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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
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NUMERICAL AND EXPERIMENTAL STUDY OF LEADING EDGE 

TUBERCLES WITH VORTEX GENERATORS ON NACA 4415 AIRFOIL 

 

 

By 

 

 

SYED MOHAMMED AMINUDDIN AFTAB 

 

 

March 2017 

 

 

Chairman : Kamarul Arifin Ahmad, PhD 

Faculty : Engineering 

 

 

Low Reynolds number flows are associated with the problems of separation bubble. 

The presence of separation bubble reduces the performance of the airfoil. The most 

commonly used devices in order to increase the performance in these Reynolds 

number range are Vortex Generators (VG). Recently studies have shown that 

implementing humpback whale Tubercle Leading Edge (TLE), also enhance the 

performance of the airfoil. The objective of the current work is to combine TLE and 

VG thereby elimination of separation bubble and increase airfoil lift to drag ratio. 

Initially the flow over NACA 4415 at low Reynolds number (Re) of 120,000 using 

Computational Fluid Dynamics (CFD) is carried out, and proper methodology for 

selection of turbulence model for low Re flows is also reported. Five turbulence 

models, were tested and it was found that γ-𝑅𝑒𝜃 sst was the best suitable Reynolds 

Averaged Navier Stokes (RANS) model to capture the flow physics. The main mesh 

requirements for utilizing γ-𝑅𝑒𝜃 sst is to maintain the wall y+ <1. Throughout the 

thesis, structured meshing has been carried out using ICEM CFD.  The established 

turbulence model was used to conduct CFD analysis on two Tubercle Leading Edge 

(TLE) designs. The designs tested are, 1. Spherical 2. Sinusoidal, the geometry is 

modeled using CATIA V5R21. A parametric study varying the amplitude of the 

tubercles is also carried out. The wavelength was kept constant at 0.25c three 

amplitude variations 0.025c, 0.05c and 0.075c, were modeled for both spherical and 

sinusoidal tubercles designs. The flow Re was set to 120,000. As the tip effects were 

neglected, the results are for 2.5D, only the effect of span is taken into consideration. 

A 3D hex grid was generated around the rectangular domain with a span of 0.5c. The 

results showed that spherical tubercle with 0.025c amplitude was efficient at 18°AoA, 

it increased the l/d ratio by 6.25%. Based on these CFD results, a modified NACA 

4415 airfoil with spherical TLE was fabricated. Wind tunnel testing was carried out at 

Re 200,000. The results were compared with previous experimental work on NACA 

4415 with straight leading edge. The results of spherical TLE showed an improvement 

in lift to drag ratio by 67.3% at 0°, 14% at 6°, 17.6% at 12° and the performance 

decrement at 18° by 3.23%. This proves that spherical TLE do improve the 
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performance but Re number effect is an important aspect which needs to be studied. 

Finally a CFD analysis combining spherical TLE and VG is studied. This is the 

novelty of the current research is the combination of TLE and VG. The results showed 

that the combination enhanced the performance of clean airfoil by 8.9%. TLE and VG 

combination improved performance by 50% at 12º AoA as compared to merely TLE 

airfoil. The breakthrough finding was the working mechanism of spherical TLE which 

appeared similar to sub boundary layer VG.  Thus the combination of TLE and VG 

gives a major boost in enhancing the performance of airfoil working in low Re range. 
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Aliran pada nombor Reynolds rendah sering dikaitkan dengan masalah gelembung 

pemisah. Kehadiran gelembung pemisah mengurangkan prestasi aerofil. Peranti yang 

sering digunakan untuk meningkatkan prestasi pada julat nombor Reynolds ini ialah 

penghasil pusaran (VG). Kajian terkini menunjukkan penggunaan tuberkel pinggir 

depan (TLE) juga dapat meningkatkan kecekapan aerofil. Objektif kajian ini adalah 

untuk mengabungkan TLE dan VG seterusnya menghapuskan gelembung pemisah 

dan meningkatkan nisbah angkat kepada seretan aerofil. Pada mulanya, aliran ke atas 

aerofil NACA 4415 pada nombor Reynolds (Re) 120,000 menggunakan 

Pengkomputeran Dinamik Bendalir (CFD) dijalankan, dan pemilihan model gelora 

dilaporkan. Lima model gelora, di uji dan didapati γ-𝑅𝑒𝜃 SST adalah model Reynolds 

Purata Navier Stokes (RANS) yang terbaik untuk mengukur aliran fizik. Keperluan 

utama jejaring untuk menggunakan γ-𝑅𝑒𝜃  SST adalah dengan mengekalkan nilai 

dinding y+ <1. Dalam kajian ini, jejaring berstruktur telah dihasilkan menggunakan 

ICEM CFD. Model gelora yang ditubuhkan telah digunakan untuk menjalankan 

analisis CFD pada dua reka bentuk TLE. Reka bentuk yang diuji adalah, 1. Sfera 2. 

Sinus, geometri dimodelkan menggunakan CATIA V5R21. Satu kajian parametrik 

dijalankan dengan mengubah amplitud tuberkel. Panjang gelombang ditetapkan pada 

0.25c. Tiga variasi amplitud 0.025c, 0.05c dan 0.075c, dimodelkan untuk reka bentuk 

tuberkel kedua-dua sfera dan sinus. Nombor Re bagi aliran ditetapkan pada 120,000. 

Disebabkan kesan hujung diabaikan, keputusan adalah untuk 2.5D, hanya kesan 

rentang diambil kira. Grid segi enam 3D telah dihasilkan sekitar domain segi empat 

tepat dengan rentang 0.5c. Hasil kajian menunjukkan bahawa tuberkel sfera dengan 

0.025c amplitud menghasilkan kecekapan pada 18° AoA, telah meningkatkan nisbah 

L / D sebanyak 6.25%. Berdasarkan kepada keputusan CFD ini, aerofil NACA4415 

yang diubahsuai dengan bentuk sfera TLE telah difabrikasi. Ujian terowong angin 

telah dijalankan pada Re 200,000. Keputusan ini dibandingkan dengan kerja 

eksperimen sebelum ini pada NACA 4415 dengan pinggir depan lurus. Keputusan 

bentuk sfera TLE menunjukkan peningkatan dalam nisbah lif kepada seret sebanyak 

67.3% pada 0°, 14% pada 6°, 17.6% pada 12º dan susutan kecekapan pada 18° 
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sabanyak 3.23%. Ini membuktikan bahawa sfera TLE menghasilkan kecekapan 

prestasi tetapi kesan nombor Re merupakan aspek penting yang perlu dikaji. Akhirnya 

analisis CFD yang menggabungkan sfera TLE dan penghasil pusaran (VG) dikaji. Ini 

adalah sesuatu yang baru bagi penyelidikan semasa, setakat ini gabungan TLE dan 

VG masih belum pernah dilaporkan. Hasil kajian menunjukkan bahawa kombinasi ini 

meningkatkan prestasi aerofil bersih sebanyak 8.9%.  Gabungan TLE dan VG 

meningkatkan prestasi sebanyak 50% pada 12° AoA berbanding dengan aerofil TLE. 

Penemuan utama adalah terhadap mekanisme kerja sfera TLE yang sama dengan sub 

VG lapisan sempadan. Oleh itu gabungan TLE dan VG memberikan rangsangan 

utama dalam meningkatkan prestasi aerofil pada Re rendah. 
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γ Intermittency  

δ Boundary layer thickness m 

ε Turbulence Dissipation Rate m2/s3 

λ/W Wavelength m 

ω Specific Dissipation Rate 1/s 
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CHAPTER 1 

1 INTRODUCTION 

The dream of flying has baffled humanity since earliest times. Greek mythology 

depicts the flight of Icarus, with wings made of wax, flying towards the sun. The 

Ancient Egyptian god Khensu had wings and was known as a traveler journeying 

through the skies. These stories have been a dream for man, inspiring him to achieve 

the goal of flying. Only at the beginning of the 20th century, this dream was possible. 

The first human photographed in airplane is Otto Lilienthal, with over 2000 successful 

glider flights and was the inspiration to the efforts of powered flight by Wright 

brothers Anderson, (2005). The current goal of the aerospace industry is to develop 

greener technologies. This can be achieved only by reducing the structural weight, 

using a highly efficient propulsion system, increasing the aerodynamic efficiency and 

decreasing the overall drag. 

 

 

1.1 Flow control 

The major areas where flow control is necessary are wings, rudders, fans and turbines. 

Flow on aerodynamic surfaces has to be attached at a high Angle of Attack (AoA), as 

this increases operational capability, efficiency, range and endurance Green, (2008).  

Aerodynamic flow control is classified into active, passive and hybrid. The active flow 

control technique is one where actuators and other mechanisms are used. Passive flow 

control mainly employs devices or modification without involving actuators and 

complex mechanisms. In hybrid control, both active and passive mechanisms are 

implemented. The main aim of these devices is to control separation. Figure1.1 shows 

the interrelation of separation to lift, drag, transition and reattachment. A detailed 

description of the various flow separation control methods, both active and passive, 

has been elaborately covered by Gad-el-Hak, (2007).  
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Figure 1.1: Effects of separation Gad-el-Hak, (2007) 

 

 

1.2 Biomimetics 

The study of the structures and functions of biological systems in the design of 

engineering systems is known as biomimetics. In general, this means imitating nature 

to solve engineering problems.  A detailed review and the in-depth technological 

applications of various biological systems in relation to engineering has been compiled 

by Yoseph Bar- Cohen, (2005). Some of the most fascinating bio-mimicking studies, 

from the aerodynamic perspective, include the flight of owls and seagulls (Collins, 

1981; Cranston et al., 2012; Hua et al., 2010; Ito, 2009; Klan et al., 2010; Lilley, 1998). 

Owls have the ability to approach their prey in total silence, and the flapping sound is 

damped by leading edge serrations, giving them the ability to control the flow (Collins, 

1981; Klan et al., 2010; Lilley, 1998). 

 

 

Aerodynamic engineers draw inspiration from marine animals. Designing an aircraft 

skin similar to that of sailfish and swordfish, or implementing riblets inspired by 

sharks, has been beneficial in overcoming the skin friction drag on aircraft. Bhushan, 

(2009) summarises various inspirations drawn from nature and their applications as 

shown in Figure 1.2. 
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Figure 1.2: The various inspirations and applications of biomimetics Bhushan, 

(2009) 

 

 

The successful integration of biomimetics into mechanical systems has been a 

challenge. Recent technological advancements in the field of material science and 

engineering have made the dream of mimicking nature a reality (Choi, 2009; Fish, 

2008;  Fish, 2006). Due to its huge importance, research in the field of biomimetics is 

gaining popularity.  

 

 

1.3 Humpback Whale 

The humpback whale (Megaptera Novaeangliea) is a species of baleen whale of the 

Balaenopteridae family. This mammal has existed for the past 55 million years and 

comes under the order of cetaceans, which includes dolphins, whales and porpoises 

Fish et al., (2011a). This whale has a huge size, measuring approximately 15.6 meters 

in length and weighing around 34 tons Johnson and Wolman, (1984). Humpback 

whales feed on plankton, and fish schools of euphausiids, herring, and capelin Fish et 
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al., (2008). The most amazing feature of the humpback is its acrobatic behaviour 

during feeding known as bubble netting, which involves creating a zone around the 

prey and then sudden lunging towards it, giving the whale an element of surprise 

Johnson and  Wolman, (1984), Winn and Winn, (1985). Due to the presence of the 

tubercles on the flippers, the whale has a minimum turning diameter of 14.8m 

Figure1.3 Summers and Wynne, (2004), Fish, (1999).  

 

 

 
Figure 1.3: Bubble net formation and the turning radius of the humpback Fish, 

(1999) 

 

 

Humpbacks can also perform acrobatic manoeuvres and underwater somersaults, 

(Summers and Wynne, (2004), Johari, et al., (2007). The flippers measure more than 

9 meters in length, are elliptical in shape and have a high aspect ratio. The wavy 

leading edge consists typically of 10 or 11 rounded tubercles Figure 1.4  (Fish and  

Lauder, 2006;  Fish et al., 2008;  Fish, 1994; Van Nierop et al., 2008). 
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Figure 1.4: Humpback whale flipper with Tubercle locations profile Fish and 

Battle, (1995) 

 

 
 

Figure 1.5: Blade developed by Whale Power Corp Wind Energy Institute of 

Canada, (2008) 

 

 

Dr. Frank Fish (a marine biologist) who noticed bumps on the flipper, started the initial 

research, subsequently publishing numerous research articles on the topic (Fish et al., 

2008; Fish and  Lauder, 2006, Fish and  Lauder,2013; Fish et al., 2011a;  Fish et al., 

2011b;  Fish, 1999;  Fish, 2006; Fish, 1994; Fish and  Battle, 1995; Watts and  Fish, 

2001;  Watts and  Fish, 2002). Watts and Fish patented this technology and started a 

company named ‘Whale Power’, which develops wind turbine blades. Figure 1.5 

shows the blades incorporated with the tubercle design. The new design has 25% more 

airflow than conventional wind turbine blades and it produces 20% more energy Watts 

and  Fish, (2002), Wind Energy Institute of Canada, (2008), Yurchenko, (2011). 
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Fish and Battle, (1995) studied flipper morphology in detail after obtaining a dead 

humpback whale. The flipper is elliptical and tapered, with a 19º swept angle w.r.t 

longitudinal axis. Tubercle location is as shown in Figure 1.4 the whale fin obtained 

consisted of 11 tubercles. The location of first tubercle is at 33% span and 11th 

tubercle at 99.1% Figure1.4. The flipper profile has a cross-section that is constant, 

irrespective of the span-wise position, while the chord reduces moving outward.  The 

profile is similar to NACA 634-021 airfoil. An analogy between leading edge strakes 

and tubercles working was drawn Fish and Battle, (1995). 

 

 

1.4 Low Reynolds Number 

Low Reynolds number flows pose a great challenge in the selection of a Turbulence 

model for simulation. Many of the UAV's and MAV's work in these Reynolds number 

ranges. Colossal interest is growing in the CFD study of static wing and flapping wing 

aerodynamics on flow in this regime Gad-el-Hak, (2007). 

 

 

In the case of low Re airfoils, the resistance to separation of the boundary layer is very 

poor, thus resulting in a dominant adverse pressure gradient. As flow separates from 

the point of minimum pressure, due to the increase in adverse pressure at the leading 

edge, separation takes place. The separated flow is highly unstable, resulting in 

transition immediately downstream, causing the flow to become turbulent. Thereby 

turbulent shear stresses energize the flow to counteract the increased adverse pressure, 

helping the flow to reattach. Thus, a zone in between separation and reattachment is 

formed, known as the separation bubble (Mueller and  Batil, 1982 and Carmichael, 

1981). The separation bubble is dependent on the flow Re, the pressure distribution, 

the curvature of the airfoil, roughness and various other factors Gad-el-Hak, (2007). 

Two types of separation bubble exist, namely the short bubble and the long bubble 

Figure 1.6. A short bubble exists when the flow Re is below 105 and only extends to a 

couple of percent along the chord. The stability of this bubble is only for a short 

duration. Carmichael, (1981) has stated that below Re 5x104, a short laminar 

separation bubble causes a drastic drop in lift. If the Reynolds number exceeds 105, a 

long bubble is formed. This bubble extends to 20-30% along the chord and affects the 

flow drastically Lissaman, (1983). 
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Figure 1.6: Flow separation bubble (Mueller and Batil, 1982; Carmichael, 1981) 

 

 

For airfoils operating in the Re range of 106, the adverse pressure gradient is 

eliminated by turbulent flow at transition thus preventing separation. An increase in 

Re induces turbulence in the boundary layer, imparting high energy to oppose 

separation.  

 

 

1.5 Vortex Generators 

Vortex generator (VG) is most commonly used flow control devices for, low Re flows 

and to control the formation of separation bubble. A detailed review on types of VG, 

working mechanism and application is reported by Lin, (2002) 

 

 

Previous work by Zhen et al., (2011) showed that implementation of VG increased the 

airfoil performance.  Serakawi and Ahmad, (2012) did PIV experimental work and 
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concluded that VG effectively reduce the separation in diffuser. Ahmad et al., (2008) 

showed the effect of oscillating Sub Boundary Layer Vortex Generator (SBVG) in 

reducing the separation, Halim and Ahmad, (2013) did simulation to find optimized 

configuration in order to reduce separation. Aftab and Murthy, (2012) showed that 

standard VG reduced separation on Onera M6 wing. 

 

 

1.6 Problem Statement and Hypothesis 

Wind turbine blades, trainer aircraft and UAV’s operate at low Reynolds number. 

Thick airfoils are mainly used in these applications, due to its benefit at low speed in 

generating high lift. Airfoils operating at low speed fall under low Reynolds number 

range, 100,000 to 500,000 and are prone to the formation of laminar separation bubble. 

The separation bubble increases drag and reduces the performance of the airfoil.  In 

order to prevent the formation of separation bubble passive and active flow control 

devices are used. Previous research has shown that installing passive flow control 

devices such as, VG on the airfoil drastically improves the performance. Recent 

discovery of tubercle technology has effectively, helped in performance improvement 

by hindering the formation of separation bubble. Turbulence models used in CFD 

studies of low Reynolds number flow experience uncertainties, which need to be 

properly captured. New turbulence models have been developed and are available to 

address this issue. In the current research the CFD simulations are carried out, on a 

NACA 4415 airfoil at low Reynolds number of 120,000. The newly developed RANS 

transition turbulence models are utilised. To check the accuracy and capability of the 

transition turbulence model to obtain a CFD solution is very essential, to understand 

the flow characteristics of NACA 4415 airfoil at low Reynolds number. The issue in 

regard with the effect of tubercles at the leading edge of NACA 4415 needs to be 

investigated. The author of the current research hypothesizes that favourable 

performance benefits will results, from the combination two passive flow control 

devices, tubercles and vortex generators on NACA 4415 airfoil in low Reynolds 

number range. The author intends to address the gap in knowledge, as well as bring 

forward a new dimension to low Reynolds number flow control research. 

 

 

1.7 Aims and Objectives 

Tubercles are currently being used to address the problem of separation bubble. 

Previously, VG’s have been used to provide enhancement in airfoil performance. The 

main aim of the current work is to combine vortex generators with tubercle design, 

and study the effect on performance of the airfoil for low Reynolds number flows. 

 

To achieve the above aim three objectives have to be achieved as described below 

 

 To investigate and validate an optimal CFD turbulence modeling technique, 

suitable for low Reynolds number flows. 

 To conduct a parametric study to determine the optimal shape for the tubercle 

and to determine the optimal amplitude and wavelength suitable for the 

tubercle.  
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 Implement Vortex Generators (VG) and the optimized tubercle design on the 

airfoil and determine the effect on performance.  

 

 

1.8 Scope of work 

This research work was carried out in collaboration with CTRM Sdn Bhd, Malaysia. 

The Aludra MK-I UAV is designed and built by CTRM and is operated by Royal 

Malaysian Air Force. The airfoil design in the current study is similar to the one on 

Aludra Mk-I UAV. Based on the TLE airfoil performance benefits, a new wing model 

will be designed and tested on the Aludra Mk-I UAV. The CFD parametric study on 

TLE shape and analysis will give a deeper insight into flow behaviour. No extensive 

research has been reported considering the TLE shape. The fabricated TLE airfoil on 

which the experimental work is reported in this thesis is first of a kind study. The 

combination of TLE and VG will result in a deeper understanding of combining two 

flow control devices. 

 

 

1.9 Thesis Organization 

Chapter 1 introduces to the background of biomimetics, flow control, low Reynolds 

number, and Vortex Generators (VG). It also highlights the motivation for the study, 

outlining the scope and objectives of the research. 

 

Chapter 2 summarises the literature available on humpback whale flipper. A detailed 

in-depth review has been carried out and discussed in this chapter. The chapter deals 

with studies incorporation tubercle design on various airfoils. The contents of the 

chapter have been published as a review article in Journal Progress in Aerospace 

Sciences. 

 

Chapter 3 deals with the numerical and experimental methodology used for 

conducting the validation study. It also includes the numerical methodology followed 

in order to carry out the parametric study of Sinusoidal and Spherical shaped tubercles, 

varying the amplitude and wavelength of the tubercles designs. The fabrication and 

Wind tunnel calibration methodology employed in open loop wind tunnel test facility 

at Universiti Putra Malaysia (UPM) has been described in detail in this chapter. 

 

Chapter 4 reports the numerical, results. The validation and verification of the 

numerical results is reported. The results of the parametric study are also discussed.  

 

Chapter 5 describes the experimental results, performance comparison of airfoil with 

spherical tubercle and airfoil with VG is reported.  

 

Chapter 6 discusses the benefits of combining two flow control techniques. The results 

of this unique combination are discussed in detail.  

 

Chapter 7 summarises the overall work along with conclusions and recommendations 

for future research.  
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