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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
of the requirement for the degree of Doctor of Philosophy 

DEVELOPMENT OF A MOTION PLANNING AND OBSTACLE 
AVOIDANCE ALGORITHM USING ADAPTIVE NEURO FUZZY 

INFERENCE SYSTEM FOR MOBILE ROBOT NAVIGATION  

By

FARAH KAMIL ABID MUSLIM 

May 2017

Chairman : Associate Professor Tang Sai Hong, PhD 
Faculty :  Engineering 

The autonomous navigation of robots is one of the most significant issues about 
robotics because of its difficulty and dynamism. This is because it relies on 
environmental situations such as the interface between themselves, individuals or any 
unexpected changes within the surroundings. It is necessary that the trajectory to the 
robots’ destination be calculated online, and throughout motion, to enable the robot 
to respond to variations within the environment. However, the essential difficulty in 
solving this issue may obstruct a sufficiently quick solution from being calculated 
online, given sensible calculation resources. These come from high dimensions of the 
exploration of space, geometrical and kinematic features of the obstacles. Especially 
their velocities, uncertainty, cost function to be improved, and the robot’s dynamic 
and kinematic model,  

This research focuses on the existing drawbacks and inefficiencies of the available 
path planning approaches within unknown dynamic environments. These drawbacks 
can be categorized as the problem encountered in this research into four categories, 
including inability to plan under uncertainty of dynamic environments, non- 
optimality, failure in crowded complex situations, and predicting the obstacle velocity 
vector. 

In this research, a new sensor-based online approach was proposed for generating a 
collision-free trajectory for differential-drive wheeled mobile robots, which could be 
applied to an unknown dynamic environment, in which the obstacles are moving and 
their speed profiles are not pre-identified. This approach depends on future predictive 
behaviour to predict the obstacles’ future route and priority behaviour to make 
decisions about the best navigation to reach the destination safely. This approach 
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employs several intelligent techniques to improve the performance of the planner in 
terms of the quality of the resulted path, runtimes of the planner, ability to solve 
complex problems effectively and capability of planning in unknown dynamic 
environments. 

Firstly, a new sensor-based online approach is planned to reach the first and second 
objective of the research. This comprises planning in unknown dynamic environments 
and predicting the obstacle’s velocity vector in order to find safe and fast reactive 
trajectories. This is particularly true in unforeseen environments that contain both 
static and dynamic obstacles.  

After this, the third objective of the research is planning in a crowded complex 
situation to evaluate the risk of collision between the robot and the obstacle’s 
trajectory using a fuzzy logic controller. This would allow the FLC to generate a local 
path for an obstacle avoidance system unique to mobile robot navigation in dynamic 
environments. 

Finally, the last objective is to improve the optimality of the new approach using a 
robust Machine Learning strategy.  An adaptive neuro-fuzzy inference system 
(ANFIS) was designed which constructs and optimizes a fuzzy logic controller using 
a given dataset of input/output variables in order for the mobile robot to learn. This 
depends on the previous outcomes to generate a short path with a low runtime for an 
obstacle avoidance system unique to mobile robot navigation in dynamic 
environments.

The proposed multilayer decision approach successfully guides the robot in uncertain 
and ever-changing surroundings. It also efficiently predicts the obstacles’ velocity 
vector. The designed multilayer decision-based fuzzy logic model effectively solves 
the path planning queries in crowded and complex situations without any failure. 
Finally, the proposed ANFIS generated FLC successfully improves the optimality and 
reduces runtime rates of the proposed FLC planner. The present algorithm exhibits 
attractive features such as high optimality, high stability, low running cost and zero 
failure rates. The failure rate were zero for all test problems. The average path length 
for all test environments is 16.51 with standard deviation of 0.49 which gives an 
average optimality rate of 89.79%. The average runtime is 4.74 (standard deviation is 
0.26).
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN PERANCANGAN GERAKAN DAN ALGORITMA 
PENGELAKAN HALANGAN MENGGUNAKAN SISTEM PENYESUAIAN 

INFERENS NEURO UNTUK PENGEMUDIAN ROBOT BERGERAK 

Oleh 

FARAH KAMIL ABID MUSLIM 

Mei 2017

Pengerusi : Profesor Madya Tang Sai Hong, PhD
Fakulti : Kejuruteraan

Pengemudian berautonomi robot adalah salah satu isu yang paling penting tentang 
robotik kerana kesukaran dan dinamismenya. Ini kerana ia bergantung kepada 
keadaan persekitaran seperti antara muka di antara mereka, individu atau mana-mana 
perubahan yang tidak dijangka di sekitarnya.  Adalah perlu agar trajektori ke destinasi 
robot itu dikira dalam talian, dan sepanjang gerakan, bagi membolehkan robot 
tersebut bertindak balas kepada perubahan di persekitaran. Walau bagaimanapun, 
kesukaran yang penting dalam menyelesaikan isu ini, yang datang dari dimensi tinggi 
ruang penerokaan, ciri-ciri geometri dan kinematik halangan terutama sekali halaju 
mereka, ketidakpastian, fungsi kos yang perlu diperbaiki, serta model dinamik dan 
kinematik robot itu, boleh menghalang penyelesaian yang cepat dikira dalam talian, 
memandangkan sumber-sumber pengiraan yang wajar. 

Kajian ini memberi tumpuan kepada kelemahan dan ketidakcekapan pendekatan 
perancangan laluan yang sedia ada di dalam persekitaran dinamik yang tidak 
diketahui. Kelemahan-kelemahan ini boleh dikategorikan sebagai masalah yang 
dihadapi dalam kajian ini terbahagi kepada empat kategori termasuk ketidakupayaan 
merancang di bawah ketidaktentuan persekitaran yang dinamik, bukan-
optimum, kegagalan di dalam keadaan kompleks sesak, dan meramal vektor 
halaju halangan. 

Dalam kajian ini, pendekatan baru dalam talian berasaskan-sensor telah 
dicadangkan untuk menjana trajektori tanpa-perlanggaran untuk robot bergerak 
beroda pacuan-kebezaan yang boleh digunakan untuk persekitaran dinamik yang 
tidak diketahui, di mana halangan-halangan bergerak dan profil kelajuan mereka tidak 
di kenal pasti sebelumnya.  Pendekatan ini bergantung kepada tingkah laku ramalan 
masa depan untuk meramalkan laluan dan tingkah laku keutamaan halangan untuk 
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membuat keputusan mengenai pengemudian yang terbaik untuk sampai ke destinasi 
dengan selamat. Pendekatan ini menggunakan beberapa teknik pintar untuk 
meningkatkan prestasi perancang dari segi kualiti laluan yang terhasil, masa larian 
perancang, keupayaan menyelesaikan masalah yang kompleks dengan berkesan dan 
keupayaan perancangan di dalam persekitaran dinamik yang tidak diketahui. 

Pertama, suatu pendekatan baru dalam talian berasaskan-sensor dirancang untuk 
mencapai objektif-objektif pertama dan kedua kajian yang terdiri dari perancangan di 
dalam persekitaran dinamik yang tidak diketahui dan meramalkan vektor halaju 
halangan untuk mencari trajektori reaktif yang selamat dan cepat di 
dalam persekitaran yang tidak diduga yang mengandungi kedua-duanya halangan 
statik dan dinamik. 

Kemudiannya, objektif ketiga kajian ini ialah merancang di 
dalam keadaan kompleks yang sesak untuk menilai risiko perlanggaran antara robot 
dan trajektori halangan menggunakan pengawal logik kabur (FLC) untuk 
menjana perhampiran dengan laluan untuk suatu sistem mengelakkan halangan untuk 
pengemudian robot bergerak di dalam persekitaran dinamik. 

Akhir sekali, objektif terakhir iaitu untuk meningkatkan sifat optimum pendekatan 
baru menggunakan strategi Pembelajaran Mesin yang teguh.  Suatu sistem 
penyesuaian inferens neuro-kabur (ANFIS) direka yang membina dan 
mengoptimumkan pengawal logik kabur menggunakan set data pembolehubah 
input/output yang diberi. Untuk pembelajaran robot bergerak itu bergantung kepada 
hasil sebelumnya untuk menjanakan jalan singkat dengan masa larian rendah untuk 
sesuatu sistem pengelakan halangan bagi pengemudian robot bergerak di dalam 
persekitaran dinamik. 

Multilayer pendekatan keputusan yang dicadangkan telah berjaya membimbing robot 
dalam persekitaran yang tidak menentu dan sentiasa berubah-ubah. Ia juga cekap 
meramalkan vektor halaju halangan. Model logik kabur berasaskan keputusan direka 
multilayer berkesan menyelesaikan jalan yang merancang pertanyaan dalam keadaan 
yang sesak dan kompleks tanpa sebarang kegagalan. Akhir sekali, ANFIS cadangan 
dijana FLC berjaya meningkatkan optimaliti dan mengurangkan kadar runtime 
daripada FLC perancang yang dicadangkan. Kadar kegagalan adalah sifar untuk 
semua masalah ujian. Purata panjang jalan untuk semua persekitaran ujian adalah 
16.51 dengan sisihan piawai 0.49 yang memberikan kadar optimaliti purata 89.79%. 
The runtime Purata 4.74 (sisihan piawai ialah 0.26). 
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CHAPTER 1 

INTRODUCTION 

In this chapter, the background of the study is being mentioned with supplement 
information regarding the present inefficiencies of motion planning algorithms. Then, 
the research problems are going to be expressed. Afterward, the objective of the 
research will be introduced in relation to the stated problems. Next, the scope of this 
study will be identified with supporting details about the robot and its environments. 
Finally, the organization of the thesis will be outlined.

1.1  Background of the study 

Robots are currently replacing humans in different activities in various sectors, which 
vary from typical robots for industrial applications to self-directed robots for difficult 
tasks, for instance space exploration (Gasparetto et al., 2015). Robotic motion 
planning is a promising area of study in the field of robotics (Shih et al., 2013). Robot 
path planning is to create a collision-free route from a starting point to a goal point in 
an environment while .achieving the shortest  collision free route and low run time 
(Abbadi & Přenosil, 2015).

Based on the data acquired from the environment, there are two types of motion 
planning approaches, namely offline path planning and online path planning (Xue & 
Xu, 2011). As the names suggest, offline path planning is a global optimization 
approach while online path planning performs only a local optimization. Offline 
algorithms require an obstacle map of the robots’ environment. The path is pre-
calculated and then given to the robot to execute. While online path planning is used 
to avoid obstacles by reacting to data collected from on-board sensors. It may be used 
when a map of the mobile robots’ environment is not known or, if an unexpected 
obstacle was encountered during the execution of a pre-computed path (Pasha, 2003). 

Path planning can be widely categorized in two main methods: classical and heuristic. 
The classic approaches suffer from numerous disadvantages, such as a high time 
complication in high dimensions, and catching in local minima, which render them 
ineffective in practice (Masehian & Sedighizadeh, 2007). Consequently, the 
application of the heuristic approaches was extended due to their achievement in 
addressing problems such as computational complexity, exploration and local minima 
(Tang et al., 2012).

Path planning in static environments is a thoroughly studied problem that can typically 
be solved very efficiently. However, planning in the presence of dynamic obstacles is 
still computationally challenging because it requires adding time as an additional 
dimension to the search-space explored by the planner (Phillips & Likhachev, 2011).
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The traditional mobile robot planning approaches are not robust enough and unable to 
overcome the challenges. These challenges are the dynamic environment and the 
insufficient information available on the environment. As a result, many reactive 
approaches were introduced allowing the use of artificial intelligence techniques, 
where problem solving, learning and reasoning are the main issues (Faisal et al., 2013). 

Over the course of the last few decades, there has been an extensive amount of effort 
on enhancing path planning algorithms in dynamic environments and in diverse 
extensions with proven advantages. Each resulted algorithm goes on to overcome one 
of the existing inefficiencies as follows:

1. Inability to plan under uncertainty of dynamic environments: Conventionally,
global planners rely on a complete map of the environment in order to calculate the 
ideal and collision-free path between the starting point and the ending point prior to 
execution of the robot. The original plans of those conventional algorithms must be
revised accordingly if a dynamic environment is encountered (Dijkstra, 1959; Hart et 
al., 1968). In practise, environment of robots often includes various hazard sources 
that robots must avoid, for example landmines, fire in rescue duty, and war enemies. 
Since it is impossible or expensive to acquire their accurate locations, decision-
makers know only their action ranges in most cases (Zhang et al., 2013). Mobile 
robots must be able to evade both static and moving obstacles (Ferguson et al., 2006).
Algorithms such as sampling-based methods (Khaksar et al., 2012) are not suitable 
for online planning when involving moving obstacles, due to the fact that these 
methods are designed based on a static environment model. These models are time-
consuming when applied to a dynamic environment (involving interpolation cycle
during each update, see (Huptych & Röck, 2015)).  Therefore, classical path planning 
methods such as Visibility Graph (Lozano-Perez, 1987), Voronoi Diagrams (Leven 
& Sharir, 1987), Grids (Weigl et al., 1993), Cell Decomposition (Regli, 2007),
Artificial Potential Field (Khatib, 1985), Rule Based methods (Fujimura, 1991) and 
Rules Learning techniques (Ibrahim & Fernandes, 2004) are not practical (Mohanty 
& Parhi, 2013). Occasionally, these algorithms are optimized to handle a specific 
problem at the expense of sacrificing the performance of other parameters such as
increasing of the computational cost of the algorithm.

2. The problem of optimality: In most applications the focus is on obtaining the 
shortest path in order to decrease the collision probability and hasten the navigation 
process. Nevertheless, it is very challenging to compute the optimal motion plans 
(Zhao et al., 2016). Resolution-optimal solution paths for problems involving low-
dimensional spaces can be determined via grid-based methods (e.g. A* or D*) (Stentz, 
1997). Subjected to a specific quality criterion, the optimal path can be determined 
implicitly via some deterministic path planners such as the visibility diagram and the 
Voronoi Diagram (Latombe, 1990). Nevertheless, such methods are limited to low-
dimensional spaces and only deal with polygonal obstacles. Sampling-based 
algorithms, such as RRT, are attractive because they can be used to solve complex 
high-dimensional problems. However, the solution quality may be affected if these 
algorithms are not optimized (Devaurs et al., 2016). Advanced versions of these 
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algorithms have been proposed. However, they are inefficient in handling moving 
obstacles.

3. Failure in crowded complex situations: Classic algorithms have been tested on 
some specific environments and it has been found that they are unable to find a 
feasible solution within a reasonable time frame. Results involving local minima may 
be obtained (Wang et al., 2007). It is noted that the execution and the safety 
requirements for the planned paths of non-holonomic robots are more rigorous in 
difficult and crowded situations (Liu et al., 2013). Although various improved 
versions of robot navigation algorithms have been proposed (Khaksar et al., 2014; 
Kuffner & LaValle, 1999), most of them are problem-specific and they perform 
poorly in dangerous situations (i.e. robot is surrounded by moving objects).

4. The problem of predicting the obstacle velocity vector: Some algorithms focus 
on handling dynamic and uncertain environments (Ali et al., 2013; Faisal, Hedjar et 
al., 2013; Stentz, 1995), in which the alteration of the environment came from the 
absence of obstacles or the presence of unexpected obstacles by relying on the sensor 
of the robot. Therefore, obstacles in these environments are not purely dynamic in 
terms of speed and moving vectors (i.e. unpredicted motion). Several improved 
algorithms have been proposed to circumvent this issue (Chinag & Ding, 2014);
however, the parameter such as optimality has inevitably been reduced.

1.2  Problem Statement 

This study focuses on the present drawbacks and inefficiencies of the available motion 
planning approaches in dynamic environments. These drawbacks can be classified as 
the problems encountered in this study as follows:

The problem of planning under the uncertainty of dynamic environments: Because the 
whole information of a dynamic environment will alter along with the motion of 
obstacles, and also because the hazard sources such as landmines have uncertain 
locations, the difficulty and uncertainty of the motion planning problems rise 
significantly in dynamic environments (Miao, 2009; Zhang et al., 2013) . If a planner 
takes too long to return a new path, then a collision can occur with a moving obstacle 
(Phillips & Likhachev, 2011). Some algorithms are optimized to handle this specific 
problem at the expense of sacrificing the performance of other parameters such as
increasing of the computational cost of the algorithm.

The problem of predicting the obstacle velocity vector: The most important factor 
which has a strong effect in dynamic motion planning is the relative velocity. It is 
defined as the relative velocity vector of an adjacent obstacles movement in a forward 
trajectory with regard to the robot. In the approaches mentioned, the authors did not 
explicitly use this factor as a constraint (Dongshu et al., 2011). The problem happens 
when the robot and obstacle move at the same velocity and direction, so the robot 
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cannot pass the obstacle and never reaches the goal unless it predicts the velocity 
vector of the obstacle and changes the direction as shown in Figure 1.1.

Figure 1.1: Significant issue in a dynamic environment 

The problem of planning in crowded complex situations: Traditional path planning 
methods also are not suitable for planning paths in dynamic environments because of 
their lack of adaptively and robustness. It worked efficiently in complicated 
environments with arbitrarily shaped obstacles; however, it can only deal with the 
static environments (Li et al., 2012; Mingxin et al., 2010). On the other hand, heuristic 
algorithms try to find a better path in a short time but do not always guarantee to find 
a solution (Masehian & Sedighizadeh, 2007; Weerakoon et al., 2015).  There is no 
algorithm which can perform efficiently in crowded dynamic environments especially 
when the robot is stuck inside a dangerous situation. The problem happens when the 
robot decides to move inside a dangerous area where three moving obstacles are 
moving toward each other and will collide with this next position. The robot cannot 
chose how to escape from them because the robot has a different solution for each 
moving obstacle, for instance the decision about the obstacle that is moving towards 
the right direction is to move left and is different from the decisions about two other 
obstacles which are moving left and down. Therefore, a collision will happen unless 
it is able to predict the dangerous area and change its next position to another position, 
which has a lower risk of collision and unobstructed direction as shown in Figure 1.2.

Figure 1.2 : Significant issue in a dangerous situation 
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The problem of optimality: the available path planning algorithms generate high-cost 
solutions with path lengths far from the optimum available solutions because these 
approaches focus on how to avoid obstacles and neglect other parameters such as 
optimality. This in turn makes them inappropriate for rapid dynamic movement (Faisal 
et al., 2013). The optimality problem has been studied and improved by many 
researchers but these are not suitable for planning paths in crowded dynamic 
environments (Li et al., 2016).

The above mentioned problems can be summarized as follows: the problem of 
planning under the uncertainty of dynamic environments, the problem of predicting 
the obstacle velocity vector, the problem of planning in crowded complex situations 
and the problem of optimality. Some of these problems have been studied and 
improved by many researchers but there is no work about combining all of them 
together.

1.3  Objective of the Study 

The overall aim of this research is to navigate a mobile robot from its’ starting               
position to destination in an unknown dynamic environment. Therefore the    following 
objectives have to be met respectively to fulfil the overall aim of the research. 

(1) To develop a new approach to avoid static and dynamic obstacles in planning 
the path of a mobile robot in unknown dynamic environments, to find a safe 
path and to react quickly.

(2) To integrate a decision making process with predictive behaviour of the 
obstacle’s velocity vector by using a new idea of the robot’s sensory system 
information.

(3) To plan in crowded complex situations to evaluate the risk of collision 
between the robot and the obstacle’s trajectory to find a smooth path.

(4) To improve the efficiency of the new approach using a robust Machine 
Learning strategy by teaching the mobile robot depends on the previous 
outcomes to generate a short path with low runtime for an obstacle avoidance 
system in unknown dynamic environments.

1.4  Scope of the Study 

In this section, the characteristic of the environments and the robot will be described 
in detail. Then, the author will introduce the performance appraisal methods that have 
been used for comparing the proposed algorithm with other considered path planning 
methods.

The environment is represented as a 2D space and filled with a limited number of static 
obstacles, in addition to dynamic obstacles which have different shapes. The obstacles 
move with different and continuous linear velocities and the positions of obstacles are 
ever-changing in every run.



© C
OP

UPM

6 

The environment is unidentified for the planner before the planning and the only 
obtainable information is the coordination of the beginning and the end position which 
are static. The mobile robot is considered to have two degrees of freedom, and is also    
considered to be a Wheeled Mobile Robot (WMR), which has square shape centred at 
(rx, ry). It also has two autonomously-driven rear wheels and a castor front wheel, as 
represented in Figure 1.3. The configuration of a square robot at time t is     displayed 
by rc (t) = (rx (t), ry (t), rφ (t)), the first two of which specify the      coordinates of the 
centre of the robot around which it rotates (Source), and rφ (t) displays the robots 
orientation measured by its angle in relation to the positive   x-axis.

Figure 1.3 : The configuration of a square robot 

The kinematic model of the WMR with two autonomously driven rear wheels and a 
castor front wheel is formulated as:

                                                                                             (1.1)

Where k=[x, y, φ]T is the state vector, n= [v, ω]T is the input vector, and that 

G (k) =

Equivalently, this can be formulated as 
ẋ= v                                                                                                               (1.2)

ẏ= v                                                                                                                (1.3)

                                                                                                                    (1.4)

ẋ=                                                                                                (1.5)

ẏ=                                                                                               (1.6)

=                                                                                                       (1.7)

 rx ry

φ
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In the proposed case, to achieve a straight line trajectory, it is assumed that:

vl (t) =vr (t) 

vr (t) =vl (t) = v (t) 

ω (t) = (t) =0

At this point, the state vector k=[x, y, φ]T indicates the generalized location (position 
and direction) of the robot with relation to a stable reference axis, and the control 
vector n= [v, ω]T indicates the linear and angular velocities of the robot.

It is also supposed that the robot wheels do not slip, and this is stated by the 
nonholonomic restriction.

ẋ                                                                                                     (1.8)

The obstacles are characterized by arbitrary shapes. The velocity of an obstacle is (vx,
vy), where the components on x and y axes are indicated by subscripts x and y 
respectively. Obstacles may be stationary or dynamic and their speed set randomly 
(The velocity of obstacles are equal to or less than the velocity of robots). Obstacles 
location and their velocity vector (speed and orientation) are unidentified to the robot. 
It is presumed that the obstacles are recognizable by the robot and move along 
arbitrary trajectories.

Since the speed and location of the obstacles are unidentified for the robot, it must be 
prepared with detectors or range sensors to obtain essential information. The robot has 
been prepared with range sensors with 360 degree finite direction that gets information 
from its surroundings. Its’ detecting range is a circle centred at (x, y) with radius Rs,
through which it makes a visibility scan and senses obstacle positions. When the robot 
arrives at a new position in the configuration space, it first calculates its distance to 
neighbouring obstacles’ through its radial sensor readings, and then stores the outcome 
in a visibility matrix which is comprised of the position of visible obstacle points. 
Next, the obstacles’ velocities are discovered as the robot calculates the obstacles’ 
positions in two sequential repetitions (time intervals) to estimate each obstacle’s 
speed vector.

The proposed method has been simulated in MATLAB 2013a programming 
environment for simulation and comparison studies.

In the beginning, the proposed method needs to be simulated in several test 
environments. 20 different arbitrary unknown dynamic environments including static 
and dynamic obstacles have been designed in 5 categories. These comprise convex, 
concave, maze, narrow passage and mix environments with 4 test environments in 
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each category. Arbitrary environment means that the environment (positions of static 
and dynamic obstacles) for each run is different, as is the velocity of each obstacle. 
These environments have been designed cautiously to handle a variety of diverse 
possible situations. Descriptions and features of the test environments are offered in 
chapter 3.

Two procedures have been employed in this study to assess the performance of the 
proposed algorithm. The first procedure is to compare the length of the produced path 
by the proposed algorithm with the optimal path length generated from the visibility 
graph method. The visibility graph method builds a graph in which its nodes are the 
peaks of the obstacles and the start and destination positions. The generated graph is 
used to find the shortest path from the start point and the destination (Asano et al., 
1985). It has been evidenced that the visibility graph gives an optimum solution.  

After simulation studies and comparison with optimum solutions, the outcomes of the 
developed algorithms will be compared with a set of well-known path planning 
algorithms. These include Vector field histogram (VFH), Dynamic Window (DW), 
Bug Algorithm, PRM, RBB, Gaussian, and RRT. The selected algorithms have been 
carefully chosen to handle sensor-based behaviour of the proposed planners. These 
algorithms have been simulated in the MATLAB programming environment. 

1.5  Thesis Outline 

In this study, the problem of navigating a mobile robot in an unknown dynamic 
environment filled by a set of different shapes of static and dynamic obstacles has been 
studied. A novel sensor-based online planner is suggested which employs diverse 
intelligent components to enhance the performance of the planner. The author has 
designed a simulation framework in MATLAB which is used for analysing the 
performance of the algorithm. Moreover, diverse types of situations have been 
designed to determine the strength and advantage of the suggested planner in relation 
to the selected existing methods. Diverse evaluation criteria are used to support the 
analyses. The rest of this thesis is organised as follows: 

Chapter 1 offers a detailed study on the current works in the field of motion planning 
regarding the problem of planning in an unknown dynamic environment. 

Chapter 2 describes the research methodology in detail. Different heuristic and 
intelligent methods, which are used in the study to reach the research 
objectives, will be clearly specified. 

Chapter 3 presents the outcomes of the study. A detailed discussion about the 
proposed algorithms, performance analyses and comparison outcomes 
will be provided with supplemental charts, graphs and tables. 
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Chapter 4 concludes the outcomes of the study with additional graphs and 
discussions. After that, the contribution of the research will be outlined 
and recommendations for further studies in this zone are given. 
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