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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment 
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PHENOLIC COMPOSITES AS FRICTION MATERIALS 

By

BUSHRA RASHID MOHAMMED 

April 2017 

Chairman : Associate Professor Zulkiflle Leman, PhD  
Faculty : Engineering 

Sugar palm fiber (SPF) is one of the prospective fibers that can be used to reinforce 
polymer composites. This study aimed to characterize SPF and evaluate the physical, 
mechanical, thermal, morphological, and tribological properties of the sugar palm 
filled phenolic (SPF/PF) composites as friction materials. The work was divided into 
four stages to achieve the specified objectives. The first stage focused on the 
characterization of the thermal, physicochemical, and morphological properties of 
untreated and treated SPF fibers. The fibers were treated with sea water for 30 days, 
and with 0.5 M alkaline solution (NaOH) for 4 days. The results showed that the 
thermal stability of the untreated fibers was slightly higher than the treated ones due 
to the high percentage of silica (SiO2) content in the untreated fibers. It was also 
observed that the fiber surface became clean and smother after treatments and thus 
better fiber-matrix adhesion was achieved. The second stage examined the physical 
(Rockwell hardness, water/oil absorption, density, and void content), mechanical 
(compressive, impact, and flexural), morphological, and thermal (thermogravimetric 
and dynamic mechanical analysis) properties of SPF/PF composites. Sugar palm fibers 
in particle size of about ≤ 150 μm and phenolic resin were used to fabricate the 
composites by the hot press technique, and with different SPF filler loadings of 0, 10, 
20, 30, and 40 % by volume. The results showed that, as the SPF filler increases 
Rockwell hardness decreased, while the water/oil absorption and density increased. 
The mechanical properties of the composites were also improved, while the thermal 
stability decreases. Overall, the results showed that the 30 vol. % SPF/PF composites 
dominated the best physical and mechanical properties, thus it was used for further 
investigation in the third and fourth stages of this work.  The influence of sea water 
and alkaline SPF fiber treatments on the properties of the phenolic composite was 
carried out. Both treatments helped to enhance fiber-matrix bonding and consequently 
improved the physical and mechanical properties of the treated fiber composites. The 
untreated fiber composites were found to be slightly more thermally stable than the 
treated ones. In the fourth stage, the tribology behavior of SPF/PF (30 vol. %) was 
compared with the neat phenolic composites. The results showed that incorporating 
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SPF in phenolic composites decreases the specific wear rate and the coefficient of 
friction by 64.1 % and 22.6 %, respectively. Furthermore, the tribology behavior of 
the untreated and treated fiber composites based on the optimum fiber loading was 
conducted under room and elevated (250 °C) temperatures. The process parameters 
such as treatment, load and sliding speed were optimized by using DOE (Factorial 
technique). The treated fiber composites showed better wear behavior compared to the 
untreated composites. However, the volume losses of all the composites at elevated 
temperatures were found to be more than those at room temperatures due to the high 
sliding friction force. Interestingly, the result revealed that SPF can be used as viable 
reinforcement material in phenolic composites at room and elevated temperatures. In 
conclusion, sugar palm fiber can be used as an alternative natural fiber for friction 
materials such as brake pad composites. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk Ijazah Doktor Falsafah 

PENCIRIAN DAN PEMBANGUNAN KOMPOSIT-FENOL TERISI 
GENTIAN IJUK SEBAGAI BAHAN GESERAN 

Oleh

BUSHRA RASHID MOHAMMED 

April 2017 

Pengerusi : Profesor Madya Zulkiflle Leman, PhD 
Fakulti : Kejuruteraan 

Gentian ijuk (SPF) adalah salah satu daripada gentian yang boleh digunakan 
untuk mengukuhkan komposit polimer. Kajian ini bertujuan untuk mencirikan SPF 
dan menilai sifat-sifat fizikal, mekanikal, terma, morfologi, dan tribologi komposit 
fenol berdasarkan gentian ijuk (SPF/PF) sebagai bahan geseran. Kerja ini telah 
dibahagikan kepada empat peringkat untuk mencapai objektif yang 
ditentukan. Peringkat pertama memberi tumpuan kepada pencirian sifat-sifat haba, 
fizikokimia, dan morfologi gentian SPF yang tidak dirawat dan yang dirawat. Gentian 
telah dirawat dengan air laut selama 30 hari, dan dengan larutan alkali 0.5 M selama 
4 hari. Hasil kajian menunjukkan bahawa kestabilan terma gentian yang tidak dirawat 
adalah lebih tinggi sedikit daripada yang dirawat kerana peratusan tinggi kandungan 
silika (SiO2) di dalam gentian yang tidak dirawat itu. Juga diperhatikan bahawa 
permukaan gentian menjadi bersih dan kasar selepas rawatan dan dengan itu lekatan 
gentian-matriks yang lebih baik telah dicapai. Peringkat kedua memeriksa ciri-ciri 
fizikal (kekerasan Rockwell, penyerapan air/minyak, ketumpatan dan kandungan 
kekosongan), mekanikal (mampatan, impak, dan lenturan), morfologi, dan terma 
(Termogravimetri dan analisis mekanikal dinamik) komposit SPF/PF 
tersebut.  Gentian ijuk dalam saiz zarah kira-kira ≤ 150  μm dan suatu resin fenol 
digunakan untuk membikin komposit dengan teknik penekan panas, dan dengan beban 
pengisi yang berbeza sebanyak 0, 10, 20, 30, dan 40% mengikut isipadu. Hasil kajian 
menunjukkan bahawa, sebagai SPF pengisi kenaikan Rockwell kekerasan menurun, 
manakala penyerapan air/minyak dan ketumpatan meningkat. Sifat-sifat mekanikal 
bagi komposit juga telah bertambah baik, manakala kestabilan haba 
berkurangan. Secara keseluruhannya komposit 30% isipadu SPF/PF menguasai sifat-
sifat fizikal dan mekanikal yang lebih baik, dan dengan itu ia telah digunakan untuk 
siasatan lanjut di peringkat ketiga dan keempat kerja ini. Pengaruh air laut dan rawatan 
alkali gentian SPF ke atas sifat-sifat komposit telah dijalankan. Kedua-dua rawatan 
membantu meningkatkan ikatan gentian-matriks dan seterusnya meningkatkan sifat-
sifat fizikal dan mekanikal komposit gentian dirawat.  Komposit gentian tidak dirawat 
didapati lebih sedikit kestabilan termanya daripada yang dirawat. Pada peringkat 
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keempat, tingkah laku tribologi SPF/PF (30% isipadu) telah dibandingkan dengan 
komposit fenol yang tidak terisi. Hasil kajian menunjukkan bahawa menggabungkan 
SPF di dalam komposit fenol mengurangkan kadar haus tertentu dan pekali geseran 
dengan 64.1% dan 22.6% masing-masing. Tambahan pula, tingkah laku tribologi 
komposit gentian yang tidak dirawat dan yang dirawat berdasarkan beban gentian 
optimum telah dijalankan di bawah suhu bilik dan suhu tinggi (250 °C). Parameter 
proses seperti rawatan, beban dan kelajuan gelongsor telah dioptimumkan dengan 
menggunakan DOE (teknik Faktoran).  Komposit gentian dirawat menunjukkan 
tingkah laku haus yang lebih baik berbanding komposit yang tidak 
dirawat. Bagaimanapun, kehilangan isipadu semua komposit pada suhu tinggi didapati 
lebih daripada yang berada di suhu bilik kerana daya geseran gelongsor yang 
tinggi. Yang menariknya, keputusan mendedahkan bahawa SPF boleh digunakan 
sebagai tetulang berdaya maju di dalam komposit fenol di suhu bilik dan suhu 
tinggi. Kesimpulannya, gentian ijuk boleh digunakan sebagai gentian semula jadi 
alternatif untuk bahan geseran seperti komposit pad brek. 
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CHAPTER 1 

1. INTRODUCTION

1.1 Overview 

The issues of global warming and environmental pollution concerned human 
community, and being addressed by many researchers. Natural fiber reinforced 
polymer composites, or green composites, could help to overcome the problems. 
Green composites have gained great attention from researchers due to the awareness 
towards global environmental concerns (Palanikumar et al., 2016). Natural fibers are 
environmentally friendly and sustainable materials, which can replace synthetic fibers 
in the composites industry. In addition, dual benefits can be gained from using natural 
fibers in the renewable energy field. First, by reducing the usage of synthetic and toxic 
fibers and replacing them with biodegradable and safer fibers; and second, by 
contributing to renewable resources. Furthermore, natural fibers have lower cost (US$ 
220-1000/ton) and energy to produce (4 GJ/ton) than carbon and glass (cost: US$ 
12500/ton and US$ 1200-1800/ton) and energy to produce (30 GJ/ton and 130 GJ/ton), 
respectively (Shalwan and Yousif, 2013). Several types of natural fibers have been 
used as reinforcements in polymer composites, such as kenaf, oil palm fiber, jute, 
roselle, bamboo, hemp, sisal, banana, and pineapple. 

Recently, the application of green composites has covered a wide range of industries, 
(Al-Oqla et al., 2015; Palanikumar et al., 2016). Interest is warranted by the benefits 
of these natural fibers in comparison to synthetic fibers. Natural fibers are abundantly 
available at a very low cost and have low environmental impact, and good specific 
properties (high stiffness and strength per unit mass). Further benefits include low 
density, superior wear properties, and less harmful health effects (Shalwan and Yousif, 
2013). On the flip side, these fibers exhibit certain drawbacks such as poor 
compatibility with the matrices, high moisture absorption tendency, and low thermal 
stability. Such shortcomings limit the applications of natural fibers (Isma'ila et al.,
2016; Razali et al., 2015). The fiber-matrix adhesion considerably affect performance 
of green composites (Jawaid and Abdul Khalil, 2011). Thus, fiber surface treatment is
highly recommended (Nadlene et al., 2016; Rajkumar et al., 2016). 

During the past decade, natural fiber reinforced polymer composites have an increased 
interest due to the environmental awareness of consumers, as realistic alternative agent 
to replace or reduce synthetic fiber in many sectors. A number of significant industries 
such as packaging, construction, and automotive industries have witnessed massive 
attention in the progress of new green composites. Although, these extensive studies 
have reported on the monotonic properties; tensile, compressive, flexural, and impact, 
a noticeable lack of studies on the tribology performance of natural fiber reinforced 
polymer composites. Many studies have been conducted on synthetic fiber reinforced 
thermoset and thermoplastic polymer composites. In contrast, less attention was paid 
to the influence of natural fiber on the tribology behavior of polymer composites, since 
only few attempts have been reported (Shalwan and Yousif, 2013).
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Many industrial parts are exposed to tribological loading under operating conditions 
such as brake pads, brake linings, and brake couplings. Thus, understanding the 
tribological behavior of the green composites should be considered as mechanical 
properties as well (Shalwan and Yousif, 2013). Reinforcing the neat polymer with 
natural fibers could significantly improve the tribo-performance of the composites 
(Yousif and El-Tayeb, 2008). However, some researchers reported that the tribological 
performance of polymer composites-based natural fiber is not essentially on 
performance but it highly relies on many parameters such as polymer characterization, 
fiber-matrix adhesion, wear test conditions, and wear operating parameters (Omrani
et al., 2016). These aspects of natural based polymer composites are not covered in 
details and need further studies. 

Sugar palm fiber (SFP) is a natural fiber extracted from Arenga pinnata trees that were 
usually grown in South Asia (Ishak, et al., 2013d). This fiber seems to have properties 
of other natural fibers, but the detail properties are not generally known yet. Also, 
studies of sugar palm fiber composites have been usually focused on their mechanical 
properties (Sanyang et al., 2016). Nevertheless, no work has been found on the 
tribology behavior of sugar palm fiber reinforced polymer composites in the literature. 

1.2 Problem Statements 

Over the last few years, an amazing increase has been observed in the use of natural 
fibers in the replacement of synthetic fibers when producing various materials. This 
increase has been pushed further by the worldwide concern for environmental issues 
along with the use of depleting resources and, as a result, the search for materials that 
are eco-friendly. More particularly, this concern has led to an increase in new and 
stronger policies on the environment, which have forced various industries, such as 
automotive, packaging, and construction, to search for alternative reinforcements for 
the traditionally used composite materials (Sahari et al., 2012b; Yusriah et al., 2014).  

In friction material composites field, according to the regulations against hazardous 
ingredients in the United States and Europe, several ingredients such as asbestos, 
copper, and lead have been banned from the use as friction fiber enhanced polymeric 
composites in brake coupling, brake lining, and brake pads due to their harmful effect
on the environment and humans (Elakhame et al., 2014; Menezes et al., 2012). For 
example, in 1986, the Environmental Protection Agency (EPA) proposed a ban on 
asbestos that required all new vehicles to have non-asbestos brakes by September 
1993, and the aftermarket would have had until 1996 to convert to non-asbestos 
composites. This is due to an evidence by a medical research that asbestos fibers would 
lodge in the lungs causing adverse respiratory conditions (Blau, 2001). Also, 
California State approved the SENATE BILL SB 346 which forbids motor vehicle 
brake materials that contain more than 5 and 0.5 wt % copper by January 1, 2021, and 
January 1, 2025, respectively (Lee and Filip, 2013). Increased environmental 
awareness and consciousness throughout the world has developed an increasing 
interest in natural fibers and its application as alternative materials.
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Nowadays, the growing interest in adopting natural fibers such as flax, coir, palm 
kernel shell, kenaf, oil palm fiber, jute, roselle, bamboo, and etc. as reinforcement for 
polymeric composites is increased due to their useful and eco-friendly properties. 
They are non-toxic, low cost, biodegradable, light weight, renewable, high specific 
strength, non-abrasively and combustible (Al-Oqla et al., 2016). In addition, such 
fibers have high specific properties such as stiffness, impact resistance, flexibility, and 
modulus. Other properties include less skin and respiratory irritation and enhanced 
energy recovery. The biodegradability of natural fibers can contribute to a healthy 
ecosystem while their low cost and high performance fulfil the economic interest of 
industry (Menezes et al., 2012). On the other hand, agro waste products are emerging 
as new and inexpensive materials in the friction materials development with 
commercially viable and environmentally acceptable (Mutlu, 2009). 

Although there are many advantages to using natural fibers as reinforcements in 
polymer composites, there are some limitations. The high moisture absorption 
tendency, poor fiber-matrix interfacial bonding, and low thermal stability are the main 
problems of natural fibers when they are used to reinforce polymer composites. The 
performance of the composites depends highly on the fiber-matrix adhesion. Thus, a 
fiber surface treatment is one of the most effective methods to enhance the fiber-matrix 
adhesion and overcome this problem (Thakur and Singha, 2015), and should be 
considered prior to composite fabrication (AlMaadeed et al., 2013; Rajkumar et al.,
2016). 

Sugar palm fiber (SPF) is mainly found in Malaysia and Indonesia. It is a potential 
alternative reinforcement to replace conventional synthetic fibers (Ishak, et al.,
2013d). Sugar palm fiber has comparable advantages that are similar to other natural 
fibers. It has a high durability and good resistance to sea water (Isma'ila et al., 2016). 
Also, using sugar palm fiber as reinforcement material in polymer composites can 
contribute significantly to the income of farmers. Phenolic resin (PF) normally used 
in friction composites as a binder because of its good properties. It has a high rigidity, 
good dimensional stability, and excellent heat resistance (Surojo et al., 2014). Many 
studies have been reported on the reinforced SPFs in various polymers such as epoxy, 
unsaturated polyester, high impact polystyrene, etc., composites (Ishak et al., 2013d). 
On the flip side, no work has been found in the literature regarding SPF fibers as 
reinforced material in phenolic composites. 

The tribology literature is full of records on the tribological characteristics of synthetic 
fiber reinforced polymer composites. In contrast, very limited studies on the tribo-
potential of polymeric composites using natural fiber reinforcement. The positive 
conclusion of the studies indicates reinforcing natural fiber can improve the wear 
performance of polymer composites (Omrani et al., 2016; Shalwan and Yousif, 2013). 
However, there is a lack of understanding the wear mechanism of natural fiber in 
polymer composites under various process parameters due to the limited background 
information regarding using natural fiber in the friction composites. 
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1.3 Research Objectives 

The general aim of this research was to evaluate the behavior of sugar palm fibers 
embedded in phenolic composite. The specific objectives were set out as follows:  

1. To characterize the effect of treatments on the physical, chemical,
morphological, and thermal properties of the sugar palm fiber.

2. To determine the effect of sugar palm fiber loading on the physical,
mechanical, morphological and thermal properties of phenolic composites.

3. To evaluate the influence of treatments on the physical, mechanical,
morphological, and thermal properties of the optimum fiber loading of sugar
palm fiber embedded in phenolic composites.

4. To investigate the tribological behaviour of the optimum fiber loading of the
untreated and treated fiber composites under optimized wear process
parameters at ambient and elevated temperatures.

1.4 Scope of Study 

In this study, the properties of SPF that were naturally and chemically treated were 
evaluated. The novelty of embedded SPF filler in phenolic composites was explored 
in order to contribute to the existing knowledge, on SPFs application, and in the field 
of natural fiber composites. Thus, the behaviors of SPF/PF composites in terms of 
physical, mechanical, morphological, and thermal properties was considered. 
Furthermore, the tribo-performance of the untreated and treated fiber composite were 
considered under different wear parameters such as the applied load and the sliding 
speed at room and elevated temperatures.  

This study focused on using sugar palm fibers and phenolic resin as primary 
candidates. Sugar palm fiber was selected due to its good features. It has comparable 
properties over other natural fibers which are the high durability, the high resistance 
to sea water, good mechanical properties and absorbed less moisture. Since, the 
phenolic polymer has good thermal stability and could withstand at high temperature, 
thus it is commonly used in the friction materials as a binder. The sugar palm fibers 
were used in filler form (about ≤ 150 μm) as a filler embedded in phenolic polymer 
composites and the composites fabricated by a hot press machine. Sea water and 
alkaline treatments were employed to treat the sugar palm fiber. The fibers soak in sea 
water for 30 days, and in 0.5% solution of sodium hydroxide for 4 hrs. The 
methodology of this research is an experimental investigation, and the research was 
divided into four phases: 

The first phase of the research is fiber characterizations. The surface-treated SPFs 
were subjected to physical, chemical, and thermal stability analyses using Fourier 
transform infrared and energy dispersive X-ray spectroscopy as well as 
thermogravimetric analysis (TGA), respectively, whereas scanning electronic 
microscopy (SEM) was used to examine the cross-section and surface modification of 
the fiber.
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SPF/PF composites were prepared using five different loadings which are 0, 10, 20, 
30, and 40 % by volume. The SPFs and phenolic powders were mixed using a 
mechanical string. Then, the mixture poured into a mold and hot pressed at a 
temperature of 160 °C and pressure of 20 tons for 20 minutes and post cured. The 
composites were tested for their physical (water and oil absorption, moisture content, 
hardness, density and voids content), mechanical (flexural, impact, and compressive 
strength), morphological and thermal (TGA and DMA) properties. The highest yields 
in the properties of SPF loading/phenolic composites was found to be 30 % and it will 
be used to produce composites samples for the next phases. 

The third phase focuses on the influence of sea water and alkaline treatments on the 
physical, mechanical, morphological, and thermal properties, which mentioned above, 
of the optimum fiber loading composites.  

The resulted optimum properties composites were tested under tribology parameters 
at room and elevated (250 °C) temperatures. The wear test conduct using a pin on disc
apparatus. Untreated, alkaline, and sea water fiber treated based phenolic composites 
were designed as UT, AT, and ST composites, respectively. Factorial technique as a 
design of experiment (DOE) along with the analyses of variance (ANOVA) were used 
to design and evaluate the wear and friction results. The influenced factors included 
treatment (UT, ST, and AT), applied load (30, 50, and 70) N, and sliding speed (2.6, 
3.9, and 5.2) m/s at 5000 m sliding distance. Scanning electron microscopy (SEM) 
analysis was used to examine the morphology of the worn surfaces.

1.5 Thesis Outline 

This research consists of five chapters including 

Chapter 1: presents a brief background of the field of green composites with focusing 
on the noticeable lack of tribological behavior and highlight the research problems. 
Also, describing the objectives of research, and finally defines the boundaries of the 
work.

Chapter 2: contains reviews of the available literature on natural fibers reinforced 
composites with focusing on sugar palm composites. The tribology behavior as well 
as mechanical properties of polymer composites is also reviewed. Also, DOE and 
ANOVA analyses will be discussed in this chapter. 

Chapter 3: this chapter shows the material specifications, composites tests details, 
equipment’s and standards followed. Finally, the adopted methodology to attain the 
research objectives will be explained in details. 

Chapter 4: the discussion on the results and findings of the study are presented. 

Chapter 5: conclusions on the finding of the research are drawn. Finally, the 
recommendations for future research are suggested in this chapter. 
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