most of the available literature and building code provisions on the behavior 
of concrete members were dedicated to conventional reinforced concrete and 
fully prestressed concrete members. However, few researchers have focused 
on the two-dimensional structural behavior of PPC elements. Thus, there is no 
unique and specific analytical and numerical model for PPC frame elements.

iii. Modeling a simple prestressed element using existing finite element software
is very complicated because all parts (i.e. concrete, normal reinforcement and 
prestressing steel strand) should be defined separately and then assembled.
Moreover, another challenge in analyzing of PPC elements is assigning a 
suitable interaction between different materials, which is a time consuming 
procedure and requires experience. These issues increase the percentage of 
deviation, computation time as well as the cost of a project. 

iv. According to a comprehensive review of the literature, there is lack of FE 
algorithm and computer program associated with a failure criteria theory to 
identify the exact place of damaged areas in three-dimensional prestressed 
structures under dynamic loads.

v. In the technical review of the literature, there is insufficient number of 
experimental tests available to verify and validate the structural performance 
of PPC beams and frame buildings under static and dynamic loads with respect 
to the plastic hinge formation mechanism.  

1.4 Objectives of the Study

The general objective of the current study is development of a new analytical 
model associated with a plastic hinge formation mechanism for PPC frame 
elements to facilitate the seismic analysis and design procedures of multi-story 
PPC and RC buildings as well as bridges in an efficient computation time which is 
more economical in comparison with normal methods of design. Thus, specific 
objectives that contribute to this aim include:
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1. To develop formulation for plasticity and yielding surface mechanism of 
PPC frame elements to detect the damages and determine the location of 
plastic hinges during dynamic loading. 

2. To develop a new constitutive law and finite element model for PPC 
frame elements.

3. To formulate and develop a new FEM algorithm and subsequently 
implement it in the FE program package in order to perform nonlinear 
static and dynamic analysis of PPC structures, and validating the FE 
program by conducting sufficient number of experimental tests.

1.5 Scope and Limitation of Work

To ensure that the above objectives are achieved, the present study is organized as 
follows: 

1) In the current study, constitutive law and mathematical model for beam-
column elements are considered.

2) Three-dimensional finite element formulations are implemented for beam-
column elements.

3) In the numerical analysis, nonlinear characteristics of all material are 
considered. 

4) 3D yielding surface and plasticity mechanism for PPC frame elements is 
implemented.

5) Newmark's systematic step-by step integration approach has been chosen 
for nonlinear analyses. Computation strategies are presented for the
predication of time history response.

6) Experimental tests are conducted to validate the developed formulations 
and plasticity theory.

Furthermore, limitations of the present study are presented as follows: 

1) Effects of prestress losses are not considered in finite element 
formulations. 

2) Un-bonded prestressed technique is not considered in this study.

3) Effect of tensile strength in concrete is also not considered.
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1.6 Organization of the Thesis

The thesis comprises five chapters and the summaries of these chapters are 
provided below. 

The significance and definition of the problem statement of the present 
investigation have been highlighted in Chapter 1 along with the objectives and 
scope of the study.  

Chapter 2 reviews relevant previous studies in the literature  about analytical 
model, inelastic analysis, finite element formulations, yielding surface and hinge 
formation as well as experimental tests which have been done related to RC, FPC 
and PPC elements and structures.  

The detailed methodology of this study is discussed in Chapter 3. Formulation of 
plasticity and yielding surface mechanism of PPC frame element and its 
development is presented. Also, development of 3D nonlinear PPC frame elements
and finite element procedure for nonlinear static and dynamic analysis is derived.
Development of numerical computation procedure and computer program code  

A general description of the test specimens, material properties, instrumentation 
arrangements and loading procedure of experimental tests are explained in Chapter 
4. 

Chapter 5 extensively reports the comparison between numerical and experimental 
results of conventional reinforced concrete and PPC beam and frame specimens 
under flexural and cyclic analysis in order to validate the developed analytical 
model, plasticity formulation and the developed FE computer program code. In 
addition, seismic performance assessment of multi-story PPC structures is 
investigated under severe superimposed dead and live loads.

Chapter 6 summarizes the present study and provides its major and specific 
conclusions. The scope of future works and recommendations are also discussed.  
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