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March 2017 

 

 

Chair: Mohd Amran Mohd Radzi, PhD 

Faculty: Engineering 

 

 

Current harmonics is one of the main power quality problems which can be mitigated 

by using shunt active power filter (SAPF). Integrating SAPF with photovoltaic (PV), 

also known as PV SAPF, is among the best option as it provides alternative energy 

source to operate the SAPF rather than depending on energy from the grid supply and 

at the same time maintaining Total Harmonics Distortion (THD) below 5%. 

 

 

DC-link capacitor voltage control and harmonics extraction algorithms, are giving high 

impact to overall SAPF’s performance. In DC-link capacitor voltage control, the 

existing works on direct self-charging algorithm still have many drawbacks in terms of 

overshoot, undershoot and response time, especially during dynamic operation. 

Meanwhile, the existing harmonics extraction algorithm known as modified Widrow-

Hoff adaptive linear neuron (ADALINE) algorithm, still has unnecessary features 

which unfortunately disturbs performance of the algorithm to extract harmonics 

accurately in both steady-state and dynamic operations.  

 

 

Therefore, this research work proposes design and development of single-phase PV 

SAPF with a new DC-link capacitor voltage control algorithm named as indirect self-

charging with step size error cancellation, and a new harmonics extraction algorithm 

named as simplified ADALINE. In the indirect self-charging with step size error 

cancellation, a new technique has been introduced in operation of the self-charging 

algorithm, known later as indirect control technique. Meanwhile, the simplified 

ADALINE algorithm has been improved from its existing version by removing cosine 

component according to symmetrical theory of periodic signal, minimizing large 

average square error by removing sum of elements, and by modifying weight updating 

technique leads to introduction of fundamental active current updating technique. 

 

 

In methodology, topology of PV SAPF was designed first, and followed by all control 

algorithms with special attention to both proposed algorithms. For comparison purpose, 
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the existing DC-link capacitor voltage control and harmonics extraction algorithms 

were modeled too. Two nonlinear loads, which are inductive and capacitive, and PV 

source with different level of irradiances were used to test the PV SAPF by focusing on 

the performances of both proposed algorithms, under steady-state operation. The 

testing under dynamic operation covers change of nonlinear loads, on-off operations 

between PV and SAPF, and change of irradiance levels. Laboratory prototype was then 

developed and digital signal processor (DSP) TMS320F28335 was used to perform the 

computation of algorithms. Similar tests as in the simulation work were carried out in 

the laboratory. 

 

 

From both simulation and experimental results, PV SAPF with both proposed 

algorithms show better performances as compared to the existing algorithms. The 

indirect self-charging with step size error cancellation performs with high accuracy 

(99.96 to 100%), low overshoot and undershoot (0.13% to 1%), and fast response time 

(less than 0.5s). Reduction of energy losses between 36 J to 86 J has been achieved 

during various dynamic operations of the DC-link capacitor. Meanwhile, the simplified 

ADALINE performs with lower THD values between 1.5% to 3.24% and high 

percentages of source power reduction between 4.7% to 23.7% with different nonlinear 

loads and irradiance levels. In conclusion, PV SAPF with both proposed algorithms 

have successfully been developed and performed for better improvement of harmonics 

mitigation and renewable energy utilization. 
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Harmonik arus adalah salah satu masalah utama kualiti kuasa yang boleh dikurangkan 

dengan menggunakan penapis kuasa aktif pirau (SAPF). Mengintegrasikan SAPF 

dengan fotovolta (PV), juga dikenali sebagai PV SAPF, adalah antara pilihan yang 

terbaik kerana ia memberi sumber tenaga alternatif untuk mengoperasikan SAPF 

daripada bergantung kepada tenaga daripada bekalan grid dan pada masa yang sama 

mengekalkan jumlah herotan harmonik (THD) di bawah 5% .  

 

 

Algoritma kawalan voltan pemuat sambungan arus terus dan pengekstrakan harmonik, 

seperti yang difokuskan dalam tesis ini, memberi kesan yang tinggi kepada keseluruhan 

prestasi SAPF. Dalam kawalan voltan pemuat sambungan arus terus, kerja yang sedia 

ada pada algoritma pengecasan sendiri masih mempunyai banyak kelemahan daripada 

segi terlajak, lajak bawah, dan masa respon, terutama sekali ketika operasi dinamik. 

Sementara itu, algoritma pengekstrakan harmonik sedia ada iaitu algoritma Widrow-

Hoff neuron linear penyesuaian (ADALINE) terubahsuai masih mempunyai ciri-ciri 

yang tidak diperlukan yang malangnya mengganggu prestasi algoritma itu untuk 

mengekstrak harmonik dengan tepat dalam kedua-dua keadaan operasi mantap dan 

dinamik.  

 

 

Oleh yang demikian, kerja penyelidikan ini mencadangkan reka bentuk dan 

pembangunan PV SAPF satu fasa dengan algoritma kawalan voltan pemuat sambungan 

arus terus baru yang dinamakan sebagai algoritma pengecasan sendiri secara tidak 

langsung dengan pembatalan ralat saiz langkah, dan algoritma pengestrakan harmonik 

baru yang dinamakan sebagai algoritma ADALINE mudah. Dalam algoritma 

pengecasan sendiri secara tidak langsung dengan pembatalan ralat saiz langkah, teknik 

baru telah diperkenalkan dalam operasi algoritma pengecasan sendiri, dikenali 

kemudian sebagai teknik kawalan secara tidak langsung. Sementara itu, algoritma 

ADALINE mudah ditambah baik daripada versi yang sedia ada dengan membuang 

komponen kosinus mengikut teori simetri isyarat berkala, meminimumkan ralat persegi 
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purata yang besar dengan mengeluarkan jumlah unsur, dan mengubah suai teknik 

mengemaskini berat yang membawa kepada pengenalan teknik mengemaskini arus 

aktif asas.  

 

 

Dalam metodologi, topologi PV SAPF telah direka dahulu, dan kemudian disertai oleh 

semua algoritma kawalan dengan perhatian khusus kepada kedua-dua algoritma yang 

telah dicadangkan. Bagi tujuan perbandingan, algoritma kawalan voltan pemuat 

sambungan arus terus dan pengekstrakan harmonik yang sedia ada turut dimodelkan. 

Dua beban tak lelurus, iaitu beraruhan dan berkemuatan, dan sumber PV dengan tahap 

berbeza sinaran turut digunakan untuk menguji PV SAPF dengan memberi tumpuan 

kepada prestasi kedua-dua algoritma yang dicadangkan, di bawah operasi keadaan 

mantap. Ujian di bawah operasi dinamik merangkumi perubahan beban tak lelurus, 

operasi buka-tutup antara PV dan SAPF, dan perubahan tahap sinaran. Prototaip 

makmal kemudiannya dibangunkan dan pemproses isyarat digit (DSP) TMS320F28335 

digunakan untuk melaksanakan pengiraan algoritma. Ujian yang sama seperti dalam 

kerja simulasi  turut dijalankan dalam makmal.  

 

 

Daripada kedua-dua keputusan simulasi dan eksperimen, PV SAPF dengan kedua-dua 

algoritma yang dicadangkan telah menunjukan prestasi yang lebih baik jika 

dibandingkan algoritma yang sedia ada. Algoritma pengecasan sendiri secara tidak 

langsung dengan pembatalan ralat saiz langkah beroperasi dengan ketepatan yang 

tinggi (99.96% hingga 100%), terlajak dan lajak bawah rendah (0.13% hingga 1%), dan 

masa respon yang cepat (kurang daripada 0.5 s). Pengurangan kehilangan tenaga antara 

36 J hingga 86 J telah dicapai sepanjang pelbagai operasi dinamik pemuat sambungan 

arus terus. Sementara itu, algoritma ADALINE mudah beroperasi dengan nilai THD 

lebih rendah antara 1.5 % hingga 3.24 % dan peratusan tinggi pengurangan sumber 

kuasa antara 4.7% hingga 23.7% dengan beban tak lelurus dan tahap sinaran yang 

berbeza. Kesimpulannya, PV SAPF dengan kedua-dua algoritma yang dicadangkan 

telah berjaya dibangunkan dan dilaksanakan untuk peningkatan yang lebih baik bagi 

pengurangan harmonik dan penggunaan tenaga boleh diperbaharui. 
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CHAPTER 1 

  

 

INTRODUCTION 

 

 

1.1 Background 

 

 

Harmonics, one of the most common power quality problems, are sinusoidal voltages 

or currents of frequencies that are integer multiples of the frequency at which the 

supply system is designed to operate. Current harmonics are more crucial than voltage 

harmonics which can normally and highly occur in operation of the power system. 

Current harmonics may come from nonlinear load operations produced by power 

electronic devices and applications which are injected into the supply network through 

point of common coupling (PCC). These problems may arise within the smart grid 

system with involvement of multiple energy sources and systems which include 

photovoltaic (PV) grid connected system [Du et al., 2015; Hu et al., 2015; Zhou et al., 

2014; Datta and Senjyu, 2013; Wandhare and Agarwal, 2014]. Among the effects of 

current harmonics are capacitor damaged, equipment overheating, motor vibration and 

excessive neutral currents [Yongtao and Wenjin, 2008]. To compensate current 

harmonics, an active power filter (APF) is used. The main of this active filter is it can 

mitigate multiple harmonics instantaneously. For current harmonics mitigation, the 

shunt active power filters (SAPF) or transformer-less APF topology is used.  

 

 

Renewable energy has become popular because of its advantages over other kinds of 

energy such as being less dependent on fossil fuel resources and environmentally 

friendly with less carbon released to the atmosphere [Faranda and  Leva, 2008; Banos 

et al., 2011]. There are many types of renewable energy such as wind, solar, hydro, 

geothermal, bio-fuel and others. Solar energy or PV energy is among the popular 

renewable energy since it is much cleaner, inexhaustible, and free to harvest [Banos et 

al., 2011]. The efficiency of the power conversion between ultraviolet (UV) light to 

electrical energy is reported to be about 30% [Solar Cell Central, 2013]. However, with 

various research works, the PV technology is becoming more feasible with improved 

performance [Ko and Choa, 2012; Khatib et al., 2010]. 

 

 

Integration of renewable energy source such as PV with SAPF is an approach to be 

explored in various current research works. The integration of PV with SAPF, or 

known later as PV SAPF, gives two main advantages. First, it gives the option of 

having SAPF to be operated with alternative energy source, rather than to depend on 

the energy source from the grid supply. Second, current harmonics mitigation can 

dynamically be carried out in order to maintain total harmonic distortion (THD) of the 

grid to be below 5% [Lee et al., 2009; Barater et al., 2014]. Figure 1.1 shows the basic 

configuration of PV SAPF.  As an additional element connected with the PV, a DC/DC 

converter is used to step up the PV voltage according to the desired voltage for the DC-

link capacitor. PV SAPF’s main control strategies consist of multiple algorithms with 

their specific tasks such as maximum power point tracking (MPPT), harmonics 

extraction, DC-link capacitor voltage control, synchronizer, current control and 

switching technique. 
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Control Strategies 

AC Source

 
Figure 1.1: Single-phase photovoltaic based shunt active power filter 

 

 

The harmonics extraction algorithm is one of the important control strategies in SAPF. 

By extracting harmonics accurately to further produce the reference current (injection 

current) and with fast and responsive action, the SAPF should be able to compensate 

harmonics optimally. The harmonics extraction algorithms can be classified to 

frequency domain, time domain and artificial intelligence techniques. In frequency 

domain, the algorithms using discrete Fourier transform (DFT), recursive discrete 

Fourier transform (RDFT) and fast Fourier transform (FFT) are widely reported [Green 

and Marks, 2005; Vijayvargiya and Nimonkar, 2013]. Meanwhile, for time domain, 

significant works on the major related algorithms such as synchronous fundamental d-q 

frame, synchronous harmonic d-q frame and instantaneous power theory (p-q theory) 

have been reported extensively [Sujitjorn et al., 2007; Peng et al., 1988; Forghani and 

Afsharnia, 2007; Shousha et al., 2011; Areerak et al., 2010]. The mentioned algorithms 

from both domains produce a good THD which is below 5% but mainly differs on 

convergence speed. As clearly reported, the algorithms in time domain are faster in 

term of convergence speed [Green and Marks, 2005; Vijayvargiya and Nimonkar, 

2013]. 

 

 

As an alternative for the algorithms in frequency and time domains, the latest trend is 

by focusing to the artificial intelligence techniques. Artificial neural network (ANN) is 

famously considered due to its capability to perform fast and stable. It also has the 

ability to proses input and output mappings through parallel computation [Tey et al., 

2005]. For APF functionality, ANN will accurately estimate or extract the time varying 

fundamental component, in terms of magnitude and phase angle to mitigate harmonic 

components [Sindhu et al., 2008; Bhattacharya and Chakraborty, 2008]. There are 

numerous ANN architectures that exist for harmonics extraction, such as adaptive 

linear neuron (ADALINE), perceptron, back propagation (BP), radial basis function 

(RBF), Hopfield, Hebbian, competitive, and Grossberg [Lega et al., 2008]. Among 

them, ADALINE is the most preferred because of its continued learning of weight, 
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more precise and its simplicity to perform a good harmonics extraction. A number of 

works have been carried out using ADALINE for current harmonics extraction. It uses 

Fourier series that operates with a single linear neuron model method which is called as 

Widrow-Hoff (W-H) ADALINE neural network. However, the disadvantage of W-H 

ADALINE is it does learn multiple harmonic components which has negative effects 

on the learning time of the algorithm itself [Lega et al., 2008; Cirrincione et al., 2008; 

Singh et al., 2007]. Improvements has been carried out to enhance the algorithm by 

focusing directly to the extraction of the fundamental component with suitable learning 

rates in updating algorithm which is called modified W-H ADALINE [Radzi and 

Rahim, 2009; Tey et al., 2005; Rahman et al, 2013]. Although improvements have been 

made, there are still unnecessary features exist, as elaborated later in the next section. 

Despite the significant role of the harmonics extraction algorithm, DC-link capacitor 

voltage control algorithm has also a big impact to the overall system.  The main 

function of DC-link capacitor is to provide constant DC for the inverter to produce the 

injection current (mitigation current). The conventional method to control the DC-link 

capacitor voltage is by using direct change between instantaneous voltage and desired 

DC-link voltage. However, by using this method, the DC-link capacitor voltage is not 

accurately controlled and regulated, and as a result, unclean voltage is produced [Zeng 

et al., 2010; Choi et al., 2013; Bhattacharya and Chakraborty, 2011; Afghoul and Krim, 

2012; Mehta et al., 2011; Ponpandi and Durairaj, 2011]. This major disadvantage 

contributes to effects such as capacitor blowing and high THD due to unstable injection 

current [Mikkili and Panda, 2013].  

 

 

In recent years, self-charging algorithm has received special attention from the 

researchers due to its advantages as compared to the conventional algorithm of DC-link 

capacitor voltage control [Farahat and Zobah, 2004; Abdel Aziz et al., 2006; Priya and 

Keerthana, 2013; Khoor et al., 2007; Kwan et al., 2012; Rahman et al., 2013]. The self-

charging algorithm uses the energy conversion law to control the charging and 

discharging of the DC-link capacitor. Among its advantages are high accuracy and 

clean DC voltage, and regulated voltage is produced with almost no noise, spikes and 

ripples. 

 

 

The voltage error in the self-charging algorithm has the highest effect towards 

determination the capacitor charging current. Voltage error is the difference between 

instantaneous voltage and referenced voltage of the DC-link capacitor. Uncontrolled 

voltage error will lead to low performances of the self-charging algorithm in terms of 

overshoot, undershoot and response time to achieve steady state.  Proportional-integral 

(PI) [Farahat and Zobah, 2004; Aziz et al., 2006; Priya and Keerthana, 2013; Khoor et 

al., 2007; Kwan et al., 2012] and fuzzy logic control (FLC) [Rahman et al., 2013] are 

among the existing techniques used to control the voltage error produced from the self-

charging algorithm. Use of them in the self-charging algorithms can be categorized as 

direct control technique of the self-charging algorithm. Between both, the self-charging 

with PI algorithm is more popular as it is considered simple; however, it has some 

drawbacks such as fluctuation and imbalance of the DC-link voltage [Zeng et al., 

2010], large overshoot and slow response [Guo et al., 2012], and unsatisfactory 

performance under parameter variations, non-linearity, and load disturbances; it only 

works in steady-state operation [Ponpandi and Durairaj, 2011; Husen and Patel, 2014]. 
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As an alternative, with high growth of artificial intelligence techniques, and specifically 

FLC as one of them, has shown much better performance due to being faster, accurate, 

and very stable at the same time does not require specific and precise mathematical 

models for designing and tuning, and works well using imprecise inputs, and is more 

robust [Dehini and Ferdi, 2009; Tan et al., 2012]. However, even though the self-

charging with FLC technique much better than PI technique, both as direct control 

technique have the same major drawbacks where their operations do not really consider 

parameter variations, non-linearity, and load disturbances; the previous works only 

considered the steady-state operation and no further analysis has been done with 

dynamic operation [Priya and Keerthana, 2013; Khoor et al., 2007; Kwan et al., 2012; 

Rahman et al., 2013]. 

 

 

1.2 Problem Statement 

 

 

As mentioned before, the modified W-H ADALINE algorithm is an improvement of 

the conventional W-H ADALINE algorithm. The improvement contributes to a large 

average square error, thus learning rate is needed [Radzi and Rahim, 2009]. Although 

this algorithm has performed well in the previous works, it still has unnecessary 

internal features. These include the existing of cosine component and sum of elements 

which contribute to slow learning rate. As a result, accuracy and response time of the 

harmonics extraction algorithm are affected where the delay in compensation is 

introduced [Bhattacharya and Chakraborty, 2011]. It is recorded that by using 

ADALINE algorithm, the convergence speed must be around 1 cycle (20 ms) but the 

modified W-H ADALINE only managed to produce only 2 cycle (40 ms) [Qasim and 

Khadkikar, 2014; Dang et al., 2014]. A fast response of harmonics extraction algorithm 

is more efficient especially when handling in dynamic operation during interconnection 

between PV and SAPF. In addition, a high accuracy harmonic extraction algorithm 

provides better THD values. High THD can cause distortion power which leads to 

overconsumption power by the consumer [Suslov et al., 2013]. By keeping a very low 

THD values in a system, it will further ensure proper operation of equipment and  

longer equipment life span [Associated Power Technologies, 2016]. With very low 

THD values too, quality factor of sine wave also increases, in which the lower 

percentage of THD, the closer the current waveform is to be a true sine wave [Gaouda 

et al., 1999].  

 

 

In the operation of PV SAPF, dynamic operation always happens in the power system 

especially for DC-link capacitor that exists within the system. The DC-link capacitor 

may damage when over voltage happens and possible disoperation of injection current 

may occur when under voltage happens. Moreover, if the voltage has high overshoot or 

undershoot, there is a high risk of premature switches failure due to over-stresses, and 

further increment to THD [Hoon Yap et al., 2016; Busquets-Monge et al., 2015]. 

Meanwhile, by using direct control technique, whenever there is a change of the load 

and on-off connection between PV and SAPF, the voltage across the DC-link capacitor 

also undergoes a corresponding change [Bhattacharya and Chakraborty, 2011]. As the 

current approach in the self-charging algorithm is by directly controlling the voltage 

error using the PI or FLC algorithm, it may lead to possible disturbance to the DC-link 

capacitor voltage, which could result in high overshoot and undershoot, and slow 

response time especially during dynamic operations. It is recorded that response time 
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produced by a certain DC link capacitor voltage control algorithm which is over than 

25 ms is considered as a slow response algorithm [Hoon Yap et al., 2016; Rahman et 

al., 2013; Zakzouk et al., 2014; Busquets-Monge et al., 2015]. In addition, it has 

limited flexibility because the voltage error still has to be processed and controlled 

even when there is no change. 

Apart from the problems mentioned previously, to date, there are no comprehensive 

evaluation and analysis from previous research works on effects of harmonics 

extraction and DC-link capacitor voltage control algorithms with the interconnection 

between PV and SAPF. Therefore by improving the established DC-link capacitor 

voltage control and harmonics extraction algorithms with further comprehensive 

evaluation involving dynamic operations, overall performances of the SAPF and 

interconnection between PV and SAPF will increases. 

 

 

1.3 Aim and Objectives 

 

 

The main aim of this work is to develop a single-phase photovoltaic shunt active Power 

Filter (PV SAPF) with novel harmonics extraction and DC-link capacitor control 

algorithms. The detailed objectives are as follows: 

1. To design and develop harmonics extraction algorithm based on ANN, named 

as simplified ADALINE. 

2. To design and develop improved self-charging algorithm for DC-link 

capacitor voltage control algorithm, named as indirect self-charging with step 

size error cancellation. 

3. To introduce evaluation performances of the interconnection between PV and 

SAPF in related to effects of harmonics extraction and DC-link capacitor 

voltage control algorithms. 

 

 

1.4 Scope of Work 

 

 

This research work only focuses on current harmonics where in the electrical power 

system, current harmonics are major power quality problems as compare to voltage 

harmonics. Furthermore, in various situations, voltage harmonics are mostly caused by 

current harmonics. The voltage provided by the voltage source will be distorted by 

current harmonics due to source impedance. This research work covers development of 

a single-phase PV SAPF by focusing on development of new harmonics extraction and 

DC-link capacitor voltage control algorithms. Both algorithms play significant roles to 

ensure the PV SAPF performs well in steady-state and dynamic conditions. Single-

phase based system is considered in this work due to the huge growth of PV system for 

residential usages, especially for building integrated PV (BIPV) system. Meanwhile, 

due to wider applications of power electronic converters for single-phase applications, 

potential spread of harmonics cannot be neglected and needs to be mitigated efficiently. 

 

 

To evaluate performance of PV SAPF, steady-state and dynamic tests have been 

carried out to ensure the proposed algorithms perform as expected. The irradiance is set 

to 200 W/m2, 600W/m2 and 1000W/m2 for low, medium and high irradiance values 

respectively, to cover all ranges in Malaysia’s climate [Ghazali and Rahman, 2012). All 
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mentioned irradiance values are used to test capability and robustness of each proposed 

algorithm. In experimental testing, PV simulator CHROMA 62100H-600S is used as it 

can perform exactly as a real PV array with high flexibility of usage time and accurate 

parameter settings.  

 

 

The PV SAPF is tested with the operation of nonlinear loads, with inductive and 

capacitive loads separately for steady-state tests, and a combination of both of them for 

dynamic tests. On and off operations between PV and SAPF, and change of irradiances 

are also tested for interconnection analysis. There are five major performance factors to 

be highlighted in this research work. They are THD, response time during dynamic 

state operations, accuracy of DC-link capacitor voltage during steady-state operations, 

power consumption at the grid source, and energy losses during dynamic operations for 

DC-link capacitor. 

 

 

1.5 Thesis Outline 

 

 

This subchapter explains briefly about the content of the thesis by chapters. There are 

other 4 chapters that will be covered in this thesis and are organized as such.  

  

 

Chapter 2 defines power quality and its problems, presents a survey of SAPFs 

including topologies and principles of operation, reviews previous and latest 

development of integration between PV and APF, discusses in general various 

harmonics extraction and DC-link capacitor voltage control algorithms applied to 

SAPF, and highlights and reviews self-charging with PI and FLC algorithms, and 

modified Widrow-Hoff ADALINE algorithm.  

 

 

Chapter 3 describes the methodology of modeling a two stage of single-phase PV 

SAPF, design of new harmonics extraction and DC-link capacitor voltage control 

algorithms, which are named as simplified ADALINE and indirect self-charging with 

step size error cancellation algorithm respectively, and integration of 

MATLAB/Simulink and DSP, in both simulation and experimental works. 

 

 

Chapter 4 presents findings and results obtained in simulation and experimental works  

for SAPF with and without PV, under two operations which are steady state and 

dynamic, including their related measured waveforms, THD, DC-link capacitor 

voltage, power consumption from the grid, energy losses of DC-link capacitor during 

dynamic operations and response time achieved by the proposed harmonics extraction 

and DC-link capacitor voltage control algorithms.  

 

 

Chapter 5 concludes the entire thesis, highlights contributions and recommends 

possible future works. 
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