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ABSTRACT 
Energy is an essential input for social and economic development. Due to the 
generalization of industrial and domestic activities, the energy demand has 
considerably increased. This causes a rapid growing in the level of greenhouse 
gas emissions and consequently increment in fuel prices. This principle was 
the driving force behind attempts to use clean and renewable energy sources 
such as hydropower.  There are many reservoir systems around the world that 
have been constructed for hydropower generation. Also, hydropower provides 
a cheap source of electricity with less carbon emission. Although the renewable 
energy such as hydropower has obvious advantages, many of hydropower 
reservoir system are not operated efficiently and still being operated based on 
experience, rules of thumb or static rules appointed at the time of construction. 
It is noticeable that even small improvement in the operation rules can increase 
efficiency of a hydropower system.  Accordingly, different operation policies 
were constructed and evaluated in this research. Generally, this research is 
divided into two main stages. The main scope of stage I is to maximize the 
power generation output by using the historical data (2003-2012). Accordingly, 
different forms of release policies, namely One Point Hedging Policy (1PHP), 
Two Point Hedging Policy (2PHP), Three Point Hedging Policy (3PHP), 
Discrete Hedging Policy (DHP), Standard Hedging Policy for Hydropower 
Generation (SHPHP), Binary Standard Operating Policy for Hydropower 
Generation (BSOPHP), and Standard Operating Policy for Hydropower 
Generation (SOPHP) were formulated and constructed using Matlab 
simulation. The developed models have been applied to the Cameron Highland 
and Batang Padang Hydro Scheme (CHBPHS) in Cameron Highland, 
Malaysia. CHBPHS is a cascade hydropower reservoir systems, which 
comprise of two reservoirs (Ringlet and Jor) and two power stations.  In order 
to increase the system efficiency and maximize the power generation, 
constructed operation models were optimized. To determine the optimum 
solution in each policy, real coded genetic algorithm is used as an optimization 
technique. Thus, to enhance the functional efficiency in hydropower production, 
maximization of the total power generation over the operational periods is 
chosen as an objective function, while physical and operational limitations were 
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satisfied. The results declared that by using the optimized hedging policies, the 
output of power generation could increase around 13% in the studied reservoir 
system compared to present operating policy (TNB operation). This 
considerable increase in power production will contribute in economic 
development. Moreover, the discrepancies of monthly mean power generation 
output between highest and lowest months by using hedging policies are 
around 10% in Ringlet reservoir and 26% in Jor reservoir, while this variation in 
power productions by TNB operation rules are about 30% and 49% 
respectively. Since hedging policies are usually applied to distribute the water 
supply, the power-supply also scatter in the simulation period. This is attributed 
to the effect of water distribution on power output.  It can be concluded that 
these policies increase the stability of the system. The main scope of stage II is 
the prediction of future power generation by using generated weather data. 
Accordingly, the first aspect to point out is the generation of future climate 
parameters. Long Ashton Research Station-Weather Generator (LARS-WG) 
model is used firstly which was calibrated and validated using daily observed 
sunshine hours, rainfall, minimum and maximum temperature data. Afterwards, 
the minimum and maximum values of temperature and rainfall historical record 
were synthesize by the scenario file in order to predict the future climate 
parameters (Rainfall, minimum and maximum temperature) under possible 
scenarios. All scenarios reveal that climate change increases temperature 
around 0.3-0.7ºC at the location of the reservoir system. The increase in 
temperature could influence time and magnitude of rainfall by shifting dry and 
wet seasons. Moreover, the output results indicate a decrease in monthly 
rainfall. The output of LARS-WG model is used as an input of Artificial Neural 
Network (ANN). An ANN was subsequently applied as a rainfall-runoff 
modelling to predict the future stream flow feeding the reservoir systems. To 
explain more, ANN modelling comprised of two steps. The first step, ANN was 
calibrated and validated by using daily observed evapotranspiration, rainfall, 
and stream flow (2003-2012). In order to estimate daily evapotranspiration, 
daily observed Min and Max temperature was used in the estimation based on 
Hargreaves-Samani equation. By using the daily observed data, ANN can map 
the relationship between rainfall-runoff. The results indicate that the ANN 
model has good ability to capture the non-linearity of input/output in both 
training and test sets. In the second step, the future rainfall (output of LARS-
WG) and future evapotranspiration (convert future minimum and maximum 
temperature generated by LARS-WG into future evapotranspiration by 
Hargreaves-Samani formula) are exported to ANN to predict the future stream 
flow under possible scenarios. After generating the future climate parameters, 
the predicted stream flow by ANN and estimated future evaporation (convert 
future minimum and maximum temperature generated by LARS-WG into future 
evaporation by penman formula) are exported to the constructed models to 
predict the future power generation output. The results declare that the future 
output of power generation will decrease under all possible climate scenario in 
both reservoir. According to the given results, the application of 3PHP for 
Ringlet reservoir and SHPHP policy for Jor reservoir, will give the highest 
amount of power that could be produced in the future and can be used to 
mitigate the negative effects of climate change.  
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ABSTRAK 
Tenaga merupakan sumber terpenting bagi pembangunan sosial dan ekonomi. 
Disebabkan generalisai aktiviti industri dan domestik, permintaan sumber 
tenaga telah naik secara mendadak. Ini menyebabkan pertumbuhan pantas 
pada tahap penghasilan gas rumah hijau dan natijahnya harga minyak terus 
meningkat. Isu ini merupakan daya yang memacu disebalik banyak percubaan 
penggunaan sumber tenaga bersih dan boleh diperbaharui. seperti hidrokuasa. 
Terdapat banyak sistem takungan di dunia ini telah dibina untuk penghasilan 
hidrokuasa. Hidrokuasa menyediakan sumber elektrik yang murah dengan 
penghasilan karbon yang kecil. Walaupun penggunaan tenaga diperbaharui 
seperti hidrokuasa mempunyai kelebihan yang jelas dan nyata, kebanyakan 
operasi sistem takungan hidrokuasa tidak dijalankan secara berkesan dan 
masih dijalankan berasaskan pengalaman, undang-undang lazim atau undang-
undang statik yang ditentukan semasa pembinaan. Boleh diperhatikan, 
penambahbaikan dalam undang-undang operasi walaupun kecil boleh 
meningkatkan keberkesanan sistem hidrokuasa. Oleh itu pelbagai polisi 
operasi telah dibangunkan dan dinilai dalam kajian ini. Secara umumnya, 
kajian ini dibahagi kepada dua peringkat. Peringkat pertama ialah untuk 
memaksimumkan hasil penjanaan kuasa dengan menggunakan data sejarah 
(2003-2012). Oleh itu, pelbagai bentuk polisi seperti Polisi Satu Titik Catuan 
(1PHP), Polisi Dua Titik Catuan (2PHP), Polisi Tiga Titik Catuan (3PHP), Polisi 
Catuan Terputus (DHP), Polisi Catuan Piawai untuk Penjanaan Hidrokuasa 
(SHPHP), Polisi Operasi Binari Piawai untuk Penjanaan Hidrokuasa 
(BSOPHP), dan Polisi Operasi Piawai untuk Penjanaan Hidrokuasa (SOPHP) 
telah diformulasi dan dibangunkan menggunakan simulasi Matlab. Model yang 
dibangunkan telah digunakan ke atas Skim hidrokuasa Cameron Highland dan 
Batang Padang (CHBPHS) di Cameron Highland, Malaysia. CHBPHS 
merupakan sistem takungan hidrokuasa lata, di mana terdapat dua takungan 
(Ringlet dan Jor) dan dua stesyen janakuasa. Untuk meningkatkan 
keberkesanan sistem dan memaksimumkan penjanaan kuasa, model operasi 
yang dibina dioptimumkan. Untuk menentukan penyelesaian optimum setiap 
polisi, algoritma genetik terkod sebenar digunakan sebagai teknik 
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pengoptimum. Oleh itu, untuk meningkatkan keberkesanan fungsi dalam 
penjanaan hidrokuasa, memaksimumkan jumlah penjanaan kuasa dalam 
tempoh operasi telah dipilih sebagai fungsi objektif, manakala had fizikal dan 
operasi dipenuhi. Keputusan menunjukkan bahawa dengan penggunaan polisi 
catuan teroptimum, hasil penjanaan kuasa dalam sistem takungan yang dikaji 
boleh ditingkatkan sehingga 13% berbanding dengan polisi operasi sedia ada 
(operasi TNB). Peningkatan ketara dalam penjanaan kuasa ini akan 
menyumbang dalam pembangunan ekonomi. Tambahan lagi, perbezaan hasil 
penjanaan kuasa purata bulanan di antara bulan tertinggi dan bulan terendah 
dengan menggunakan polisi catuan adalah lebih kurang 10% di takungan 
Ringlet dan 26% di takungan Jor, manakala perbezaan penjanaan kuasa 
dengan menggunakan undang-undang operasi TNB adalah masing-masing 
lebih kurang 30% dan 49%. Memandangkan polisi catuan selalunya digunakan 
untuk pengagihan bekalan air, bekalan kuasa juga berselerak dalam tempoh 
simulasi. Ini adalah disebabkan pengagihan air memberi kesan kepada 
penghasilan kuasa. Sebagai kesimpulan, polisi-polisi ini meningkatkan 
kestabilan sistem. Skop utama tahap kedua ialah ramalan penghasilan kuasa 
di masa hadapan dengan menggunakan data cuaca terjana. Dengan itu, aspek 
pertama yang perlu ditunjukkan ialah penghasilan parameter cuaca di masa 
hadapan. Pertamanya, model Long Ashton Research Station-Weather 
Generator (LARS-WG) telah digunakan, yang mana ia telah dikalibrasi dan 
disahkan menggunakan data jam pancaran matahari, hujan, dan data suhu 
minimum dan maksimum yang diperhatikan. Kemudian, nilai minimum dan 
maksimum suhu dan rekod hujan, disintesis oleh fail senario untuk 
meramalkan parameter cuaca di masa hadapan (taburan hujan, suhu 
minumum dan maksimum) di bawah senario yang munasabah. Kesemua 
senario menunjukkan bahawa perubahan cuaca meningkatkan suhu di lokasi 
sistem takungan lebih kurang 0.3-0.7ºC. Peningkatan suhu boleh 
mempengaruhi masa dan magnitud hujan dengan menganjakkan musim panas 
dan musim hujan. Tambahan lagi, hasil keputusan menunjukkan pengurangan 
hujan bulanan. Keputusan dari LARS-WG digunakan sebagai input kepada 
Rangkaian Neural Buatan (ANN). ANN seterusnya digunakan sebagai model 
taburan hujan-air larian untuk meramal aliran sungai yang masuk ke dalam 
sistem takungan di masa hadapan. Untuk lebih penerangan, pemodelan ANN 
mempunyai dua tahap. Tahap pertama ANN di kalibrasi dan disahkan dengan 
menggunakan evapotranspirasi harian, hujan dan aliran sungai yang 
diperhatikan (2003–2012). Untuk menganggarkan evapotranspirasi harian, 
suhu minimum dan maksimum harian yang diperhatikan digunakan dalam 
penganggaran berdasarkan persamaan Hargreaves-Samani. Dengan 
menggunakan data harian yang diperhatikan, ANN boleh memetakan 
hubungan di antara hujan-air larian. Keputusan menunjukkan model ANN 
memiliki kebolehan yang baik untuk mencerap data masukan/keluaran tak-
linear dalam kedua-dua set latihan dan set ujian. Dalam tahap kedua, hujan 
masa hadapan (hasil dari LARS-WG) dan evapotranspirasi masa hadapan 
(tukar suhu minimum dan maksimum masa hadapan yang dihasilkan LARS-
WG kepada evapotranspirasi masa hadapan menggunakan formula 
Hargreaves-Samani) diekspot ke ANN untuk meramal aliran sungai di masa 
hadapan di bawah senario yang munasabah. Selepas penghasilan parameter 
cuaca di masa hadapan, aliran sungai yang diramalkan oleh ANN dan 
anggaran penyejatan masa hadapan (tukar suhu minimum dan maksimum 



© C
OPYRIG

HT U
PM

vi 

masa hadapan yang dihasilkan oleh LARS-WG kepada penyejatan masa 
hadapan mengunakan formula Penman) diekspot ke model yang dibina untuk 
meramal penghasilan kuasa di masa hadapan. Keputusan menunjukkan 
penghasilan kuasa di kedua-kedua takungan di masa hadapan akan 
berkurangan di bawah semua kemungkinan senario cuaca. Merujuk kepada 
keputusan yang diberi, penggunaan 3PHP untuk takungan Ringlet dan polisi 
SHPHP untuk takungan Jor, boleh memberikan jumlah kuasa yang tertinggi 
yang boleh dihasilkan di masa hadapan dan boleh digunakan untuk 
mengurangkan kesan negatif dalam perubahan cuaca. 
 
Kata Kunci: Pengoptimuman, Operasi takungan hidrokuasa, Polisi catuan, 
Algoritma genetik, Perubahan cuaca, LARS-WG, Pemodelan hujan-air larian, 
Rangkaian neural buatan. 
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 CHAPTER 1 
 

INTRODUCTION 
 
1.1 Background 
 
 
Dams and reservoirs have been constructed since 5000 years ago to serve 
humankind by retaining water in times of surplus and releasing it in times of 
deficiency. Nowadays, there are more than 45,000 dams in all over the world, 
which must be operated efficiently to manage the water shortage, suppress 
floods, and mitigate the large catastrophic droughts. The main duty of reservoir 
systems is to regulate the natural runoff to meet all demands. While, the 
operation of reservoirs are so complex because of the seasonal variations and 
disarray of climate. Reservoir systems are mostly operated as a multipurpose 
function such as meeting water for agriculture, power production, urban and 
industrial water supply, tourist attraction, recreation, fisheries and aquaculture, 
and can improve environmental conditions.  
 
 
Meanwhile, many reservoir systems around the world have been constructed 
for hydropower generation. Hydro power provides a cheap source of electricity 
with few carbon emissions. So, it is such a clean and renewable source of 
energy where power is derived from the energy of water moving from higher to 
lower elevations. It is a proven, mature, predictable and price-competitive 
technology. Hydropower has among the best conversion efficiencies of all 
known energy sources (about 90% efficiency, water to wire). It requires 
relatively high initial investment, but has a long lifespan with very low operation 
and maintenance costs. Reservoirs that generate hydropower are typically 
operated with the goal of maximizing energy revenue. Yet, reservoirs are not 
operated sustainably and still operate based on experience, rules of thumb or 
static rules appointed at the time of construction. It is noticeable that even small 
ameliorations in the way of operation can increase efficiency of system for 
many consumers. 
 
 
1.2 Problem statement 
 
 
Hydropower is a major resource of electrical energy. The advantages of using 
hydropower are restriction in use of fuels, the pollutions caused by fossil fuels, 
and the benefits of using clean and renewable source of energy. The operation 
of a reservoir system is complicated because of the uncertainties of inflow and 
rising in demand due to development and population growth. One of the most 
striking problem is how hydroelectric systems including reservoirs and power 
plant should be operated over a representative hydrologic period to give the 
maximum beneficiation in industry (Afzali et al. 2008). One of the significant 
problem that effects on the hydropower reservoir system output in Malaysia is 
operating rules. Present managers (TNB) still used the standard operating 
policy to open gates at a time of flooding, which is not efficient. Another factors 
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that contribute to rapidly rise water level than usual are deforestation, 
increasingly intensive agricultural activities and in some cases poorly managed 
agricultural practices in the dam’s catchment area. This is coupled with poor 
land use practices and the encroachment of urban development into the flood 
plain below the dam. More parameters that decrease the efficiency of 
hydropower systems are loss of live storage due to the high volume of rubbish, 
sand, geology, drainage density, ground slops, and silt sediment on the lake 
floor. Losing the water storage volume increase the risk of flooding 
downstream, which directly influence on the safety of human population and 
properties. In addition, loss of live storage cause an economic losses not only 
in revenue for power generation but also large capital and maintenance cost for 
reservoir dredging and restoration works. Changes in sediment load in 
reservoirs due to extreme events such as higher rainfall intensity cause 
erosion. Sediment has a significant effect on the performance of hydropower 
reservoirs in some ways such as; it could increase turbine abrasions and 
decrease its efficiency, it could reduce the lifespan of reservoir capacity by 
filling up reservoirs faster, it also leads to decrease the water quality. The 
foregoing factors are occurring due to lack of suitable and efficient 
management in whole catchment area. Although numbers of factors effects on 
the output of hydropower systems, only the reservoir operating policies will be 
discussed and investigated in this research. 
 
 

1. Hydropower reservoir system are not operated efficiently and still 
operate based on experience, rules of thumb or static rules appointed 
at the time of construction. While, it is necessary to modify and improve 
the way of operation by considering the current system situation and 
using more efficient release policies for operating and managing the 
reservoir system. It is remarkable to say that even small improvement 
in the way of operation could enhance efficiency of system and 
increase the output of power generation. According to fill up the gap of 
inefficient operating policy in Malaysia, this research is done to test and 
evaluate different forms of operational policies in order to adapt the 
hydropower reservoir system operation in the face of changing 
hydrological balance and climate change. 
 
 

Another aspect in a survey of hydropower reservoir system is although the 
renewable energy such as hydropower has obvious advantages, it still faces in 
significant drawbacks. One of the significant problem is that hydropower 
resources are so vulnerable to seasonal variation and climate change. 
According to World Commission on Dams (WCD, 2000), climate change has 
the potential to make an effect on global hydropower installations in different 
ways.  
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2. Changes in seasonal and annual local climate parameters, especially 
in temperature and rainfall could influence on river stream flow feeding 
the studied reservoirs. To explain more, changes in time, magnitude, 
length of the wet season flows especially delayed on rainy season, 
affecting dam operations as well as release patterns.  In addition, 
increase in temperature effects on water surface evaporation at 
reservoirs and decrease the available storage. Changes in temperature 
and rainfall could influence on the runoff volume and consequently 
output of power generation. 

 
 
Meanwhile, another issue raise from the statement that is absence of available 
toolbox to predict the future power output. 
 

 
3. There is no integrated model or package available for prediction and 

analysis of power generation in the future. To overcome the mentioned 
problem, an integrated model were constructed to predict the future 
power output and analyse the output of different operating policies in 
order to mitigate the negative effects of climate change on hydropower 
reservoir systems. 

 
 
1.3 Objectives of study 

 
 
The principal objective of this study is to derive the best policy in order to 
increase the output of hydropower generation and mitiagte the effects of 
climate change on power output. Accordingly, the specific objectives are 
summarized as following 
 
 

1. To construct and optimize different forms of release policies in order to 
increase the system efficiency and maximize the power generation. 

 
 
2. To apply an efficient model that could predict the effects of climate 

change on weather parameters in regional-scale. 
 
 
3. To construct an integrated model in order to predict the future power 

generation using predicted climate parameters. 
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1.4 Scope and limitation of the study 
 
 
The scope and limitation of this research is summarized based on each of 
specific objective. 
 
Objective 1: Construct efficient operating policies 
 
 

  Scope1: Various type of release policies namely, One Point Hedging Policy 
(1PHP), Two Point Hedging Policy (2PHP), Three Point Hedging Policy 
(3PHP), Discrete Hedging Policy (DHP), Standard Hedging Policy for 
Hydropower Generation (SHPHP), Binary Standard Operating Policy for 
Hydropower Generation (BSOPHP), and Standard Operating Policy for 
Hydropower Generation (SOPHP) are formulated and constructed in Mat lab 
simulation. In order to determine the optimum solution in each policy, real 
coded genetic algorithm is used as an optimization technique while maximizing 
the total power generation over the operational periods is chosen as an 
objective function. 
 
 
Limitation1: 

 
 

 It assumes that the efficiency of turbines remains the same during present 
and future periods. 

 
 
 It assumes that the minimum water level remains constant in present and  

future  period due to continues dredging  
 
 
 TNB just installs one evaporation gage for CHBPHS which records monthly. 

So the evaporation of reservoir surface area (mm) was taken the same for a 
whole month and the same for both reservoirs. 

 
 
  Objective 2: Prediction of future climate parameters 

 
 

Scope 2: An integrated model of climate change (LARS-WG) and rainfall-runoff 
(ANN) is constructed in order to predict the future stream flow coming to the 
selected reservoirs. 
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Limitation 2: 
 
 
 Only the output of 1 form 15 sub model (GCMs) was used for prediction 

of climate parameter. 
 
 
 The numbers of rainfall stations are available in the study area, but the 

data of nearest rainfall stations relative to reservoirs were taken as an 
input of downscaling weather generator and rainfall-runoff modelling.   

 
 
 Since the deforestation and agriculture activities data is not available in 

this area, less number of parameters are used for construction of rainfall-
runoff model.  

 
 
Objective 3: Prediction of future power generation 
 
 
Scope 3: The predicted stream flow are exported to the constructed operational 
policy models to predict the future hydropower generation output. 

 
 

1.5 Significance of study 

 
 
Electricity demand is increasing twice as fast as overall energy use and is likely 
to rise by more than two-thirds 2011 to 2035. In 2012, 42% of primary energy 
was converted into electricity. So, the world will need greatly increased energy 
supply in the next 20 years, especially cleanly-generated electricity such as 
hydropower, which use water supply for producing electricity. Accordingly, the 
number of hydropower reservoir systems have increased rapidly in developing 
counties such as Malaysia due to urbanization, industrialization, change in life 
styles and also economic growth. So, it is requisite to improve and modify the 
way of reservoir systems operation. Since, many of them still operate based on 
an experience and the rules appointed at the time of construction. However, 
the situation of reservoir system does not remain the same and will be vary in a 
face of hydrological and seasonal change. Even small amelioration could 
enhance the efficiency of system and increase the output of power generation. 
Accordingly, the main purpose of this research is to fill up the lack of inefficient 
operating system. So, different forms of operating policies are constructed and 
evaluated in this research in order to determine their capabilities in operating of 
system and increase electricity output. Therefore, this research focus on this 
question; ‘How to improve the reservoir systems operation to increase the 
output of power generation?’  
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Another problem raise up because of global warming. Recently, climate change 
has brought further stress on the already stressed systems and threatens the 
livelihood conditions of water resources. So, it is significant to analyse and 
predict how such changes to the earth's climate system could effect on the 
temperature and amount of precipitation. Since, these variables will directly 
effect on water resources. Moreover, better understanding of climate parameter 
variation, give valuable results that could help the water resources managers to 
consider the climate effects for adaption of suitable operational policies and 
mitigation of negative effects of climate change. So, the significant of this study 
is to answer these questions; ‘How to adapt the operation of the water resource 
system in the face of changing seasonal effects and climate change?’ 
 
 
1.6 Thesis organization 
 
 
This Chapter lays out the background, problem statement, objectives, scope 
and limitation, significant of study and also introduces the framework of present 
dissertation.  
 
 
Chapter 2 review the previous studies, which have been done before. At first, 
the different forms of release policy for operation of water resources are 
reviewed and the optimization technique to find out the optimum strategy in 
specific water resource systems are subsequently investigated and benefits 
and drawbacks of methods are explained. Afterwards, the review has been 
done in order to achieve the second objective (generating the future climate 
parameters). The groups of downscaling techniques for prediction of climate 
variables are studied and their performances are compared. At last, the 
importance of understanding the transformation of precipitation into runoff in 
reservoir management is explained and the benefits of using artificial neural 
networks as a rainfall-runoff method are presented. 
 
 
This research can be divided into two stages of implementation which 
extensively described and presented in Chapter 3. First of all, the Cameron 
Highland and Batang Padang Hydro Scheme (CHBPHS) with its components 
such as dams, reservoirs, and hydro plants and the source of gathering 
information for this research are explained. Afterwards, the different part of 
integrated modelling with their descriptions and mathematical formulations are 
extensively described. These Sub-models are including the mathematical 
models of reservoir operational policies, Long Ashton Research Station 
Weather Generator (LARS-WG) model, and Artificial Neural Networks 
algorithm. 
 
 
In Chapter 4, the optimized results of various forms of release policies in both 
single and cascade hydropower reservoir systems are analysed and compared 
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to determine the best operational policy to maximize the power generation 
output in present time period at study area. In addition, the calibration and 
validation results of downscaling weather generator and rainfall-runoff 
modelling under different climate scenarios were investigated and future output 
of hydropower generation was predicted by using different release policies 
under possible emission scenario. 
 
Chapter 5 sums up the research findings and recommend an outline future 
research directions for extension of the study presented in this dissertation. 
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