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Nowadays, rehabilitation of structural members is a challenging issue for structural 
engineers, and much effort has been made to predict crack propagation in structural 
members. In the present study, a stiffness matrix is formulated for the Fracture 
Process Zone (FPZ). Based on the derived formulation, a new element was 
developed in order to model crack propagation using finite element analysis. Size 
effects such as depth, thickness of the beam and effective crack length were 
considered in the calculation of FPZ length and crack extension. Based on the new 
element, the Griffith differential energy method was developed to predict the crack 
propagation criterion with high accuracy.  
 
 
Therefore, in the present investigation a numerical model was developed to model 
crack propagation in concrete beams flexural or shear strengthened with FRP. To 
validate the present model, experimental testing on reinforced concrete beams and 
beam-column joints with and without Fiber Reinforced Polymers (FRPs) 
strengthening were carried out. Three beam specimens with rectangular cross-section 
were tested. Two beams were strengthened with externally bonded FRP sheets for 
flexure or shear strengthening and one control beam were considered. One beam was 
externally bonded with FRP sheet at the bottom of the beam and another one was 
bonded with FRP sheet in the shear span i.e. the two sides of the beam. The beams 
were subjected to two point loads and tested to failure. The experimental results 
were compared to the present model predictions based on conventional fracture 
models carried out using commercial finite element software (ABAQUS). The 
results indicated that the use of FRP composites for flexural and shear–strengthened 
beams decreased crack propagation for approximately 55% and 37%, respectively, in 
comparison to the control beam. It was observed that the length of FPZ increased by 
using of FRP for shear–strengthening. The present model showed that the main 
diagonal crack formed at the support in the control beam whereas it appeared 
through the shear span in the shear–strengthened beam.  
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The developed fracture mechanics modeling was also applicable for identifying 
crack propagation in FRP-strengthened beam column joints. For this purpose, two 
beam column joints were made and tested to validate the present model. The results 
of the FRP-strengthened beam column joints by using present study showed good 
agreement with the experimental results (7 to 11%), whereas the results from 
numerical analysis using finite element software were considerably greater than 
experimental results (16 to 20 %). The results revealed that cracks formed in the 
joint area in the control specimen, while extensive cracks appeared in the beam in 
the specimen strengthened by FRP.  
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Disember 2015 

 

 

Pengerusi :  Profesor Abang Abdullah Abang Ali, PhD 

Fakulti :  Kejuteraan 

 
 
Pada masa kini, pemulihan bahagian-bahagian struktur merupakan isu yang 
mencabar untuk jurutera awam (struktural) dan usaha telah dipergiatkan untuk 
meramal pemanjangan rekahan dalam bahagian-bahagian struktur . Dalam kajian ini, 
sebuah matriks ketegaran telah dihasilkan untuk zon proses rekahan (FPZ). 
Berdasarkan formulasi yang didapati, satu elemen baru telah dibentuk untuk 
pemodelan pemanjangan rekahan menggunakan analisa elemen terhingga. Kesan-
kesan saiz seperti kedalaman, ketebalan alang dan kepanjangan rekahan telah 
dipertimbangkan dalam pengiraan kepanjangan FPZ dan pelanjutan rekahan. 
Berdasarkan elemen baru itu, kaedah pembezaan tenaga Griffith telah digunakan 
untuk meramal ciri-ciri pemanjangan rekahan dengan ketepatan yang tinggi. 
 
yang diperkuatkan dengan pelbagai kaedah seperti polimer yang diperkukuhkan 
dengan gentian (FRPs).  
 
Oleh itu, dalam kajian ini, sebuah model yang berasaskan angka telah dihasilkan 
untuk pemodelan pemanjangan rekahan dalam alang konkrit yang diperkukuhkan 
dari segi kelenturan atau ricihan dengan FRP. Bagi mengesahkan ketepatan model 
ini, ujikaji eksperimen keatas rasuk dan sambungan rasuk-tiang konkrit bertetulang 
yang tidak diperkukuh dan yang diperkukuh dengan  FRP dijalankan. Tiga spesimen 
rasuk dengan keratan rentas segi empat tepat telah diuji. Dua rasuk diperkukuhkan 
dengan kepingan FRP yang dilekat di luar untuk pengukuhan kelenturan atau ricihan 
dan satu rasuk sebagai sebagai kawalan. Pada salah satu rasuk, kepingan FRP diikat 
bersama secara luaran di bawah rasuk dan pada rasuk yang lain, kepingan FRP diikat 
pada rentang ricihan iaitu kepada 2 sisi rasuk.  Rasuk tersebut dikenakan dua beban 
terpumpun sehingga gagal. Keputusan eksperimen telah   diperbandingan  dengan 
ramalan model sedia ada berdasarkankeputusan ujian dengan model rekahan 
konvensional yang dijalankan menggunakan perisian elemen terhingga komersil 
(ABAQUS). Keputusan menunjukkan bahawa penggunaan komposit FRP untuk 
alang yang diperkukuhkan dari segi kelenturan dan ricihan telah mengurangkan 
pemanjangan rekahan sebanyak kira-kira 55% dan 37% masing-masing berbanding 
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dengan alang kawalan. Kepanjangan FPZ didapati bertambah dengan penggunaan 
FRP untuk pengukuhan kelenturan. Model ini menunjukkan bahawa rekahan 
pepenjuru utama terhasil di penyokong alang kawalan manakala terbentuk di 
kawasan ricihan dalam alang yang diperkukuhkan secara ricihan.  
 
 
Pemodelan mekanik rekahan yang dihasilkan ini boleh digunakan untuk 
mengenalpasti pemanjangan rekahan dalam sendi rasuk-tiang yang diperkukuhkan 
dengan FRP. Untuk penggunaan sedemikian tujuan tersebut, dua sendi rasuk-tiang 
dihasilkan dan diuji untuk mengesahkan ketepatan model ini. Keputusan kajian ini 
adalah selaras dengan keputusan eksperimental (7 hingga 11%), manakala keputusan 
dari analisa berasaskan angka menggunakan perisian elemen terhingga didapati lebih 
besar dari keputusan eksperimental (16 hingga 20%). Keputusan menunjukkan 
bahawa rekahan terbentuk di bahagian sendi untuk spesiman kawalan manakala 
rekahan yang luas terbentuk di alang spesimen yang diperkukuhkan dengan FRP. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 General 

 

Sudden failure occurs in concrete structural members, such as beams and beam 

column joints, due to the quasi-brittle behavior of concrete. In general, sudden 

failures in concrete initiate with crack propagation in the tension zone because of an 

increase in stress or occurring initial crack. Therefore, these failures should be 

accurately predicted.  

 

 

Material strength and fracture mechanics theories are two major groups of theories in 

crack growth analysis. In material strength theory, cracks are detected based on 

strain, stress, or a combination of stress and strain. The disadvantage of this theory is 

that eliminating the damaged elements can produce a stress singularity. Material 

strength theory, which existed prior to fracture mechanics, uses a crack propagation 

criterion with no strain energy effect. It explains the propagation of a crack as an 

unavoidable method of energy transfer between the strain energy of an elastic body 

and the fracture energy required to produce a new crack. The fracture mechanics 

theory is considered to be a more accurate method for predicting crack growth, 

because this method is similar to the physical reality of crack propagation (Shi, 

2009). Accurate prediction of crack propagation in concrete is essential for 

improving its reliability, durability, and serviceability.  

 

 

Two methods are now available for fracture analysis in concrete. These can be 

broadly categorized into Linear Elastic Fracture Mechanics (LEFM) and nonlinear 

elastic fracture mechanics. 

 

 

LEFM was first used to study crack propagation in warships deployed during World 

War II (Esfahani, 2007). In this method, a coefficient is applied to the stress in the 

vicinity of the crack tip. This coefficient is called the stress intensity factor. Because 

the stress intensity factor depends on the material properties, size of the crack, load, 

and geometry of the structure, it presents a relationship between the material and the 

reaction of the structure. Stress singularity at crack-tip is the characteristic of Linear 

LEFM. Later, some studies used LEFM in crack propagation analysis, but Kaplan 

(1961) found that deploying LEFM was not acceptable when it came to solving crack 

problems with normal concrete. To solve the aforementioned problem, the first 

model based on nonlinear fracture mechanics for concrete was proposed by 

Hillerborg et al. (1976). Their study introduced a region, often termed fracture 

process zone (FPZ), which has the ability to transfer normal and shear stress to close 

the crack. The FPZ plays a remarkable role in the behavior of cracks and their 

propagation under load. Hence a study on the role of the FPZ to predict and prevent 

crack propagation under static monotonic load (Esfahani, 2007) is indispensable. 

Although more techniques of crack propagation have been developed in fracture 
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mechanics, crack modeling to predict the behavior of concrete structures is still far 

from satisfactory. 

 

 

On the other hand, the crack patterns of concrete changes by using different types of 

reinforcement. Fiber reinforced polymer (FRP) composites have been increasingly 

used in concrete structures in recent years because of their corrosion resistance, low 

weight, high tensile strength and large strain. Nowadays, strengthening using FRP is 

of interest from an economic point of view. The use of FRP composites is now 

identified as a successful, suitable, and efficient technique to strengthen structures. 

 

 

Because FRP modifies cracks propagation in concrete structural members, it is 

essential to study the crack behavior in structural members with FRP. Much effort 

has been made to model and test members flexural strengthened with FRP for 

different types of cracks, debonding, anchorage, and beam behavior (Arduini, et al., 

1997; Yang et al., 2003; Bruno et al., 2007 ; Pavan et al., 2005; Achintha and 

Burgoyne, 2011). In addition, there have been many experimental studies on beams 

shear–strengthened using FRP (Adhikary and Mutsuyoshi, 2004; Coronado and 

Lopez, 2008; Teng and Hollaway, 2008; Siddiqui, 2009). Conventional theoretical 

and numerical analyses in fracture mechanics have been applied to study concrete 

flexural beams strengthened using FRP composites (Jae et al., 2010; Chen et al., 

2012; Kesavan et al., 2013; Lin et al., 2014). However, there is still little in the way 

of theoretical analysis to calculate the fracture resistance of a shear–cracked beam 

strengthened with external FRP. 

 

 

One of the most vulnerable structural elements to sudden failure is the beam column 

joint (Figure 1.1) whose crack propagation behavior needs to be predicted (Deaton, 

2013). Cracks in the joint start where the beam and column intersect because of 

stress increase (Said and Nehdi, 2004). Thus, the fracture mechanics theory is the 

best method for predicting this type of crack. Beam column joints, which provide for 

the continuity of a structure, are a critical and significant part of concrete structures. 

Therefore, the study of their behavior, crack patterns, failure mode, and 

strengthening is essential. Presenting an accurate fracture mechanics model for beam 

column joints is of great importance owing to the complex behavior of the joints. 



© C
OPYRIG

HT U
PM

3 

 

 
 

Figure 1.1. Damage to Beam Column Joint (Said and Nehdi, 2004) 

 

 

Taylor (1974) was among the first to study joint behavior, and the American 

Concrete Institute (ACI) (1976) was the first to recommend codes for joint design. 

The behavior of a structural joint is very complex because of the interaction between 

different mechanisms. These different mechanisms are flexure, shear, and 

confinement of the joint. A crack may happen in the joint (shear failure) (Figure 1.2), 

in the beam, or in the column. Shear cracks in the joint are generally more significant 

than other types of cracks because shear failure in joints can break down the whole 

structure. These types of cracks have been observed in many studies (Pantelides et 

al., 2008). When a crack happens in a joint, the column and beam rotate and lose 

their load capacity. This mechanism is undesirable and it should be prevented. To 

prevent shear failure in the joint, it is better that the failure be shifted to an adjacent 

beam. 

 

 
 

Figure 1.2. Cracks in the Joint Tested (Corazao and Durrani, 1989) 

 

 

The strengthening of joints can be carried out using jacketing steel, bolted steel, or 

plate steel or by stitching and drilling with grout. Corrosion, confinement in the joint, 

and cost are reasons why these techniques are rarely used. Nowadays, to retrofit a 

beam column joint, external FRP is used. However, use of fracture mechanics 

modeling to analyze crack propagation in the joints and in joints strengthened by 

FRP has not been reported. 
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The prediction of crack propagation in concrete structures fails to conform to 

experimental tests.  

 

 

Given these issues, the elastic stiffness of a fracture process zone is not applicable to 

the prediction of crack propagation in concrete. Thus, new fracture process zone 

stiffness and crack propagation criterion for concrete have been valuable to the study 

of concrete and have provided theoretical support to proposed empirical models. 

 

 

The other contributions of this study have been summarized as follow: 

 

a) Development of a fracture mechanics model to calculate the dissipation of 

the release rate on beams with flexural and shear strengthened with FRP, 

which is essential for predicting crack propagation in concrete 

b) Proposed of a theoretical method to obtain the fracture resistance of 

shear–cracked concrete beams and beams shear strengthened using FRP 

c) Development of numerical model to predict crack propagation in beam 

column joints and FRP-strengthened joints 

 

It is also believed that this investigation will impact professional practice. Also, the 

findings have informed the effect of FRP on crack propagation in concrete structures 

such as beams and joints and will contribute to the development of design guidelines. 

 

 

1.2 Problem Statements 

 

Modeling of crack propagation is critical for simulation of failure in concrete 

structures. The common challenge for the modeling of crack propagation is the lack 

of a precise numerical solution for modeling material softening because the 

prediction of crack propagation in concrete structures fails to conform to 

experimental tests. In previous models, the stiffness of the FPZ was estimated from 

the Young’s modulus (Gerstle and Xie, 1992; Elices et al., 2009; Sagaresan, 2012). 

However, the FPZ has softening behavior as well, which is not considered. 

Therefore, previous studies did not provide an accurate prediction of crack 

propagation. Hypothetically, in order to obtain accurate results, the softening effect 

of the FPZ needs to be considered when using the finite element method to model a 

material. Then, based on an accurate stiffness matrix, an improved Griffith energy 

approach (1921) can be used to predict the propagation criterion. 

 

 

Recently, the application of FRP to strengthen concrete structures has significantly 

increased, and the stiffness and strength of concrete structural elements have been 

improved by applying FRP in the member. However, there is concern about crack 

propagation and crack patterns in concrete sections strengthened by FRP. There are 

many numerical models to predict cracks between FRP and concrete for various 

strengthened structures. However, most of them are based on stiffness and strength 

criteria. These numerical models cannot properly predict crack propagation in 

structural members retrofitted with FRP based on an energy approach. 
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It is essential to consider effect of FRPs on cracks propagation in concrete to prevent 

crack propagation. In previous models, the authors focused primarily on the 

occurrence of slip in FRP composites (Dai and Ng, 2014; Pan and Wu, 2014). 

Therefore, previous investigations did not take the influence of FRP on the FPZ and 

on crack propagation into account. Also, the effect of FRP on crack propagation 

based on an energy approach has not been investigated yet. It is a challenge that 

needs further study. This is what previous authors have done, and here is our 

contribution. 

 

 

There are many theoretical models for calculating the loading capacity for various 

flexural–strengthened beams (Ohno et al., 2014 ). However, shear capacity of a beam 

shear strengthened with FRP composites has not been reported yet.  

 

 

Many studies have been conducted on beam column joints with bonded FRP. 

However, most of these studies have been done experimentally; there is no research 

available on numerical modeling owing to the lack of proper finite element models of 

the fracture process in joints.  

 

 

Cracks begin where columns and beams intersect owing to tension stress. Thus, 

fracture mechanics that takes into account tension softening is needed to analyze 

cracks in joints. Therefore, an accurate FPZ model of joints with and without FRP 

strengthening is required. 

 

 

The aim of this study is to develop more accurate prediction of crack propagation in 

concrete structures particular reinforced concrete (RC) beams and RC beam column 

joints strengthened with FRP. 

 

 

1.3 Objectives  

 

In order to achieve the above mention aims, the following objectives are outline: 

 

1.  To develop new formulation for FPZ stiffness and crack propagation 

criterion in RC beams and RC beams strengthened with FRP under static 

load. 

2.  To develop a new element and numerical model for the prediction of crack 

propagation in RC beams with FRP shear strengthened under static load. 

3.  To identify shear capacity theoretically for cracked RC beams with FRP 

shear– strengthened. 

4. To implement the new developed FPZ stiffness and numerical model on 

beam column joints strengthened by FRP. 

5. To validate the new proposed model by experimental tests on RC beam and 

RC beam column joints with and without flexural and shear FRP 

strengthening. 
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1.4 Scope and limitations 

 

The scope of the current research is as follows: 

 

a) This research focused on the FPZ stiffness and crack propagation criterion in 

concrete beams and the flexural and shears strengthening of concrete beams 

using FRP. It is also focused on the development of a numerical model for 

beam column joints strengthened by FRP under static load.  

b) Three beams were built and tested to validate the results obtained by the 

present model. All beams were tested under four-point loading with simple 

support. The beam B-0 was used as the control beam. Specimen B-1 was 

flexure-strengthened with CFRP sheets. The third specimen B-2 was 

strengthened in the shear span. Two full scale reinforced concrete beam 

column joints were tested to validate the results obtained by the present 

model. One beam column joint was tested in an un-strengthened condition to 

act as the control beam column joint. One beam column joint was 

strengthened with CFRP sheets. 

c) Analysis was carried out using fracture mechanics theory. In fracture 

mechanics, a crack is assumed to start in the tension face in concrete with 

strain-softening behavior. The stress–strain behavior of concrete in the 

compression zone and crushing are neglected in the fracture mechanics 

theory.  

d) Four-node isoparametric elements were used to model bulk concrete as a 

linear elastic material. The nonlinear behavior of bulk concrete and plastic 

deformation is ignored owing to the small deformation. 

e) Program code was developed for analysis of two-dimensional (2D) plane 

stress for fast convergence. Based on the literature review, when 

displacements are small, 2D modeling is sufficient for analyzing cracks 

(Gerstle and Xie, 1992). A three-dimensional (3D) model increases 

complexity, resulting in inaccuracy. 

f) An investigation of the effect of various material and geometric parameters 

(parameter study) was carried out and is discussed based on the numerical, 

experimental and theoretical results. 

g) Validation of the numerical model was carried out through numerical 

modeling by use of commercial finite element software and experimental 

tests for three types of reinforcement concrete beams with and without 

implementing FRP for flexural strengthening of beam under four-point 

loading. No internal stirrup was provided in the desired shear failure region. 

Also, two full-scale beam column joint specimens, one of which was 

strengthened using a CFRP sheet, were cast and tested under static load. 

 

 

1.5  Layout of the Thesis 

 

The thesis is prepared in five chapters as follows: 

 

Chapter 1 describes the importance of the current study, contribution of thesis, 

provides the problem statements, objectives, scopes and limitations. 
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Chapter 2 reviews earlier studies modeling crack propagation in concrete and 

previous efforts on the use of fracture mechanics to analyze FRP-strengthened 

concrete. This chapter also includes a literature review of previous efforts to analyze 

beam column joints strengthened using FRP composites. 

 

 

Chapter 3 describes the proposed model of cracks in concrete in order to obtain 

accurate results under static load and the program code developed to model beams 

flexural strengthened and shear strengthened with FRP under static load. It also 

describes the experimental tests conducted on an RC beam and on concrete beams 

flexural strengthened and shear strengthened with FRP. 

 

 

Chapter 3 also describes the development of the proposed theoretical method to 

estimate the fracture resistance of shear cracks in RC beams shear strengthened with 

FRP. 

 

 

In addition, in Chapter 3 the developed numerical model is applied to predict crack 

propagation in beam column joints and in FRP-strengthened joints. The experimental 

tests on the beam column joints and the FRP-strengthened joints used to validate the 

present numerical model are also described. 

 

 

Chapter 4 includes the program code used to estimate and validate the analytical and 

experimental results obtained from the current study, the results reported in previous 

studies, and the results obtained from the finite element analysis (FEA) software 

ABAQUS. Also, a number of beams were considered as benchmarks and their 

respective behaviors were observed. The effect of various material and geometric 

parameters (parameter study) was investigated and the results are discussed in this 

chapter. This chapter also validates and discusses a proposed theoretical model of a 

shear–cracked beam and provides theoretical analysis of the beam shear strengthened 

with an external FRP. 

 

 

Chapter 4 also discusses the ability of the present nonlinear finite element code to 

estimate fracture mechanics and to model control beam column joints and joints 

strengthened with FRP. In this study, to validate the present model, the FEA software 

ABAQUS was used to model crack propagation by conventional cohesive elements 

(COH2D4P). 

 

 

Chapter 5 provides conclusions from the present study with suggestions for future 

investigations. 
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