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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
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CHILD DUMMY MODEL FOR VEHICLE SAFETY ASSESSMENT 

By 

IBRAHIM ABDULLAHI RAFUKKA 

April 2017 

Chairman : Professor Barkawi Bin Sahari, PhD 
Faculty : Engineering 

Child injuries in vehicular crashes especially on the head, is considered a major public 
health problem worldwide. Biofidelic child dummy is a key to designing safer vehicle 
to child occupants. Current crash dummies used for the evaluation of vehicle safety 
performance were developed based on 50th percentiles of some specific populations 
of the world. Biomechanical response of child occupant on crash depends on the size 
and weight; Nigerian children need crash dummy model with biofidelic head 
representing their own anthropometry for crash test of vehicle used by this vulnerable 
population. The aim of this work is to develop three year old Nigerian child dummy 
model that can predict injuries from various head locations for application in vehicle 
crash test. 

In the present work, anthropometric comparison was conducted where significant 
difference was found between the three year old Nigerian child (3YO NC) and current 
three year old Hybrid III (3YO HIII) and Q3s dummies with a maximum difference 
of more than 25% in body dimensions. To develop dummy for 3YO NC 
anthropometry, morphing technique in LS-DYNA software was used. It was first 
verified by developing a 3YO HIII dummy finite element (FE) model using six year 
old Hybrid III (6YO HIII) FE dummy model as a reference, and its biomechanical 
responses were compared with experimental and simulation results using physical 
3YO HIII dummy from which it was found to be consistent both qualitatively and 
quantitatively. Detailed development of 3YO NC dummy model using the same 
scaling procedures was then accomplished. In this case, the body segments were 
morphed and material properties were modelled. The dummy head model was 
validated against the experimental data inferred from a nine year old child cadaver 
head recently published in literature for five impact locations namely; frontal, right 
and left parietals, vertex and occipital. The difference between child head FE model 
and scaled cadaver data is approximately 3% to 24%. The neck and thorax responses 
were also validated against three year old certification corridors, cadaver data and by 
comparison with other three year old child dummy models response available in the 
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literature.  The 3YO NC dummy response was found to be closer to certification 
corridors than the existing 3YO HIII dummy in some parameters. Other body parts 
were morphed and their material properties were modelled such that the weight fit that 
of 3YO NC. Comparison between morphed 3YO NC and morphed 3YO HIII in chest 
acceleration and upper neck moment and forces shows difference of approximately 
6.5% to 41% between the two dummies. 
 
 
Finite element model of child restraint seat (CRS) was also developed and validated 
to accommodate the child model in crash simulations. Crash analysis was conducted 
in LS-DYNA software with newly developed Nigerian child dummy in CRS using the 
Ford Taurus 1992 FE model in order to evaluate its crashworthiness capability with 
respect to three year old child occupants. The three year old child injury parameters: 
Head Injury Criteria (ܥܫܪଵହ,  ܥܫܪଷ଺ሻ  and neck moment (NM) were found to be 47%, 
49% and 85% respectively above the NHTSA threshold while upper neck force and 
chest deflection were found to be within an acceptable range.  
 
 
The technique employed in this study can be applied to develop dummy FE model of 
various sizes from existing crash dummy models. Biofidelic head model can be used 
to estimate injuries from vehicle crash due to contact of head with vehicle interior and 
height fall accidents for various head locations.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah  Doktor Falsafah 

PEMBANGUNAN MODEL DAMI BERANGKA KANAK–KANAK TIGA 
TAHUN NIGERIA UNTUK PENILAIAN KESELAMATAN KENDERAAN 

Oleh 

IBRAHIM ABDULLAHI RAFUKKA 

April 2017 

Pengerusi : Profesor Barkawi Bin Sahari, PhD 
Fakulti : Kejuruteraan 

Kecederaan kanak-kanak dalam nahas kenderaan terutama bahagian kepala, 
merupakan masalah kesihatan awam utama dunia.Dami kanak-kanak biofidelik 
merupakan kunci bagi reka bentuk kenderaan yang lebih selamat bagi penumpang 
kanak-kanak. Dami nahas kini yang telah digunakan untuk penilaian bagi prestasi 
keselamatan kenderaan telah dibangunkan berdasarkan 50th persentil bagi beberapa 
populasi tertentu dunia. Respon biomekanikal bagi penumpang kanak-kanak ke atas 
nahas bergantung kepada saiz dan berat; kanak-kanak Nigeria memerlukan model 
dami nahas  dengan kepala biofidelik yang mewakili antropometri mereka sendiri bagi 
ujian nahas kenderaan yang digunakan oleh populasi yang lemah ini. Tujuan kajian 
ini adalah untuk membangunkan model dami kanak-kanak tiga tahun Nigeria yang 
dapat meramalkan  kecederaan dari pelbagai  lokasi kepala bagi diaplikasikan dalam 
ujian nahas kenderaan.    

Dalam kajian ini, perbandingan antropometrik telah dijalankan dan didapati bahawa 
terdapat perbezaan yang  signifikan  antara kanak-kanak Nigeria berusia tiga tahun 
(3YO NC) dengan  Hibrid III (3YO HIII) tiga tahun  kini dan dami Q3  dengan 
perbezaan maksimum lebih daripada  25%  dalam dimensi tubuh. Untuk 
membangunkan dami bagi antropometri 3YO NC, teknik morfing dalam perisian LS-
DYNA digunakan. Perisian ini pertama kalinya telah ditentusahkan, dengan 
membangunkan model unsur terhingga (FE) dami 3YO HIII menggunakan model 
dami FE Hibrid III enam tahun (6YO HIII)  sebagai rujukan, dan respon biomekanikal 
telah dibandingkan dengan dapatan uji kaji dan simulasi menggunakan dami 3YO HIII 
fizikal yang didapati adalah konsisten bagi kedua-dua ukuran, kuantitatif dan 
kualitatif. Perkembangan yang mendalam mengenai model dami 3YO NC 
menggunakan teknik penskalaan yang sama kemudiannya telah dilaksanakan. Dalam 
kes ini, segmen tubuh telah dimorfkan dan ciri bahan telah dimodelkan. Model kepala 
dami telah disahkan terhadap data uji kaji yang disimpulkan daripada kepala kadaver 
kanak-kanak sembilan tahun yang baru-baru ini diterbitkan dalam sorotan kajian 
untuk lima lokasi impak, iaitu;  bahagian hadapan, kanan dan kiri parietals, verteks 



© C
OPYRIG

HT U
PM

 

iv 
 

dan oksipital. Perbezaan antara model FE kepala kanak-kanak dan data kadaver 
terskala ialah lebih kurang 3% hingga 24%. Respon leher dan toraks juga telah 
disahkan terhadap koridor pensijilan tiga tahun, data kadaver  dan melalui  
perbandingan dengan  tindak balas model dami kanak-kanak  tiga tahun  lain yang 
terdapat dalam sorotan kajian. Respon dami 3YO NC  didapati hampir dengan koridor 
pensijilan daripada dami 3YO HIII yang sedia ada dalam beberapa  parameter. 
Bahagian tubuh lain telah dimorfkan dan ciri bahan dimodelkan  supaya berat 
diselarasuaikan dengan 3YO NC. Perbandingan antara  3YO NC yang dimorfkan dan 
3YO HIII yang dimorfkan dalam pecutan dada  dan momen leher atas dan tenaga 
menunjukkan perbezaan lebih kurang 6.5% hingga 41%  antara kedua-dua dami 
tersebut. 
 
 
Model unsur terhingga kerusi penahan kanak-kanak (CRS) juga telah dihasilkan dan 
disahkan bagi menyesuaikan model kanak-kanak dalam simulasi nahas. Analisis 
nahas telah dijalankan menggunakan perisian LS-DYNA dengan dami kanak-kanak 
Nigeria yang baru dibangunkan dalam CRS menggunakan model FE Ford Taurus 
1992 bagi menilai kebolehan perlindungan laganya dengan merujuk kepada 
penumpang kanak-kanak tiga tahun. Parameter kecederaan kanak-kanak tiga tahun: 
Kriteria  Kecederaan Kepala (ܥܫܪଵହ,  ܥܫܪଷ଺ሻ  dan momen leher (NM) yang didapati 
ialah 47%, 49% dan 85% atas ambang NHTSA , manakala tenaga leher atas dan  
pemesongan dada didapati dalam lingkungan julat yang boleh diterima.  
 
 
Teknik yang dibangunkan dalam kajian ini boleh diguna pakai untuk membangunkan 
model FE dami pelbagai saiz  daripada model dami  nahas yang sedia ada. Model 
kepala biofidelik boleh digunakan untuk menganggar kecederaan daripada nahas 
kenderaan disebabkan kontak kepala dengan bahagian dalam kenderaan dan 
ketinggian terjatuhnya kemalangan   untuk pelbagai lokasi kepala.   
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CHAPTER 1 
 
 

1 INTRODUCTION 
 
 

1.1 Background of study 
 
Road traffic accident claimed about 1.2 million lives annually worldwide; hence it is 
considered to have high impact on the health and development of any society (WHO 
2013). It is high in developing countries because of weak safety regulations and poor 
infrastructures. As the developing nations build more roads and get more access to 
motor vehicles, road traffic accident will keep increasing in the future (Rivara 2009). 
It has been forecast that traffic fatalities will increase by 55% by the year 2020. Great 
attention has been given to road safety recently by international community in taking 
into account 2030 agenda for sustainable development, in which road traffic accident 
was set to reduce by 50% in 2020. This fact shows the recognition of the contribution 
of road safety to health. Economically however, it was shown that road traffic accident 
in low and middle income countries causes a loss of about 5% of GDP (WHO 2013). 
 
 
As the number of cars used on the road increased, the number of children involved in 
road traffic accident has also increased. Today, road traffic accidents are considered 
to be a major public health problem worldwide. In developed countries it was 
reported to be the most common cause of fatalities to children (Bauer & Stelner 
2009).  
Figure illustrates that road traffic accident is the major cause of injuries to children 
aged 0 to 17 years worldwide. 
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Figure 1.1 : Distribution of global child injuries for 0-17 years old world wide for 

2004 (Peden & Oyegbite 2008) 
 
 
Child vehicle safety has been given much concern recently by vehicle developers and 
researchers with particular attention to design of biofidelic child dummies and Child 
Restraint Systems (CRS). Despite the occupant safety systems available, child 
protection in vehicle crashes still remains unfavourable. 
 
 
Crash dummies, also known as anthropometric test device (ATD), are tools used to 
test the safety performance of vehicle and also to predict the effectiveness of safety 
systems such as seat belt, CRS and air bag in protecting the occupant in the event of 
crash. ATDs are available representing adult and children of various ages. These crash 
dummies are designed for 50th percentiles of some ages, thus leaving out small and 
bigger percentiles. For the ATD to become reliable tool in injury assessment it must 
be designed based on the real human being anthropometry and biomechanical 
response. Current ATDs are designed to represent United States, Europe and Japan 
children population. It was learnt that variability in anthropometry of various 
population around the world has not been considered in crash dummy development. 
Recent anthropometric study by Natale & Rajagopalan, (2014) compares weight, 
height and head circumference of infants for 55 countries around the world. Weight 
for example, was found to vary among different national and ethnic groups for 2 years 
old child as shown in Figure 1.2. Children of some countries are out of the WHO’s 
Multicenter Growth Reference Study (MGRS). It is therefore important to consider 
anthropometric variations in crash dummy and CRS design.  
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Figure 1.2 : Weight at 2 year of 30 countries in comparison with MGRS scale 
mean (Natale & Rajagopalan 2014) 

 
 
Nigeria being the African most populous country, has been reported to have the 
highest road traffic accident rate in Africa, and second in the world (Atubi 2010; Ukoji 
2014). Developing child dummy to represent this population in vehicle crash test is 
therefore important considering the possible mismatch between the child and the 
current crash dummies due to differences in anthropometries. Average three year old 
Nigerian child weight for instance was reported to be below WHO standard (Aina & 
Morakinyo 2001). Thus their biomechanical response is expected to be different from 
the traditional child crash dummies. 
 
 
For a given vehicle design, the severity of injury in vehicle occupant is highly 
dependent on physical sizes, age and weight of occupant. In the effort to keeping 
vulnerable population safe in vehicular crashes, research on crash dummy 
development was recently focused on children especially obese, elderly, and pregnant 
women, with little attention to the variation in children anthropometry. 
 
 
Finite element (FE) models of crash dummies have recently become the tool in vehicle 
crash test and safety systems evaluation because of their economic, technical and 
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ethical advantages. Analysis of crash injuries is now done with finite element methods 
due to its affordability and accuracy. Human body models are modelled with their 
sizes, weight and material properties to represent the real human being. Though, there 
are FE models of three year old (3YO) child developed by Livermore Software 
Technology Corporation (LSTC) and Humanetics, these models were developed 
based on anthropometry of some specific populations and for only 50th percentiles. 
 
 
Furthermore, child dummy head is the most important body segment in injury 
prediction, because it is the body region that needs extra protection for children of all 
ages (Andersson 2012). Figure 1.3 indicates that head has the highest percentage of 
injury in motor vehicle crashes. About 50% of the injuries sustained by child 
occupants in crash events are on the head. This signifies the importance of accurate 
biofidelic head model that will measure the response of the head for various impact 
directions for use in the vehicle safety systems assessment, playground designs as well 
as forensic applications. 

 
 

 
 

Figure 1.3 : Percentage of Passenger Vehicle Occupant AIS 3 - 6 Injuries, Age 0 
- 8 Years Old, by Injured Body Region (Starnes & Eigen 2002) 

 
 
Head injury is a calamity that causes death of vehicle occupants of all age groups. The 
trauma is more destructive to children, whose centre of gravity (CoG) is higher relative 
to their body height making them susceptible to head-first fall. Motor vehicle crash, 
pedestrian collision, falling on playgrounds and shaking-impact syndrome are some 
of the causes of traumatic brain injury (TBI) to children. Thus to investigate the 
injuries severity of child’s head on impact a biofidelic head model capable of 
predicting biomechanical response is necessary. Lack of paediatric cadaver data 
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because of ethical reasons makes it very hard to validate the head models for various 
impact locations. 
 
 
1.2 Problem statement 
 
Current vehicle design relies on the crash tests for the assessment of vehicles 
crashworthiness and occupant protection systems. Unfortunately, the crash test uses 
ATDs that represent few sizes, mainly 50th percentiles, thereby leaving obese and slim 
children, like those of most African countries, out of coverage. Poor representation of 
this population by current crash dummies in anthropometric and biomechanical 
variation, made the ability of safety systems to effectively protect the vulnerable 
population very difficult to assess. Three year old Hybrid III (3YO HIII) dummy was 
developed using the only recent comprehensive anthropometric data of children which 
was collected in 1970’s by University of Michigan Transportation Research Institute 
(UMTRI). This form the basis of most United States current child body dimensions 
(Crandall et al. 2012). On the other hand, Q-dummies series, are designed by utilizing 
the combined anthropometry of United States, Europe and Japanese (CANDAT 
DATABASE) (Wismans et al. 2008). These crash dummies represent only the 50th 
percentiles of the population they represent. Non standard child dummies such as 5th 
and 95th percentiles are equally needed for crash analysis, since they cannot be 
represented by 50th percentile dummy. Efforts made by researchers in developing 
dummies to represent a given population is mainly on adult (Happee et al. 1998; Kim 
& Son 2003) with little attention to children, despite the studies reported differences 
in anthropometry between children of different population and crash dummies (Serre 
et al. 2006). Injuries severity in vehicular crashes were shown to depend on the child 
anthropometry (Kim et al. 2015). Hence there is a need to create a method of 
developing FE dummy models for various populations from the existing ones. 
 
 
Furthermore, the main cause of head injury during impact is contact with the car 
interior such as front seat, back seat and doors panel and windows (Giordano & 
Kleiven 2016). It therefore important for crash dummies to estimate injuries for 
various head locations. The current crash dummies were developed with their heads 
validated using scaled adult cadaver data and mostly for side and frontal impact 
applications only. Crash dummy FE models are developed to represent physical crash 
dummies: hence their responses are usually validated against respected certification 
corridors. While these corridors were developed based on human cadaver data for 
adults, children models have normally been validated against scaled adult 
biomechanical response, despite the differences in size and material properties, 
because of lack of child cadaver data for ethical reasons. Lack of data of children also 
restricts design of dummies that can measure injuries of various head locations. 
Limited effort was made in validating the crash dummy heads against child cadaver 
data. Until recently, by Loyd, (2011), in the Hybrid III family, only 50th percentile 
adult was validated against cadaveric data from Hodgson & Thomas, (1971) for frontal 
impact but none of child ATDs was compared against human data (Loyd et al. 2012a). 
Despite the need to predict injuries for various child head locations, current crash 
dummies are only capable of estimating frontal and side impacts. To the best of the 
author’s knowledge, no study was carried out on extending the application of current 
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ATD heads to measure impacts from heads locations such as occipital and vertex for 
the estimation of injuries due to contact with vehicle interior during crash 
 
 
Research on injury mitigation for child occupants is currently focused on the 
improvement of child seat and anchorages used to fix the seat to the vehicle (Hu et al. 
2008; Hu & Mizuno 2009; Kapoor et al. 2008; Loyd et al. 2012a). A child seat FE 
model developed for child of given size and weight is important. FE model of Bebe 
Comfort seat was modelled and validated for application in FE crash test using 3YO 
NC dummy.   
 
 
1.3 Objectives 
 
The purpose of this work is to develop a three year old Nigerian child (3YO NC) 
dummy FE model using 6YO HIII child dummy FE model as a reference. The 
technique described in the work can simplify development of FE dummy models of 
various anthropometries, hence enable other non-standard size dummies to be 
modelled. Biofidelity of head FE model was improved to enable a more accurate injury 
prediction of various head impact locations. Crash test analysis was conducted using 
3YO NC dummy in 1992 Ford Taurus FE model. The main objectives of the study 
are: 
 

 To develop method of scaling child ATD finite element model to a specific 
target anthropometric dimension and apply the method in developing and 
validating three year old Nigerian child dummy FE model. 

 To develop 3YO Nigerian child dummy head model material properties to 
predict injuries of various head locations 

 To determine the crashworthiness characteristics of car FE model using the 
developed 3YO child FE dummy model, and assess its safety performance in 
reference to NHTSA recommended limits. 

 
 
1.4 Scope and limitation of work 
 
The scope of this work includes development and validation of 3YO NC crash dummy 
model by morphing a 6YO HIII dummy model, and validation of head model against 
scaled child cadaver data for various head impact locations. The work also considered 
improvement of 6YO HIII dummy head model for lateral impact assessment, design 
of CRS FE model for three year olds and evaluation of vehicle crashworthiness with 
developed child model. The limitations of this study are as follows: 
 

 A comprehensive anthropometry data of three year old Nigerian child was not 
obtainable because of diversity of tribe and living status. The data used in the 
study was obtained by preliminary survey taken from a government hospital 
in Nigeria; a small size sample was used. 

 Unavailability of Nigerian child cadaver test data to validate the model at 
component and full dummy levels. Hence, the dummy model was validated by 
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comparing its response with cadaver data from literature, certification 
corridors and other three years old child physical and FE dummy models. 

1.5 Highlight of work contribution 

The contribution of this work to the body of knowledge includes: 

 A new method of scaling child dummy finite element model to specific
anthropometry. This technique reduces the time and cost of developing child
dummy FE model from the physical crash dummies and allow for developing
dummy of various sizes.

 Determination of 3YO NC anthropometric data for use in child dummy
modelling and other ergonomics applications.

 Development and validation of 3YO child dummy FE model for Nigerian
population. This is first attempt to create dummy model with size suitable for
African population.

 Development of three year old child dummy head model for the prediction of
head injuries in various impact locations.

 Upgrading the 6YO Hybrid III dummy head model for side impact application.
The improved head model could serve as free motion head form for 6 year olds
since it is not available in LSTC website.

 Development of child restraint seat to accommodate Nigerian child FE model
for finite element crash analysis

 Evaluation of safety performance of 1992 Ford Taurus FE model with respect
to child vehicle occupant at 48 km/h.

1.6 Thesis layout 

This thesis is made up of six chapters. It starts with chapter 1 which describes the 
problem and the need for the project as well as mentioning the objectives outline. 
Chapter 2 presents the literature review on the human anatomy as related to 
automotive design, crash dummy FE modelling and testing methods, morphing 
technique in dummy modelling, anthropometry in crash dummy design, 
crashworthiness of cars with respect to child occupant injuries, as well as theoretical 
overview of finite element method and LS-DYNA material models. Chapter 3 
contains the methodology of research work, anthropometric data collection, child 
dummy modelling and validation as well as design of CRS and crash analysis of car 
finite element model using developed child model. The simulation results for the 
validation of dummy FE model at segment and complete dummy level was presented 
in chapter 4. Chapter 5 presents the results of CRS validation and application of child 
dummy in vehicle crashworthiness test. Finally, the thesis ends with conclusions and 
recommendations for future works in Chapter 6. 
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