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The application of modern control techniques to diminish the effects of dynamic 
loads on building structures offers an appealing alternative to traditional design 
approaches. Rubber Wall damper (RWD) is one of the inventive passive energy 
dissipation device which enhance lateral resistance capacity and damping 
characteristic of the structures. RWD similar to fluid infill supplemental wall 
dampers yet is more suited for use in far field earthquake zone and is less 
expensive, maintenance free and economy. Here, a RWD is fabricated using 
Malaysian rubber, local steel and reinforced concrete structure, to reduce dynamic 
load effect and preclude vibration damage of buildings. 
 
 
Critical review of literature indicates no analytical model available for numerical 
model of RWD in building structure. Furthermore, the building frames response 
analysis is realistic, only if nonlinearity due to material behavior is also taken into 
account. Thus, nonlinear dynamic analysis is a prelude to achieving both accuracy 
and economy in the structural design. The analytical and constitutive model for 
RWD are developed for purpose of numerical modeling and finite element 
simulation and evaluate effect of Damper in seismic response of structures. Various 
types of concrete framed buildings equipped by proposed device are analyzed and 
efficiencies of device was assessed.  Additionally, through nonlinear dynamic 
analysis, the possibilities of arresting plastic hinge formations in structural 
components were investigated. The numerical analysis results showed the 
maximum horizontal displacement of frames with RWD diminished from 45% 
range up to 92%. Generally, the maximum story displacements dropped 
dramatically compared to similar response of the bare frame system.  
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In steel frame and Reinforced Concrete frames furnished by the RWD device, the 
maximum failure capacity improved approximately by 256% and 244% 
respectively. This proved the effectiveness of developed RWD device energy 
dissipation option in the buildings. Besides the numerical analysis, the prototype 
damper device has been fabricated and experimental test has been carried out to 
assess the functionality and performance of the developed adaptive systems with 
conventional systems. Experimental test results on prototypes steel and reinforced 
concrete frame subjected to cyclic displacement action, verified the efficiency of 
the RWD device, whenever implemented in to the bare frame. The ductility 
behaviour and failure mechanism are enhanced in both frame systems. The results 
proved performance of moment resistance frame furnished by above devices has 
been improved noticeable and the damper device is able to increase safety of 
building against severe earthquakes. 
 



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

 
 

UNSUR DINDING PEREDAM GETAH BAGI BANGUNAN STRUKTUR 
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Januari 2017 
 
 

Pengerusi : Farzad Hejazi, PhD 
Fakulti : Kejuruteraan 
 
 
Pengunaan teknik moden bagi kawalan mengurangkan kesan beban kenaan 
dinamik pada struktur bangunan adalah alternatif  menarik berbanding kaedah 
kawalan secara konvensional. Peranti dinding peredam getah adalah peranti 
peredam tenaga pasif. yang dengan penggunaannya dapat meningkatkan kadar 
perendam ufuk struktur dan tingkatkan keupayaan rintangan struktur mengufuk. 
Peranti ini menyerupai peranti dinding peredam bendalir, namun ia lebih murah, 
ekonomi, bebas senggaraan dan lebih sesuai digunakan di zon lapangan gempa 
jarak jauh. Peranti dinding ini di rekabentuk mengunakan getah tempatan dan 
bagus guna dalam struktur keluli dan struktur konkrit bertetulang bagi rembatan 
kesan kenaan beban dinamik  atas struktur itu dan seterusnya mengelakan 
kerosakan bangunan dari kesan gegaran. 
 
 
Semakan kritikal menunjukkan ketiadaan model analitikal redaman tersedia untuk 
sistem paduan dinding peredam getah dalam struktur bangunan. Selain itu, tindak 
balas anjakan struktur berangka lebih realistik, jika ciri tak lelurus bahan melewati 
ciri sifat anjalan juga diambil kira. Oleh itu, analisis dinamik tak lelurus adalah 
metod ujian awalan untuk mencapai ketepatan dan ekonomi dalam rekabentuk 
struktur. Model konstitutif dinding peredam getah telah dibangunkan untuk tujuan 
permodelan berangka dan mensimulasi unsur terhingga dan menilai kesan 
penampan sebagai tindak balas seismik struktur. Pelbagai jenis struktur konkrit 
bertetulang yang dilengkapi oleh peranti yang dicadangkan telah dianalisis dan 
kecekapan peranti telah dinilai.  Di samping itu, melalui analisis dinamik tak 
lelurus, kemungkinan memangkas pembentukan ensel plastik dalam komponen 
struktur telah disiasat. Angka analisis keputusan menunjukkan anjakan mendatar 
kerangka dengan dinding peredam getah berkurangan daripada 45% sehingga 92%. 
Secara umumnya, terdapat penurunan mendadak ensel berbanding kerangka tidak 
dipasang Peranti dinding peredam getah. 
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Bagi bangunan kerangka keluli dan konkrit bertetulang yang dibekalkan oleh 
peranti dinding peredam getah, kapasiti kegagalan telah meningkat kira-kira 
sebanyak  256% dan 244%.  Ini membuktikan keberkesanan peranti dinding 
peredam getah bagi dissipasi tenaga dalam bangunan. Selain analisis berangka, 
prototaip dinding peredam getah telah direka dan ujian eksperimen telah dijalankan 
untuk menilai fungsi dan prestasi sistem peredam getah berbanding sistem 
konvensional. Keputusan eksperimen ujian pada prototaip rangka keluli dan 
konkrit bertetulang tertakluk kepada anjakan kitaran, mengesahkan  kecekapan 
peranti dinding peredam getah, apabila dilaksanakan pada kerangka bangunan. 
Sifat kemuluran dan mekanisme kegagalan di sistem rangka bangunan 
dipertingkatkan. Keputusan membuktikan prestasi bangunan kerangka yang 
dibekalkan peranti telah bertambah dengan ketara dan peranti Peranti dinding 
peredam getah mampu meningkatkan keselamatan bangunan terhadap gempa bumi 
yang kuat. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 General 
 
One of the most feared natural disasters that happen in almost all continents is 
earthquake. An earthquake is caused by a sudden slip on a fault. The tectonic plates 
are always slowly moving, but they get stuck at their edges due to friction. When the 
stress on the edge overcomes the friction, there is an earthquake and that releases 
energy in waves that travel through the earth's crust and creates seismic waves that 
we feel. There are a wide variety of earthquake effects - these might include a chasm 
opening up or a land drop of many meters across a fault line. Therefore, to design an 
earthquake proof building which is guaranteed to resist all possible earthquakes 
poses a huge challenge to building engineers. Notwithstanding, it is possible during 
the design and the construction process to build in, a number of earthquake resistant 
devices, and along with applying advance earthquake engineering analysis 
techniques, an engineer could provide safe building and  would increase enormously 
the chances of survival of both buildings and their occupants. The application of 
earthquake resistant devices as the modern control techniques to diminish the effects 
of earthquake excitation (dynamic loads) and tsunami wave on building structures 
offers an appealing alternative to traditional design approaches.  
 
 
There are many techniques introduced to enhance lateral resistance of structures and 
energy dissipation capabilities such as Active mass driver damper, Active tendon 
damper, Controllable fluid damper, Variable friction damper, Oil damper, Hysteretic 
damper,  Visco-elastic damper , Viscous damper, shear wall and Base isolation 
systems. Collectively these control involved the adding of anti-seismic devices into 
the building structure to mitigate vibration in building or dissipate vibration energy 
off the system. The base isolation , for instance, the functions of a  base 
isolation/dissipation  system are generally one or a combination of the following: 
supporting gravity loads and providing for lateral flexibility (period shift), restoring 
force and energy dissipation (either of hysteretic, in the case of displacement 
activated dampers, or viscous nature, in the case of velocity activated dampers)( D J 
Wagg, S A Neild , (2010)). Despite the role performed by the base isolation, some 
filtered energy do get to the structure and here, supplementary energy dissipation 
devices are used to mitigate the effect of this energy to the building. 
 
 
According to their performance, the anti-seismic devices can be grouped as :-  rigid 
connection devices (e.g. lock-up devices), linear devices, non linear devices, viscous 
dampers devices,  isolators devices (e.g, rubber bearings). Common types of anti-
seismic devices are: Elastomeric bearings: Natural Laminated, Lead  and High 
Damping Performance Rubber (HDPR) Bearings; Sliding devices; Friction 
Dampers; Metallic Dampers, Yielding steel systems, lead extrusion devices; Viscous 
and Viscous-elastic Damper; Self-centring Dampers: Shape Memory Alloys. 
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Researchers are now looking at the effectiveness of using  rubber dampers within the 
building frame, to enhance the structural performances against lateral forces. HDPR 
as the damping medium in a passive damper is providing much interest among  
researcher.  HDPR material is a damping medium in the solid visco-elastic wall 
damper devices. These dampers generally consist of solid elastomeric plates bonded 
to steel plates. The elastomeric plates exhibit both viscosity and elasticity and their 
mechanical properties depend on loading frequency, deformation amplitude and 
temperature.  
 
 
The use of HDPR in energy dissipating devices in structural systems is a very 
promising idea in term of controlling the response under dynamic actions like wind 
or earthquake. The use of HDPR does, however, entail some problems because its 
dynamic behaviour is not completely understood and the few HDPR models that 
exist are not completely satisfactory for seismic analysis of structures equipped with 
HDPR based dissipation devices. More experimental tests need to be performed to 
obtain more accurate information about the behaviour of the material under cyclic 
shear paths with different strain rate and strain amplitude.  
 
 
The issue is ; previous studies about seismic response of building with supplemental 
wall dampers equipped in the building; consider only the performance in one element 
with single degree of freedom and with much limitation. So, there is lacking of 
knowledge on behaviour of structure in 3D (3D) formed and is equipped with Rubber 
Wall Damper (RWD) . Furthermore via literature review, no information is available 
on 3D nonlinear, formulations of framed structures, equipped with nonlinear RWD 
element. Adding that, proper physical  and  material modelling of RC frame building 
equipped with RWD is not seen. There is no report on nonlinear RWD element 
compatible with frame structures, hence the interest for this study. The aim of this 
study is to explore capability of RWD in diminish response and damage of structures 
under dynamic excitation and vibration. For this purpose, the formulation and 
constitutive model of RWD will be investigate and proper numerical and finite 
element model for framed structures with supplemental RWD will be establish. So, 
nonlinear time history dynamic analysis of structure under dynamic load excitation 
will be performed and effect of RWD in reduction of structural response in terms of 
structural movement and occurring plastic hinges in structural members will be 
evaluated. Result of numerical analysis will be verified through experimental test 
which will carry out for frame structure with supplemental RWD under cyclic loads. 
Eventually through numerical and experimental result, potential of RWD for 
implementation in design of structures under dynamic loads and retrofitting and 
rehabilitation of existing buildings will assess with consider of costing. RWD 
designs comes with approaches of analysis and design, will be the physical industrial 
product realized from this study which will be widened the list of improved rubber 
product in Malaysia. 
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1.2 Research hypothesis 
 
Energy dissipation cover any component used to reduced the movement of structure 
under dynamic excitation (by wind, earthquake alike). Passive energy dissipation 
method attempts to reduce the demand on the structure rather than the usual approach 
of adding capacity, hence the aim is provides Capacity greater than Demand. Within 
the passive anti seismic devices, four main categories of devices used are: 1. the 
yielding metal devices energy dissipated through hysteresis yielding, 2. the friction 
devices energy dissipated through frictional hysteresis, 3. viscous dampers energy 
dissipated through fluid viscosity and 4. Visco-elastic damper-energy dissipated 
through material viscosity. This study focus on the last category of the damper type 
.From the literature review it is further observe that little or no information is 
available on 3D and nonlinear formulations of framed structures, equipped with 
nonlinear  RWD element. Furthermore, proper physical and material modelling of 
RC frame building equipped with RWD is not seen. Additionally there is no report 
on nonlinear, 3D RWD element compatible with frame structures and the literature 
indicated lack of investigation on damage detection of RWD device during 
earthquake which play important role in structure safety. Notwithstanding It is noted 
that there are some study about seismic response of building with supplemental wall 
dampers but the study do mostly consider  the performance of one element in single 
degree of freedom with many limitation. So, there is lacking of knowledge on 
behaviour of structure equipped with passive , non linear, 3D RWD compatible with 
frame structure. The aim of this study is to explore the capability of RWD in diminish 
response and damage of structures under dynamic excitation and vibration. For this 
purpose, the constitutive model of rubber will be investigated and proper numerical 
and finite element model for framed structures with supplemental RWD will be 
establish. The study hypothesis is the supplementary RWD fitted in the moment 
resisting frame structure will dissipated dynamic excitation energy through damping 
action of rubber within structural frame system. The developed mathematical models 
of RWD are presented in this study. The assessment procedure of frames’ response 
equipped by RWD subjected to dynamic load, are divided in two general phases 
include experimental test and numerical analyses. So, nonlinear time history 
dynamic analysis of structure under dynamic load excitation will be performed and 
effect of RWD in reduction of structural response in terms of structural movement 
and occurring plastic hinges in structural members will be evaluated. To begin, a 
structural control device, the RWD is developed. The device is a non gravity load 
carrier, fixed to the main structural frame and it provides supplemental damping to 
the structural frame. The following shall be elaborated later in the chapter.  In RWD 
device, rubber sheets sandwiched between steel plates play crucial roles in system 
dampers, so, the damper formulation has been developed with reference on the steel 
plate rubber sandwiches layer concept. The industrial design and fabrication of RWD 
devices based on reasonable specifications have been proposed. The mathematical 
models of RWD devices with considering the attached connection is formulated and 
is implemented into specific finite element program developed by prior studies by 
Thanoon  (1993) and  Hejazi et al. (2013).  Parametric study has been conducted on 
RWD’s geometry specification and materials by aid of 3D nonlinear time history 
dynamic analyses for dissimilar models. In addition to that, experimental section 
consists of cyclic test. Cyclic test conducted is based on displacement control 
approach in steel and RC frames. Three steel and two RC frame specimens subjected 
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to cyclic displacement history on their top nodes. These models included of frames 
with and without attached RWD devices and conventional Cross braced steel frames. 
The impacts of RWD applications in steel frames are compared with bare and brace 
frames in terms of ductility characteristics, maximum capacity and the same impact 
in RC frame is compared with bare RC frame. Finally, the results from experimental 
and numerical test has been compared and verified. 
 
 
In the proposed model, a frame building with earthquake energy dissipation system 
is idealized as an assemblage of columns, beams, damper devices appropriately 
connected. The use of this model facilitates the establishment of a global structural 
behaviour especially in two dimensional (2D) and 3D non linear static and 
seismic/dynamic analysis. Then a special finite element program code is developed 
for analysis of RC building furnished by viscous damper under dynamic load 
excitations. A mathematical model for RC frame members with supplemental 
viscous damper element is presented here. To get the true behaviour of a building 
under different types of loading and earthquake energy dissipation system, all types 
of the elements in a building are to be carefully model.  The ideal starting point in 
establishing an analytical model for nonlinear analysis of a building would be to take 
the individual members and assign material behaviour characteristics in the form of 
stress-strain laws. The stress-strain relationship would then be used in conjunction 
with the basic member geometry and basic assumptions of the nature of the 
deformations, to establish the structural behaviour. 
 
 
1.3 Brief description of present work  
 
In the present work, the new effective RWD have been designed and developed with 
the use of  local  materials -Malaysian rubber , steel, bolts and nuts along with advance 
technology and techniques available “analysis of RC structure in 3D (ARCS3D)”, to 
analyze dynamic load effect and preclude vibration damage of buildings. These 
developed dampers is composed of two layers of HDPR sandwiched between steel 
plates. The supplemental HDPR wall device installed in the buildings structural 
system is expected to absorb energy to effectively reduce vibrations caused by 
earthquakes and wind. Based on literature, there is lacking of knowledge on behaviour 
of structure equipped with RWD especially for RC structures which are the common 
type of structures in Malaysia. The RWD component can be implemented to any 
structure which is subjected to vibration and it can be assumed to assure the 
serviceability and safety design criteria. Mathematical model of RWD are developed 
for numerical modeling and finite element method simulation. The study of building 
frames response, would be more realistic, only if nonlinearity due to material behavior 
is also taken into account. Thus, nonlinear dynamic analysis is a prelude to achieving 
both accuracy and economy in the structural design. The performance of RWD is 
evaluated by aid of dynamic analysis with considering the effect of RWD element. 
The results reveal the efficiency of wall damper system to diminish and dissipate the 
energy compared with conventional system. On the other hand the replacement of 
rubber as damping material in wall dampers compared with viscous substance, in 
terms of fabrication cost and maintenance fee is more desirable and cost effective. An 
analytical model of wall damper will be formulated based on Rubber constitutive law 
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and a finite element algorithm for the analysis of RC framed structures with 
supplemental RWD will be developed. A nonlinear time history dynamic analysis of 
structure under dynamic load excitation will be performed and the effect of RWD in 
reducing the structural response in terms of structural movement and occurring plastic 
hinges  in structural members will be evaluated. Then based on numerical model, 
prototype of RWD will be fabricated and result of numerical analysis will be verified 
through experimental test which will be carried out for frame structure with 
supplemental RWD under cyclic loads. Eventually through numerical and 
experimental result, potential of RWD for implementation in design of structures 
under dynamic loads and retrofitting and rehabilitation of existing buildings will be 
assessed with consider of costing.  RWD comes with approaches of analysis and 
design, will be the physical industrial product realized from this study 
 
 
1.4 Motivation for the current study 
 
Malaysia has enjoyed a relatively free event from earthquake but during  the past 
two decades, Malaysia’s fate has changed. In the west coast of peninsula Malaysia, 
report of tremor in major towns – Kuala Lumpur, Butterworth, Johor Baru have 
always being aired in the local news and media. Janda Baik in Pahang had experience 
of intermittent shake (rithcher-3.6) and at Tawau in Sabah, similar shake had also 
been reported. In 2015, the first casualty from earthquake occurred on the Mount 
Kinabalu. Many houses were also damaged in the aftermath of the Sabah earthquake 
(rithcher-6.0). Shake was also reported happened in the vicinity of Kuala Berang , 
besides the  Kenyir  Dam in Terengganu – West coast of the peninsula Malaysia. The 
events above showed Malaysia now, share effect of the wave from earthquake and 
Malaysians must live the experience of shake from earthquake originated from 
Indonesia or at Sabah and at  Janda Baik. This poses new threat to existing old house, 
institutional building and infrastructure. Most existing buildings were of RC frame 
structure and during those years, buildings were constructed to detail using 
CP110/BS8110-part 1. The detailing then falls short of meeting prescriptive seismic 
detailing  requirement observed  in codes and standards for new buildings in seismic 
active zone. Further, local engineers are now facing a challenge for evaluation and 
retrofit using code based elastic analysis methods. Elastic analysis approach is now, 
no longer feasible. 
 
 
At present, seismic rehabilitation of existing buildings uses the notion of 
performance-based limit states and FEMA, 2005 and ASCE/SEI 41-06 provided the 
first comprehensive guidance on the use of nonlinear analysis in design. As a result, 
seismic evaluation and retrofit of existing buildings has been one of the primary 
drivers for the use of energy dissipation devices and the seismic-rehabilitation 
required nonlinear analysis in engineering practice. Linear analyses are no longer 
sufficient to provide detailing needs for building to be constructed. Non linear 
analysis took its place, which indicates that structural behaviour under dynamic load 
are analyzed with respect to three dimension displacement, rotation and plastic hinge 
formations in the building. To extend the service life of the presence building, 
retrofitting is seen as a reasonable solution. For this purposes, passive devices are 
more appropriate for field applications since they are a cheaper option yet effective 
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to check the seismic performance of the structure under various earthquake 
scenarios(Chen et al. (2010)).  Building structure do need approximately 15–25% of 
additional damping as a desirable range in the damper designed buildings(Lee and 
Taylor (2001)). Viscous damper devices is a favorate choice in upgrading the 
building damper. Uetani et al. (2003) proposed a practical method for optimum 
structural design of building frames with viscous dampers. The method firstly 
addresses issue on the stiffness design of a reduced shear-building model equipped 
with viscous dampers. Then an optimum design for building frames was performed 
under static design loads. A drawback in this method is that the viscous fluid is 
expansive and the devices used are therefore expansive. Hence a cheaper material 
option is therefore sought after. Another drawback is viscous damper is still a 
relatively new building technology yet to be further developed and studied (Ying 
Zhou et al (2012)). Ibrahim et al. (2007) proposed a new elasto-plastic device that 
consists of a block of a HDPR sandwiched between steel plates which are allowed 
to yield to provide additional energy dissipation. Karavasilis et al.(2011) 
experimentally evaluated the hysteretic behaviour of a new innovative compressed  
elastomer damper developed by Sweeney and Michael  and used the design 
procedure of Lee et al.  to design steel  moment  resisting frame (MRF)  with 
compressed elastomer dampers. A sequential asymptote formulation to model the 
cyclic behaviour of ultra HDPR dampers was developed by Sause et al. (2011).  
Many researchers have performed  individual visco-elastic damper tests and 
developed  models to predict damper behaviour under earthquake loading. Tsai and 
Lee (2001) and Kasai et al.(1998) studied the effect of  loading  rate and temperature 
on visco-elastic materials and proposed fractional derivative models to predict 
damper behaviour. Lee (2001) studied the behavior of elastomeric dampers made of 
ultra HDPR and found from characterization tests the behavior of these dampers to 
be less sensitive to frequency and ambient temperature compared to conventional 
viscoelastic dampers.  Fu and Kasai (1998) presented a simplified theory to design 
viscoelastic dampers for a given Moment Resisting Frame. Lee et al.  (2001) 
presented a simplified design procedure for buildings with viscoelastic or high-
damping elastomeric dampers.  The design procedure has been  used recently to 
study the effect of  the variation in steel  MRF  properties and damper design criteria 
on the design of steel MRF  with elastomeric dampers .  
 
 
The use of HDPR provides cheaper alternative to viscous fluid and those researcher 
above had conducted study on the material, yet those studies centres on seeking the 
characteristic behaviour of rubber as a damping medium. The piece of rubber that 
was tested was basically a small sheet size. Notwithstanding, the result from the test 
have shown that rubber do posses the elastic properties and able to provide 
supplementary damping on a moment resisting frame structure. As Malaysia is a 
rubber producing state, this option to study RWD is feasible and if positive result is 
obtained, the product could be implemented on existing building in this country as a 
retrofit damper device and to mitigate the damaged of the house from the oncoming 
shake of the ground in the event of new earthquake. A 3D ,  non linear analysis is 
necessary to provide the manner of fitting the rubber wall devices to the moment 
resisting frame. Hence a non-linear analysis method is also seek to aid fitment of the 
damper device into the building frame. 
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Furthermore,  Sadeck et al. (2006) identified some limitations in the FEMA 273 [17] 
procedures for the design of structures with velocity-dependent passive energy 
dissipation devices based on the analysis of single-degree-of-freedom structures. 
One of the major limitations includes a non-conservative estimation of peak response 
and base shear when using a constant reduction factor to obtain displacement 
response of short-period structures and assuming a harmonic response to compute 
the peak velocity, story and base shear. 
 
 
Thus, this study observed, there is no report on nonlinear 3D RWD element 
compatible with frame structures. There are no commercially available finite element 
code which utilize column, beam and nonlinear RWD element for dynamic inelastic 
analyses of frame and be capable to optimize the structural control system based on 
non linear response of framed building. The assessment, retrofitting and 
rehabilitation techniques of frame buildings with passive control device such as 
RWD are not addressed and need further studies. 
 
 
1.5 Statement of problem 
 
From the brief review of literature of earlier works it is observed that:    
 
Most buildings previously constructed from year 1970 till 2010 in Malaysia are of 
RC and are still serving the public, yet, are prone to the dynamic action accrued from 
earthquake, tsunami and traffic movement via underground passage. It has been 
observed these buildings were analyzed by static action to ultimate limit state and 
designed likewise, but, checks on service limit state, yet in her life span, the material 
deteriorates, drop in modulus of elasticity. For retrofitting, static analysis no longer 
work, the servicing action is dynamic in nature and has two additional generated 
action –inertia and  inherent damping action which changes the former static 
equilibrium into a dynamic equilibrium. Hence 3D nonlinear, formulations of framed 
structures is needed to handle the present analysis needs. Yet again computational 
complexities and long time analysis process burdens the engineers and accordingly 
simplification, alternative calculation is soughed, only to realise that building still 
crumbles down during earthquake. This is a tell-tale, showing the previous analysis 
has it shortfall and not pin pointing at the source of the problem which is matching 
the dynamic action against material response and subsequent  responding in mode 
variance  resisting against the action that is in the way of cyclical transformation 
between strain stiffness energy , inertia (mass) energy, damping energy and beyond 
the yield limit of the material.  
 
 
Based on the extensive review of literature it was found that: Supplementary damper 
devices (passive , active) placed important function to provide effective damping in 
a structural frame system as the structure inherent damping has time and again been 
observed not suffice to release unwanted energy and this caused the reinforced frame 
section to rupture. The event of collapse buildings near column head and foot testify 
this event. The element of cost to retrofitting old frame RC building is a mind 
boggling issue too. Cheap option is greatly appreciated, yet, the prevailing method 
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and material use is rather expansive. Even for new RC frame structure, adding 
supplementary damper should not increase in the present  construction cost and 
should be provided at the same cost if not lower. 
 
 
This call for the need of performing on 3D nonlinear numerical time history analysis 
on structure and cheap option of supplementary damper for the  safety of the common 
public building dweller or consumer.So far little or no information is available on 
3D nonlinear, formulations of framed structures, equipped with nonlinear RWD 
element. Furthermore, proper physical and material modeling of RC frame building 
equipped with RWD is not seen. There is no report on nonlinear 3D RWD element 
compatible with frame structures.  
 
 
Review of the literature also indicated lack of investigation on damage detection of 
RWD device during earthquake which play important role in structure safety.In 
depth study on multi support excitation effects on RC framed structures equipped 
with RWD are not seen. There no commercially available finite element code which 
utilize column, beam and nonlinear RWD element for dynamic inelastic analyses of 
frame and be capable to optimize the structural control system based on nonlinear 
response of framed building. The implementation of nonlinear RWD device in 
unsymmetrical 3D nonlinear frame structure under multi direction ground excitation 
is not well investigated and little information on 3-D effects i.e. torsion and irregular 
issues is available. The optimization of RWD element as energy dissipation device 
is not available in the literature. Hence the aim of this study is to pursue ” The 
development of a general analytical model of RWD element which will be proposed 
for reinforced concrete and steel frame building structures “.  
 
 
1.6 Objectives of study 
 
The development of a general analytical model of rubber wall damper which will be 
proposed for placement in a non linear frame structure is the main goal of this study. 
Other detailed objectives which see the realization of the above aims includes the 
following: 
 

(1) To develop an effective passive damper from a high damping performance 
rubber and can be applied in frame structures which will be subjected to 
some earthquake excitation in its service lifespan 

(2) To develop and appraise capability of the developed numerical system of a 
passive rubber wall damper element from a high damping performance 
rubber comes along with the formulation of a suitable element constitutive 
model. This element numerical model shall be used as structural component 
for framed structures. 

(3) To develop a finite element method , verify the developed numerical model 
by performing experimental test on the passive rubber wall damper and 
computational procedure for nonlinear dynamic analysis of 3D frame 
structures equipped with rubber wall damper subjected to dynamic 
excitation.  
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1.7 Limitation of the present work Scope: 
 
Limitations of the present works include: 
 

(i) Effects of soil-structure interaction are not considered. 
(ii) Effects of concrete confinements are not considered 
(iii) Rubber is a high damping performance material and here, it behaves within 

the elastic ranges material. The whole damper operates at a regular 
environment and  temperature ranges of the equatorial country. 

 
 
1.8 Proposed layout of the thesis  
 
This  thesis comes in five(5) chapters.  The research hypothesis and the motivation 
for the current studies on the chosen problem is highlighted in Chapter 1.Other 
matters  highlighted are the definition of  the  problem, a determinative statement on 
the problem, the study objectives along with the scope and the limits of the study. 
 
 
Chapter 2, covers the review of the energy dissipation damper system, the properties 
of rubber, application of RWD in unsymmetrical, adjacent and parallel buildings, 
inelastic analysis of frame buildings developed procedure and computer program 
code are demonstrated and.development of optimizing RWD through genetic 
algorithm has been reported and optimization of structural control system. The 
material used and methodology of present study is presented in Chapter 3. 
Development of 3D nonlinear RWD element, the modelling of inelastic frame 
element for beams and columns and constitutive model of both elements are 
illustrated. Development of finite element procedure for nonlinear analysis of frame 
structures with RWD  are also presented in this chapter. the incremental iterative 
procedures for computation of nonlinear response of frame structures with RWD is 
illustrated through step by step procedure. Then the development special computer 
code based on the computational scheme has been presented. The validation of 
developed system and program code has been reported through analysis of some 
example of RC portal  frames and comparisons of results with experimental results 
are presented. Chapter 4 deals with some applications of developed system for 2D 
and 3D, RC frame buildings.  Linear and nonlinear response of structures are 
investigated. The effects of RWD properties on seismic response of buildings are 
evaluated and the application of RWD in an example of unsymmetrical buildings is 
reported. Further application of the RWD for connecting the adjacent buildings and 
coupling of parallel structure and the effects of different arrangement of RWD 
position on seismic response of structures are investigated through an example are 
presented in chapter 4. Report on performance of RWD as an energy dissipation 
device are discussed here using result from the experiment outcome of the RWD 
devices fitted to portal frame of steel and RC.Chapter 5 deals with the major 
conclusions drawn from the study carried out in the thesis together with the 
suggestions for further research in this area. 
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