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January 2017

Chairman: Nuraini Binti Abdul Aziz, PhD 
Faculty:  Engineering 

Bus rollover accidents cause severe damage to its superstructure which results in severe 
injury and death to the passengers. The bus superstructure must be strong enough to 
absorb energy of impact at a time the superstructure touches the ground. In this work, a 
bus superstructure with a capacity of forty four passengers was analysed to identify the 
capability of the superstructure to absorb crash energy using two different materials 
and varying structure thicknesses during a bus rollover crash. The superstructure was 
modelled and simulated according to the United Nation Economic Commission of 
Europe Regulation Number 66 (UN-ECE, R66) using the finite element analysis 
software, LS - DYNA. The simulation was conducted to determine the permanent 
deformation of the superstructure of the bus un-laden and laden kerb weight on the 
passenger residual space during the rollover crash, and the effect of 3.0 mm, 2.3 mm, 
and 1.6 mm thicknesses of Ultra-galvanise (Ultragal) C350 and 2.3 mm thickness of 
material made with ASTM A500 grade B on the deformation. The validation process 
was completed using the quasi-static three-point bending simulation on the waist rail 
knot of the bus superstructure. The simulation results clearly indicate that appropriate 
material selection is critical to design and build a strong and lightweight bus 
superstructure. The simulation of both laden and un-laden kerb weight scenario 
significantly shows that a heavy frame design will affect the overall bus superstructure, 
especially the standard hoop structure. The thickness and the type of material assigned 
to the standard hoop structure also need to be considered to prevent the structure from 
collapsing and intruding the passenger residual space during a rollover crash. In this 
study, for bus standard hoop structure with Ultragal C350 material, the intrusion 
reducing linearly with increasing thickness over the thickness range of 1.6 mm to 3 
mm. From the results obtained, the value of thickness for zero intrusion is found to be 
2.75 mm. For laden bus structure simulation zero intrusion obtained is 3.1 mm by 
extrapolation method. The simulation result for the un-laden kerb weight scenario 
shows that the standard hoop structures does not intrude the passenger residual space 
where there is a distance of 53 mm between the standard hoop structure and passenger 
residual space. The un-laden kerb weight scenario shows that the structure absorbed a 
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maximum internal energy of 95 MJ while the laden kerb weight scenario shows that 
with the same standard hoop structures thickness had intrude 99 mm into the passenger 
residual space with higher energy absorbed (internal energy) by the structure at 137 
MJ. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Master Sains 

ANALISIS GULING LAMPAU STRUKTUR RANGKA BAS DENGAN 
MENGGUNAKAN KAEDAH UNSUR TERHINGGA

Oleh 

MAHATHIR BIN RAHMAN

Januari 2017

Pengerusi: Nuraini Binti Abdul Aziz, PhD 
Fakulti:  Kejuruteraan 

Kemalangan guling lampau bas menyebabkan kerosakan yang besar kepada struktur 
utama bas yang mana ianya boleh mengakibatkan kecederaan parah dan juga kematian 
kepada penumpang. Struktur utama bas ini hendaklah dibina dengan cukup kuat dan 
teguh bagi menyerap tenaga impak pada masa struktur utama bas tersebut menyentuh 
lantai. Dalam penyelidikan ini, Struktur utama bas dengan kapasiti tempat duduk empat 
puluh empat orang penumpang dianalisis bagi mengenalpasti keupayaan struktur utama 
bas di dalam menyerap tenaga impak dengan menggunakan pelbagai jenis bahan dan 
juga ketebalan bahan struktur tonggak bas apabila kemalangan guling lampau berlaku.
Struktur utama bas ini telah dimodel dan disimulasi dengan menggunakan perisian 
analisis unsur terhingga LS - DYNA dengan merujuk kepada kaedah yang ditetapkan 
oleh Suruhanjaya Kesatuan Ekonomi Negara Eropah, Peraturan nombor 66. Simulasi 
ini telah dijalankan bagi menganalisis kesan remukan pada struktur utama bas yang 
merangkumi berat kenderaan tanpa muatan dan berat kenderaan dengan muatan ke atas 
ruang selamat penumpang apabila kemalangan disebabkan guling lampau berlaku dan 
juga kesan ketebalan bahan iaitu 3.0 mm, 2.3 mm dan 1.6 mm bagi bahan jenis Ultragal 
C350 dan ketebalan bahan 2.3 mm bagi bahan gred ASTM A500 B ke atas struktur 
utama bas. Proses pengesahan simulasi telah dibuat dengan menggunakan separa tiga 
mata statik membengkok pada bahagian pendakap - simpul struktur utama bas. Hasil 
simulasi mendapati pemilihan bahan yang sesuai adalah perlu dibuat sebelum struktur 
utama bas dapat dibina dengan kuat dan ringan. Simulasi bagi kedua - dua keadaan 
iaitu berat kenderaan tanpa muatan dan berat kenderaan dengan muatan menunjukkan 
berat keseluruhan bas memberi kesan  ketara kepada struktur utama bas terutama sekali 
pada struktur tonggak bas. ketebalan dan jenis bahan yang digunakan ke atas struktur 
tonggak bas juga perlu dipertimbangkan bagi memastikan struktur utama bas tidak 
remuk dan memasuki ke dalam ruang selamat penumpang. Dalam kajian ini, untuk 
struktur tonggak bas dengan bahan Ultragal C350, kemasukan struktur tonggak bas ke 
dalam ruang selamat penumpang adalah berkurangan secara linear dengan peningkatan 
ketebalan struktur tonggak bas di dalam julat 1.6 mm hingga 3 mm. keputusan yang 
diperolehi, menunjukkan nilai ketebalan struktur tonggak bas bagi tidak memasuki ke 
dalam ruang selamat penumpang adalah 2.75 mm. Keadaan Bas dengan muatan sarat, 
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simulasi menunjukkan ketebalan struktur tonggak bas 3.1 mm dikira dengan 
menggunakan kaedah extrapolasi bagi memastikan struktur tonggak bas tidak 
memasuki ke dalam ruang selamat penumpang. Keputusan simulasi bagi keadaan berat 
tanpa muatan menunjukkan struktur tonggak bas tidak memasuki ke dalam ruang 
selamat penumpang. Jarak 53 mm diukur diantara struktur tonggak bas dengan ruang 
selamat penumpang. Penyerapan tenaga maksimum oleh struktur adalah 95 MJ 
sementara bagi kenderaan berat dengan muatan struktur tonggak bas memasuki 99 mm 
ke dalam ruang selamat penumpang dengan penyerapan tenaga tertinggi oleh struktur 
adalah 137 MJ. 
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CHAPTER 1

INTRODUCTION

1.1 Background

Buses are one of the most popular public transports for short and long-distance travels 
in Malaysia. Recently, many reported road accidents involve the public transport 
sector, especially buses. The statistics of road accidents show that the total number of
commercial bus accidents increased from 106 in 2003 to 182 in 2012 [1]. One of the 
most tragic accidents that occurred in Malaysia was in 2007 at Bukit Gantang, Perak, 
where an express bus had rolled-over into a canyon, killing 23 people on-board. The 
weaknesses of the bus superstructure caused the roof to collapse from the main frame 
structure [2]. Since the incident, bus manufacturers are enforced by governing bodies 
such as the Ministry of Transport (MOT) and the Road Transport Department (RTD) to 
provide bus superstructures with sufficient strength to use on the road as well as to 
protect the passengers, simultaneously enforcing the bus construction law.  

The United Nation - Commission for Europe, Regulation Number 66 (UN-ECE, R66) 
of Uniform Technical Prescription Concerning the Approval of Large Passenger 
Vehicle with Regards to The Strength of Their Superstructure was adapted into the 
Road Transport Department of Malaysia rules. The regulation essentially focuses on 
the body frame’s integrity and their durability. The main frame itself must be built with 
continuous transversal structure to sustain it in the event of a rollover. The structure of 
a bus is composed of standard hoop structures, roof structure frame assembly, floor 
structure frame assembly and side wall assembly. The standard hoop structure is a hoop 
structure with vertical pillars running between the floor beam and the roof bows, which 
in conjunction with the floor beam forms a complete closed hoop structure. The side 
wall assembly is a fabrication consisting of hoop pillars, stub pillars, waist rail, sill rails 
and diagonal bracing that is prefabricated and then welded to the floor beam.  

The floor structure frame assembly is composed of floor beam and longitudinal 
structure members, connected by steelwork to the bus chassis frame and supporting 
hoops or stub pillar beam. The floor beam is a transverse of the floor structure. The 
roof structure assembly is a transverse and longitudinal member that is connected along 
the roof bow. All these frame assembly structures are made of columns welded to form 
an integral structure called the bus superstructure. The structural frame is then joined 
with the main chassis frame. These superstructures absorb the largest amount of energy 
during rollover impact. The structural frame is then covered on the side wall truss 
assembly with thin sheets of aluminium. The rear, front and roof structure assemblies 
are covered with fibreglass. The doors and external small door (luggage doors and 
engine compartment door) are also composed of structures and aluminium shell.        
  



© C
OPYRIG

HT U
PM

2

In this work, the existing bus superstructure will be analysed which focuses on the 
standard hoop structure. The analyses of the rollover impact was simulated using LS - 
DYNA finite element programme to determine the deformation and intrusion of the 
standard structure into the passenger residual space with different standard hoop 
structure thickness and materials types. 

1.2 Problem Statement  

Malaysian Government through Ministry of Transport joined World Forum for 
Harmonization of Vehicle Regulations (WP.29) since 4 April 2006. Through the 
forum, Malaysian Government have ratified an agreement called Agreement 1958 
(Agreement concerning Adoption of Uniform Technical Prescriptions) that compel 
certification process to every technical approval standards on products or automotive 
system [3]. According to Road Transport Department (RTD), the technical approval 
standard is under Motor Vehicles (Construction and Use) (Amendment) Rules 2014 [4]
implemented through vehicle type approval (VTA) process [5]. In order to pass VTA 
process, bus or coach superstructure must meet the general safety guideline under 
UNECE R66 - UNIFORM TECHNICAL PRESCRIPTIONS CONCERNING THE 
APPROVAL OF LARGE PASSENGER VEHICLES WITH REGARD TO THE 
STRENGTH OF THEIR SUPERSTRUCTURE [6]. The main basic requirements in 
UN-ECE R66 standards is to have sufficient strength in the structure so that the 
residual space during and after the rollover test on complete bus is maintained. This 
simply means that no bus components, such as pillars, rings and luggage racks outside 
the residual space, shall intrude into the residual space during test.

There are many tests according to the R66 standard and one of them is in ANNEX 9 -
Computer simulation of rollover test on complete vehicle as an equivalent approval 
method. Researchers such as [7],[8],[9],[10],[11],[12]. Most of the study and research 
works were made to show the computational models provided comparable results to 
experimental measurements and can be used for other type of bus to avoid expensive 
full-scale crash tests. Furthermore, some of the study shows a successful modification 
on a beam element to save the analysis cost with little loss of its accuracy in 
comparison with a shell element model. 

While in this study, the work is focusing on a superstructure size of 50 mm X 50 mm, 
Square Hollow Section (SHS) in determining the superstructure capability of using 
different types of material such as Ultragal C350 and ASTM A500 Grade B steel 
material with thickness of 3.0 mm, 2.3 mm and 1.6 mm. The study will provide the 
information on the superstructure integrity during rollover impact and capable to 
absorb rollover impact energy without injuring passengers and drivers according to two 
different bus weight condition which is laden and un-laden kerb weight situation. The 
results of studies that have been made can help the authorities, especially the Road 
Transport Department of Malaysia in setting the thickness of the structure and the type 
of materials to be used in standard hoop structure bus taking into account the laden 
weight of a bus for each analysis frame of the bus to be created and applied by each bus 
body makers throughout Malaysia.
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1.3 Research Objective 

In this study, the aim is to analyse the effect of different material types and structural 
thickness of the superstructure standard hoop on intrusion.  
The specific objectives are:  

1. To determine the deformation and intrusion of the superstructure upon 
rollover impact, laden and un-laden kerb weight.  

2. To determine the effect of thickness and material of the superstructure laden 
and un-laden kerb weight on the passenger residual space intrusion during 
rollover. 

3. To validate simulation of waist rail knot structure with experimental results.   

1.4 Scope and limitation of Study 

This study focuses on the effect of different material and thickness of standard hoop 
structure on intrusion of the passenger residual space during rollover. Therefore, the 
scopes of the study were set as follows:  

1. The rollover simulation refers to the United Nation Economic Commission for 
Europe, Regulation number 66 (UN-ECE, R66). 

2. The material characteristics used is according to the manufacturer’s current 
practice which is Ultragal C350 and ASTM A500 grade B.    

3. There are no changes in the superstructure design but only to the standard 
hoop structure thickness which is of 3.0 mm, 2.3 mm and 1.6 mm for Ultragal 
C350 and 2.3 mm for ASTM A500 grade B. 
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