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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfillment of the requirement for the degree of Doctor of Philosophy 

 

DETERMINATION OF RELATIVE DAMAGE OF ASPHALT PAVEMENT 

FROM REDUCED TIRE CONTACT AREA  

 

By 

DANIAL MOAZAMI 

 

 

April 2015 

 

Chairman: Professor Ratnasamy Muniandy, PhD 

Faculty     : Engineering 

 

Considering the traditional contact area which is a full circular contact area without any 

tread, in the current pavement design procedure, is an extreme overestimation of 

contact area and hence extreme underestimation of the real contact stress. Since the 

relationship between the contact stress and pavement damage is not linear but 

exponential, even a trivial difference between tire contact areas leads to significant 

difference in terms of induced pavement damage. 

 

This study was conducted to quantify the relative damage caused by realistic tire-

pavement contact area with respect to the full contact area and incorporated three 

objectives: To design a wheel tracking and instrumentation system, to establish a 

method for determination and analysis of effective tire contact areas, to quantify the 

relative damage of asphalt pavement due to various tire-pavement contact areas.  

 

In this study, a new equipment called Rotary Compactor and Wheel Tracker (RCWT) 

was designed and fabricated for capturing the effective tire contact areas, resembling 

the compaction effort of Stone Mastic Asphalt (SMA) site rollers, and conducting 

simulative wheel tracking test. 

 

In order to capture the effective contact area, 155/70R12 tire was selected with the six 

most common treads in the market besides a completely worn-out tread resembling the 

full contact area without any tread. The footprints of these treads were captured at five 

tire load groups of 1.50 kN, 2.0, 2.5, 3.0, and 3.5 kN and four tire inflation pressures of 

137.90 kPa, 172.37, 206.84 and 241.32 kPa.  

Using the developed tire imaging procedure, the obtained footprints were very clear 

and free of any image noises. The footprints were then scanned and uploaded in a 

MATLAB-based image processing program to calculate the effective contact areas. 

Comparison between effective and traditional contact areas indicated that the current 
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pavement design procedure overestimates the actual tire-pavement contact area up to 

92 percent. 

 

Among the tested treads, Dunlop Ec201, Dunlop SP Sport J3, and Sime Astar 100 

induced minimum, intermediate and maximum contact areas besides the full contact 

area which was caused by the worn-out tread. Therefore, these treads were selected for 

further wheel tracking performance study at three different load groups (three normal 

loading of a Kancil car) of 1.43 kN, 1.91 kN, and 2.13 kN by preparing 12 slabs.  

 

Permanent deformation and permanent strain profiles of different contact areas in each 

tire load group were obtained and the relative damage analyses were done between tires 

with and without tread from various aspects. These aspects include operational life 

reduction ratio, rutting rate, linear and nonlinear relative damage concepts. Based on 

nonlinear relative damage analyses, real tire with tread induced about three times more 

rutting compared to the worn-out control tread. In addition, the induced permanent 

vertical strain by the real tire with tread was two times higher compared to the worn-

out control tread.  

 

Finally, the current pavement design, by using the full circular contact area, 

underestimates the amount of rutting significantly, and it is recommended to 

incorporate the realistic tire-pavement contact area in the design procedure to obtain an 

optimum design. 
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PENENTUAN KEROSAKAN RELATIF DARIPADA PENGURANGAN 

KAWASAN SENTUHAN TAYAR PADA TURAPAN 

 

Oleh 

DANIAL MOAZAMI 

 

 

April 2015 

 

Penyelia: Prof. Ratnasamy Muniandy, PhD 

Fakulti  :   Kejuruteraan 

 

Mengambilkira kawasan sentuhan tipikal yang merupakan sentuhan keliling yang 

penuh tanpa sebarang alur , dalam prosedur reka bentuk turapan semasa , ianya 

kawasan sentuhan yang diambilkira secara ekstrem dan kurang mengambilkira 

kawasan tegasan yang sebenar . Oleh kerana hubungan antara kawasan tegasan dan 

kerosakan turapan bukan linear tetapi secara eksponen, walaupun terdapat perbezaan 

kecil antara kawasan sentuhan tayar membawa kepada perbezaan yang signifikan dari 

segi kerosakan turapan teraruh. 

 

Kajian ini dijalankan untuk mengukur kerosakan relatif disebabkan oleh kawasan 

sentuh realistik tayar dengan kawasan sentuhan penuh bagi memenuhi tiga objektif : 

Untuk mereka bentuk sistem pengesanan roda dan peralatan , untuk mewujudkan satu 

kaedah untuk penentuan dan analisis hubungan tayar berkesan kawasan , untuk 

mengukur kerosakan relatif asfalt turapan disebabkan oleh pelbagai kawasan sentuhan 

tayar. 

 

Laporan mengatakan perbezaan kecil kawasan sentuhan tayar menyumbang kepada 

perbezaan ketara bagi penyebab kerosakan turapan. Dalam kajian ini, alat baru yang 

panggil sebagai Pemadat Putar and alat Pengesan Roda (RCWT) telah direka and 

dipasang untuk memperoleh keberkesanan kawasan sentuhan tayar, menyamatarakan 

kebolehan memadat Asfat Matrik Batuan (SMA) keluli statik skala penuh dengan 

pengolek dan melakukan ujian simulasi pengesan roda di makmal.  

 

Bagi mendapatkan kawasan sentuh berkesan untuk tayar 155/70R12, enam corak 

bebenang tayar yang terdapat di pasaran tetapi sudah sepenuhnya haus telah dipilih dan 

diuji dengan lima kumpulan beban tayar iaitu 1.50 kN, 2.0, 2.5, 3.0, dan 3.5 kN dan 

empat inflasi tekanan iaitu 137.90 kPa, 172.37, 206.84 dan 241.32 kPa.  

Melalui prosidur pengimejan tayar didapati kawasan sentuhan yang diperolehi adalah 

bebas daripada mana-mana kerosakan imej. Kawasan sentuhan tersebut telah diteliti 

dan dianalisa menggunakan kaedah pemprosesan imej MATLAB untuk mentaksir atau 

mengira kawasan sentuhan berkesan. Perbandingan antara kawasan sentuh berkesan 
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(efektif) dengan kawasan sentuh tipikal yang mengikut teori menunjukkan bahawa 

prosedur rekabentuk turapan tradisional yang sedia ada beserta kawasan sentuhan bulat 

telah melebihi kawasan sentuh sebenar antara tayar dan turapan sehingga 92 peratus. 

 

Antara corak bebenang tayar yang diuji, Dunlop Ec201, Dunlop SP Sport J3, Sime 

Astar 100  dan tayar yang sepenuhnya haus telah dikategorikan kepada corak bebenang 

yang minima, pertengahan, maksimum dan kawasan sentuhan sepenuhnya dipilih untuk 

ujian prestasi bagi roda pengesan bagi tiga kumpulan beban yang berbeza (tiga beban 

normal sebuah kereta Kancil) iaitu 1.43 kN, 1.91 kN, dan 2.13 kN dengan 

menyediakan 12 kepingan rasuk. 

 

Profil untuk ujian aluran dan keterikan bagi tayar yang berbeza dengan beban tayar 

yang sama kumpulan diperolehi dan analisis kerosakan relatif diambil diantara tayar 

dengan/tanpa alur dari pelbagai aspek. Aspek ini termasuklah nisbah pengurangan 

operasi jangka hayat, kadar alunan, dan konsep kerosakan relatif linear dan tidak linear. 

Analisis kerosakan relatif tidak linear, kawasan sentuhan tayar biasa beralur 3 kali lebih 

mudah berbanding tayar yang haus. Selain itu, kadar aruhan bagi terikan tegak tetap 

untuk tayar biasa adalah dua kali lebih tinggi berbanding tayar haus kawalan beralur. 

 

Akhir sekali dengan reka bentuk turapan semasa, menggunakan kawasan sentuhan 

penuh , dapat mengurangkan jumlah alunan dengan ketara. Adalah disyorkan untuk 

memasukkan kawasan sentuhan realistik dalam prosedur reka bentuk untuk 

mendapatkan reka bentuk yang optima. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

1.1 General Background 

 

In the past, structural design approaches to flexible pavements were mainly empirical 

in nature. The American Association of State Highway and Transportation Officials 

(AASHTO) method of pavement design (AASHTO, 1993), is still used by some 

highway agencies as an empirical approach. 

 

In the AASHTO design 1993, equations were developed to guide users to the 

appropriate design. These equations are based on results from previous field 

experiments (e.g. AASHTO road test of 1960s). 

 

It should be noted that, empirical methods can be applied only to a given set of 

environmental, material, and loading conditions. If these conditions are changed, the 

design is no longer valid, and a new method must be developed to be conformant to the 

new conditions. For example in the AASHTO road tests bias-ply tires were used which 

are completely out-of-date nowadays. Considering serviceability instead of different 

failure criteria, Equivalent Standard Axle Load (ESAL) instead of load spectra (axle 

type and load group), and old loading combinations are some of the limitations with 

this release of AASHTO design procedure. 

 

Limitations of the empirical approach are becoming increasingly obvious with 

developments in the transportation system and increased knowledge in the fields of 

pavement mechanics and material science.  

 

Premature failures of asphalt overlays within few years of construction are so common; 

therefore the need for a more comprehensive mechanistic pavement design model has 

been recognized. 

 

Newly proposed guideline (NCHRP, 2004) is a great step toward the mechanistic-

empirical design of pavements. The asphalt institute method of pavement design in the 

ninth edition of MS-1 (Asphalt Institute, 1982) is also considered empirical- 

mechanistic although this method still uses the concept of load equivalency in the 

empirical methods of pavement design.  

 

Despite efforts by researchers in the last decades to enhance the mechanistic part of the 

design, no fully satisfactory or comprehensive alternative to the empirical approach has 

been found (Croney et al., 1997) with some exception proposed in the new 

mechanistic-empirical design guide. This could be because of the complexity in the 

tire-pavement interaction analysis.  

 

The necessity of incorporating realistic non-uniform measured contact stresses, realistic 

tire contact areas, as well as other non-linear and viscoelastic behavior within tire-

pavement interaction have been suggested by many researchers in order to obtain more 

reliable pavement responses for further engineering judgments (Al-Qadi et al., 2009a; 

Luo et al., 2007b; Machemehl et al., 2005; Park et al., 2008).  
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So far various aspects of complex radial tire contact stresses have not been widely 

analyzed (Novak et al., 2003a) and typically simplifying assumptions (e.g. layered 

linear elastic theory) and/or limited number of variables (e.g. vertical contact stresses, 

unique and constant tread pattern, constant speed, free rolling condition without 

steering and braking maneuvers to name but a few) have been incorporated for 

predicting pavement responses. These simplifying assumptions are due to the 

importance of fast computation in common pavement design procedure as well.  

 

In this study the main focus was on the realistic tire-pavement contact area and 

determination of relative damage induced to asphalt mixtures from reduced tire contact 

area with respect to the full contact area. Effective tire-pavement contact area seems to 

affect the relative damage of pavement and should be incorporated in both mechanistic 

and empirical response analyses of asphalt pavements. Traditional Contact Area 

(TCA), Full Contact Area (FCA) and Effective Contact Area (ECA) are the three 

common tire-pavement contact areas for the study with different order of magnitude. 

TCA is the ratio of tire load (TL) over tire inflation pressure (TIP) which is assumed a 

full circular contact area. FCA is the elliptical contact area of a bald or worn-out tire 

without any grooves (control sample). ECA which is the actual contact area equals the 

full contact area of a tire minus the tread areas (void areas). In this study, the realistic 

tire-pavement contact areas were measured for various combinations of tire tread 

patterns, tire loads and tire inflation pressures. In order to study the effect of tire-

pavement contact area on the induced pavement damage, various contact areas were 

examined in wheel tracking experiment and the resulting Hot Mix Asphalt (HMA) 

failures were investigated.   

 

Finally in the design procedure of any new pavement structure, incorporating the 

effective contact area was recommended and for any already designed pavement 

structures, a set of theoretical damage ratios were established for various asphalt 

thicknesses which account for effective tire-pavement contact area. Theoretical damage 

ratios are used to modify the existing ESAL and by the use of the corrected ESAL, the 

design should be repeated to obtain the optimum design.  
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1.2 Problem Statement 

 

Although high quality materials from different quarries, typically different types of 

aggregates and binders, various kinds of additives in the mixtures, different types of 

asphalt mixtures such as dense graded, Stone Mastic Asphalt (SMA), and various 

methods of mix design and compaction have been used so far still a large amount of 

load-related distresses such as fatigue and rutting occur. Therefore, there could be some 

drawbacks with the current pavement design procedure.  

 

The hypothesis is to investigate whether the various tire-pavement contact areas affect 

the relative damage of asphalt mixtures or not. According to the theoretical calculations 

on the traditional and effective contact area values provided by (Michelin, 2005) in 

Table 1.1., the researcher reported that in a typical pavement structure, even a trivial 

difference of 10% between contact areas leads to relatively significant difference (up to 

50%) in terms of induced pavement damage.  

 

 

Table 1.1. Traditional and Effective Contact Areas and Induced Fatigue Damage 

 

 

 

 

 

 

 

 

 

 (Source: Adapted from Michelin, 2005) 

 

 

Current pavement design is based on traditional contact area which is an extreme 

overestimation of contact area and extreme underestimation of real stress state.  As it 

can be seen in Figure 1.1 and the following technical correlation, there might be a 

significant difference between the induced stress states from the full contact area and 

the effective contact area (including the void areas).  

 

Considering the linear layered elastic theory, the induced stress can be calculated as in 

Equation 1.1 and 1.2 for the tire without and with tread, respectively: 

 

                                                                                                       (1.1)
 or 

                                                                       

TL

TCA FCA

TL

ECA







                                             (1.2)

                                                       

where; 

 : The applied stress on asphalt mixture 

TL: Tire load, and  

TCA, FCA and ECA are Traditional, full and effective areas of contact, respectively.  

Tire Type with 

the associated  

fatigue life

Single 

Axle Load 

(kN)

Tire Inflation 

Pressure

(kPa)

Calculated 

Contact Area 

(mm²)

Measured 

Contact Area 

(mm²)

Difference

GOODYEAR 

425/65R22.5
75.6 790 47848 43140 10%

Number of 

Load Cycles to 

Fatigue Failure

2378451 1420744 50%
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Therefore, considering TCA or FCA as the tire-pavement contact area extremely 

underestimate the actual induced stresses on the asphalt mixtures. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Full and Effective Contact Areas, Close-up View of the Void Areas 

 

 

Tire companies reported a minimum 25% void areas for the tire based on the mold size. 

On the other hand, some studies mentioned about higher values of void areas (Marsili, 

2000). Therefore, the realistic tire-pavement contact area should be taken into 

consideration in pavement design procedure. (De Beer et al., 2008) also recommended 

studying the effect of surface texture and tire tread patterns on contact stresses because 

of its importance. 

 

Tire-pavement contact area studies showed that the traditional contact area is larger 

than the actual area, since a full circular contact area is considered between the tire and 

the asphalt pavement (Luo & Prozzi, 2007b). In addition, both circular and equivalent 

rectangular contact areas overestimated the net contact area (Al-Qadi & Wang, 2009a). 

Therefore, the necessity of incorporating the actual area has been suggested in the 

literature (Park, 2008). 

 

In this study the importance of incorporating the realistic and effective tire-pavement 

contact area was highlighted and relative damage of asphalt mixtures from reduced tire 

contact area was determined with respect to the full contact area. 

 

In this research in order to capture the realistic and effective tire-pavement contact area 

and study the effect of various contact areas on HMA rutting, a new equipment called 

Rotary Compactor and Wheel Tracker (RCWT) was designed and fabricated with three 

different functionalities. The RCWT captures the realistic contact areas of pneumatic 

tires, simulates the field compaction process, up to the desired density, and conducts 

simulative laboratory wheel tracking test. This test set-up was designed to prepare and 

test heavy-duty asphalt mixtures in slab form. 

 

Following the design and fabrication of the RCWT, in the next stage the effective tire 

contact areas were captured. In addition, in order to quantify the relative damage 

caused by various contact areas, different induced tire-pavement contact areas were 

tested in the wheel tracking experiment and the associated performance criteria 
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including rutting depth and vertical compressive strain were captured to enable the 

relative damage analyses.  

 

 

1.3 Objectives of Study 

 

The main objective of this study is to determine the permanent deformation of asphalt 

mixtures from reduced tire contact area. To fulfill this main objective the following 

objectives were introduced: 

 

1. To design a wheel tracking and instrumentation system.  

 

2. To establish a method for determination and analysis of tire-pavement 

effective contact area. 

 

3. To quantify the relative damage of asphalt pavement due to various tire 

contact areas.  

 

 

1.4 Scope of Study 

 

Effective tire-pavement contact area seems to affect the relative damage of pavement 

and should be incorporated in both mechanistic and empirical response analyses of 

asphalt pavements. In order to quantify the damage induced by various contact areas, a 

simulative compactor and wheel tracking equipment was developed in the first test 

plan. In the second test plan, realistic contact areas were captured and calculated. In test 

plan 3, slab preparation, compaction of asphalt slabs to the desired density, wheel 

tracking test and relative damage analysis were discussed.  

 

The RCWT equipment with real pneumatic tires is able to apply non-uniform contact 

stresses, realistic tire contact area, as well as other non-linear and viscoelastic behavior 

within tire-pavement interaction.  

 

In order to study the effect of tire-pavement contact area on the induced pavement 

damage, various contact areas were examined in wheel tracking experiment and the 

resulting HMA failures were investigated.  

 

Failure parameters including permanent deformation and vertical compressive strains 

were captured in the data acquisition system continuously. In the next part, relative 

damage analyses were done on the obtained results to quantify the damage caused by 

various contact areas. 

  

It was recommended to incorporate the effective tire-pavement contact area in 

pavement design procedure. In addition, for any already designed pavement, a set of 

theoretical damage ratios, for various asphalt thicknesses, were established to account 

for effective tire-pavement contact area. These damage ratios are used to modify the 

existing ESAL for the effective tire-pavement contact area and repeat the design 

according to the modified value of ESAL to obtain the optimum layer thicknesses.  
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1.5 Thesis Layout 

 

Chapter two includes the relevant literature review. Experimental procedures and 

research methodologies for the overall study are described in chapter three. Chapter 

four describes the design, fabrication and instrumentation for the RCWT equipment, 

and chapter five presents the tests results and includes the analysis parts. Conclusion 

and recommendations are presented in chapter six.  
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