

UNIVERSITI PUTRA MALAYSIA

RUNTIME INTEGRITY VALIDATION OF EXECUTABLE C BINARIES

USING TRUSTED PLATFORM MODULE

TEH JIA YEW

 FK 2017 24

© C
OPYRIG

HT U
PM

i

RUNTIME INTEGRITY VALIDATION OF EXECUTABLE C BINARIES

USING TRUSTED PLATFORM MODULE

By

TEH JIA YEW

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfillment of the Requirement for the Degree of Doctor of Philosophy

March 2017

© C
OPYRIG

HT U
PM

ii

COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Putra
Malaysia unless otherwise stated. Use may be made of any material contained within
the thesis for non-commercial purposes from the copyright holder. Commercial use
of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM

iii

DEDICATION

The author wish to dedicate this thesis

to his mother and sister.

This thesis is also dedicated to the authors’

grandparents (both paternal and maternal) and father who had

left the world before this thesis can be completed.

Not forgetting as well,

the furry guardians of the house gates whose

unwavering dedications spans more than 3 generations.

Being the first in both the TEH (paternal)

and TAN (maternal) clans to pursue a Ph.D. to date ,

the author further wish to dedicate

this thesis to the future generations

of both clans as a motivator

to follow the authors’ footsteps.

‘May the Force be with them.’

© C
OPYRIG

HT U
PM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the Degree of Doctor of Philosophy

RUNTIME INTEGRITY VALIDATION OF EXECUTABLE C BINARIES
USING TRUSTED PLATFORM MODULE

By

TEH JIA YEW

March 2017

Chairman : Khairulmizam bin Samsudin, PhD
Faculty : Engineering

Software developers working under pressure and tight deadlines frequently fail to
implement secure programming practices during software development stages. Both
constraints are one of the major contributing factors leading to the exploitation of
software vulnerabilities for malicious intentions. Furthermore, commercially
developed software, owing to intellectual property protection, do not provide the
source code – finished products are only shipped in the form of executable binaries.
Unfortunately, the exploitation of executable binaries with vulnerabilities, especially
those coded with the C programming language leads to malicious, undesirable
effects such as buffer overflows, privilege escalation (spawning an attackers’ shell)
or premature termination of an executing binary (the C language possesses powerful
memory manipulation features i.e. pointers). The following gaps were identified in
these three related past efforts into the integrity validation of executables: CBones,
Dytan and RTC. First, in CBones, these limitations were identified: a memory
debugging tool called Valgrind is required for validation, does not mitigate the
vulnerable executable and reports high overheads (Normalized Performance of 0.87).
Second, in Dytan, these limitations were identified: requires the use of a dynamic
binary instrumentation tool called PINTOOLS for validation, does not mitigate the
vulnerable executable and reports high overheads (Normalized Performance of 0.85).
Lastly, in RTC, these limitations were identified the executable source code is
required for validation and heavy use of static analysis leading to high overheads
(Normalized Performance of 1.10). In this thesis, we propose our framework for the
runtime integrity validation of executable binaries: Runtime Integrity Validation of
Executable Binaries or RIBS. Our framework merges both static (for offline
profiling) and dynamic (for runtime validation) analysis techniques for the runtime
validation of the integrity of executables compiled with the C programming
language. The integrity validation metadata of a trusted, origin executable is stored
in a Trusted Platform Module (TPM) hardware register to prevent tampering. Such
ensures that the executable binary integrity validation metadata can be totally
trusted. In the security evaluation of RIBS, we had subjected RIBS to mitigate 10
categories of buffer overflow attack patterns in the Wilander and Kamkar testsuite

© C
OPYRIG

HT U
PM

ii

(encompassing the stack, heap and data/bss executable userspace memory areas), 5
real world shellcodes and 3 real world applications with buffer overflow
vulnerability. RIBS is successful in the detection and termination of all 18 attacks
patterns deployed. In terms of performance evaluations, overhead was measured in
terms of CPU execution time [via GNU clock()]. We measured the CPU execution
time of RIBS and compared the results with the CPU execution time of two major
categories of attack mitigation mechanism deployed in the testbed Fedora Core 20
Linux OS: Address Space Layout Randomization (ALSR) and 5 other attack
mitigation mechanisms implemented via the gcc compiler. Performance evaluations
reveal that RIBS reported highest Normalized Performance (NP) of 0.68, which is
the lowest as compared to CBones (0.87), Dytan (0.85) and RTC (1.10).
Conclusively, RIBS performs marginally better as compared to all three efforts
(CBones, Dytan and RTC) which requires the use of memory debugging tools for
integrity validation of executable binaries. RIBS does not require the use of any
tools. RIBS is able to detect integrity violations caused by these categories of
violations: all forms of buffer overflow attacks mounted via the Wilander and
Kamkar testsuite and real world privilege escalation attack shellcodes. Furthermore,
as a last line of defence, RIBS is able mitigate integrity violations in executables via
the runtime termination of the offending executable. This feature not available in
CBones, Dytan and RTC.

© C
OPYRIG

HT U
PM

iii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

PENGESAHAN KESAHIHAN PROGRAM C SEWAKTU PERLAKSANAAN
DENGAN MENGGUNAKAN MODUL PLATFORM BOLEHPERCAYA

Oleh

TEH JIA YEW

Mac 2017

Pengerusi : Khairulmizam bin Samsudin, PhD
Fakulti : Kejuruteraan

Jurutera perisian sering bekerja di dalam situasi di mana masa yang diberikan untuk
menyiapkan produk perisian adalah amat terhad, Maka, jurutera perisian menghadapi
tekanan yang besar. Akibatnya, amalan pengaturcaraan yang selamat tidak
dipraktikkan dengan sempurna ketika perisian dibangunkan. Ini merupakan faktor
yang menyumbang kepada eksploitasi kelemahan di dalam perisian untuk tujuan
berniat tidak murni. Tambahan lagi, perisian komersil, disebabkan oleh keperluan
untuk melindungi hak cipta, tidak memberikan kod sumber – produk yang telah siap
dipasarkan dalam bentuk binari yang boleh digunakan/dilancarkan ataupun dikenali
sebagai executable binaries. Malangnya, eksploitasi kelemahan di dalam executable
binaries, terutamanya yang dikodkan menggunakan bahasa pengaturcaraan C,
mengakibatkan kesan-kesan yang tidak diingini, contohnya buffer overflow,
privilege escalation (salah satu kesan ialah penggodam dapat menguasai terminal
ataupun shell mangsa) mahupun menamatkan perlaksanaan perisian yang sedang
digunakan ataupun lebih dikenali dengan penamatan pra-matang (bahasa
pengaturcaraan C mempunyai kebolehan memanipulasi memori computer yang
canggih). Kelemahan dikesan di dalam tiga usaha masa lampau yang bertujuan untuk
mengesahkan kesahihan program: CBones, Dytan dan RTC. Pertama, kelemahan -
kelemahan berikut dikesan di dalam CBones: pengesahan kesahihan program
memerlukan penggunaan peralatan perisian Valgrind, tiada langkah susulan
penyelesaian terhadap program yang tidak sahih dan overhead yang tinggi
dilaporkan (Normalized Performance bernilai 0.87). Kedua, kelemahan-kelemahan
berikut dikesan di dalam Dytan: pengesahan kesahihan program memerlukan
penggunaan peralatan perisian Pintools yang berupaya melakukan instrumentasi
program dinamik, tiada langkah susulan penyelesaian terhadap program yang tidak
sahih dan overhead yang tinggi dilaporkan (Normalized Performance bernilai 0.85).
Akhir sekali, RTC mempamerkan kelemahan – kelemahan yang berikut: kod sumber
program diperlukan bagi tujuan pengesahan dan penggunaan analisis statik yang
melarat menyumbang kepada overhead yang tinggi (Normalized Performance
bernilai 1.10) .Maka, di dalam tesis ini, kami membentangkan cadangan
penyelesaian (framework) untuk mengesahkan integriti (ataupun kesahihan) perisian

© C
OPYRIG

HT U
PM

iv

di dalam bentuk executable binaries, yang dinamakan Runtime Integrity Validation
of Executable Binaries ataupun RIBS. Pengesahan kesahihan dilakukan di waktu
perlaksanaan program. Cadangan penyelesaian kami menggunakan kombinasi teknik
analisis statik (untuk pengumpulan maklumat di luar talian ataupun offline) dan
dinamik (untuk penentuan kesahihan program sewaktu perlaksanaan). Metadata
yang digunakan bagi tujuan pengesahan integriti perisian asal disimpan di dalam
daftar perkakasan Trusted Platform Module. Ini bertujuan mengelakkan sebarang
gangguan terhadap metadata jesterunya memastikan kebolehpercayaan metadata
tersebut. Penilaian keberkesanan dilakukan ke atas RIBS melibatkan yang berikut:
10 jenis serangan buffer overflow sepertimana yang dikelaskan di dalam ujian
Wilander and Kamkar , 5 jenis serangan shellcode dan 3 jenis serangan aplikasi
sebenar yang mempunyai kelemahan buffer overflow .Keputusan penilaian
keberkesanan ke atas RIBS mendapati bahawa RIBS berjaya mengesan dan
menamatkan kesemua 18 jenis serangan yang dilancarkan ke atas RIBS. Penilaian
prestasi ke atas RIBS dilakukan dengan mengukur overhead hasil masa perlaksanaan
CPU. Ini dilakukan dengan menggunakan fungsi GNU clock(). Masa perlaksanaan
CPU untuk RIBS diukur dan dibandingkan dengan masa perlaksanaan CPU untuk
dua jenis kaedah penangkis serangan perisian yang ditemui di dalam sistem
pengoperasian Fedora Core 20, iaitu Address Space Layout Randomization
(ASLR) dan 5 kategori penangkis serangan perisian yang digabungkan ke dalam gcc
compiler. Sistem pengoperasian ini digunakan sebagai testbed untuk RIBS.
Keputusan penilaian prestasi melaporkan Normalized Performance (NP) paling
tinggi dengan nilai 0.68. Nilai 0.68 merupakan nilai yang terendah jika dibandingkan
dengan CBones (0.87), Dytani (0.85) dan RTC (1.10). Kesimpulannya, RIBS
mencatatkan persembahan yang lebih baik berbanding dengan CBones, Dytan dan
RTC. Ketiga - tiga usaha yang dinyatakan memerlukan penggunaan perisian
pemeriksaan ingatan komputer untuk berfungsi. RIBS tidak memerlukan
penggunaaan sebarang perisian untuk tujuan pengesahan kesahihan program. RIBS
berupaya mengesan semua kategori serangan buffer overflow yang terkandung di
dalam pakej ujian Wilander and Kamkar dan juga berupaya mengesan serangan jenis
shellcodes. Tambahan lagi, RIBS berupaya menamatkan perlaksaan program yang
disahkan tidak sahih. Ini merupakn satu langkah pencegahan yang tidak dilengkapi
di dalam CBones, Dytan and RTC.

© C
OPYRIG

HT U
PM

v

ACKNOWLEDGEMENTS

Faithful thanks and deepest appreciation are extended first to my main supervisor,
Dr. Khairulmizam bin Samsudin; and not forgetting my co supervisors: Associate
Professor Dr. Nur Izura binti Udzir and Associate Professor Dr. Shaiful Jahari bin
Hashim - for their confidence placed on me, patience, unrelenting trust, charismatic
guidance, prevailing assistance in all aspects, valuable suggestions, comments and
advice; from the beginning of this thesis and till the curtains were drawn. I am also
indebted to the Malaysian Ministry of Higher Education (MOHE) for the award of
the myBrain 15 (myPhD) scholarship in support of my Ph. D. candidacy in UPM.

I started my doctoral studies 8 years ago, back in 2009 with limited knowledge on
computer systems security (my first and Masters degrees were in Physics),
presenting much mundane and half baked (sometimes even quarterly baked) research
proposals and ideas. My supervisors took on my half baked ideas with full patience,
professionalism, enthusiasm and consistently suggested numerous fine
improvements, without which this thesis would not have been possibly being
completed. Credit is also given to anyone who had either directly or indirectly
contributed to the completion of this thesis and also this research project.

© C
OPYRIG

HT U
PM

vii

This thesis was submitted to the Senate of the Universiti Putra Malaysia and has

been accepted as fulfillment of the requirement for the degree of Doctor of

Philosophy. The members of the Supervisory Committee were as follows:

Khairulmizam bin Samsudin, PhD

Senior Lecturer

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Nur Izura binti Udzir, PhD

Associate Professor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

(Member)

Shaiful Jahari bin Hashim , PhD

Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Member)

ROBIAH BINTI YUNUS, PhD

Professor and Dean

School of Graduate Studies

Universiti Putra Malaysia

Date

© C
OPYRIG

HT U
PM

x

TABLE OF CONTENTS

Page

i
iii
v

vi
viii
xiii
xv

xvii

ABSTRACT
ABSTRAK
ACKNOWLEDGEMENTS
APPROVAL
DECLARATION
LIST OF TABLES
LIST OF FIGURES
LIST OF CODE LISTINGS
LIST OF ABBREVIATIONS xviii

CHAPTER

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem Statement 1
1.3 Objectives 4
1.4 Scope and Assumptions 4
1.5 Motivation for our proposed framework 5
1.6 Summary of Contributions 6
1.7 Thesis Organization 6

2 LITERATURE REVIEW 8
2.1 Integrity Validation of Software with Hardware Support 8
2.2 Integrity Validation of Software with/without Source code

Availability
11

2.2.1 Integrity Validation of Software with Source code
Availability

11

2.2.2 Integrity Validation of Software without Source
code Availability

13

2.3 Runtime Validation and Overheads Incurred 14
2.4 Training Requirement 18
2.5 Achieving Trust in the Integrity Validation Metadata 20
2.6 Related Work 21

2.6.1 Randomization of Metadata in Executables 21
2.6.2 Frameworks Utilizing Hybrid Analysis on

Executables
22

2.6.3 Integrity Validation of Executables with Hardware
Support

23

2.6.4 Instrumentation of Executables 25
2.6.5 Buffer Overflow Attack Mitigation Mechanisms in

the gcc compiler
28

2.6.6 Effectiveness and Performance Benchmarking 30
2.7 Conclusive Persuasion for RIBS Development 30

3 METHODOLOGY 32
3.1 High-Level Overview of RIBS 32

© C
OPYRIG

HT U
PM

xi

3.2 The rules 35
3.2.1 Rule 1 - Stack Constraint 36
3.2.2 Rule 2 - Function Return Address Constraint 37
3.2.3 Rule 3 - Base/Frame Pointer (ebp register)

Constraint
37

3.2.4 Rule 4 - Function Caller-callee Interrelationship
Constraint

37

3.2.5 Rule 5 -Saved Register Constraint 37
3.2.6 Rule 6 - Stack Frame Size Constraint 38
3.2.7 Rule 7 - Constructor Function Pointer Constraint 38
3.2.8 Rule 8 - Destructor Function Pointer Constraint 38
3.2.9 Rule 9 - Return Address Constraint on Instruction

Pointer (IP)
38

3.2.10 Rule 10 - Stack Frame Constraint on Instruction
Pointer (IP)

38

3.2.11 Rule 11- Return Instruction Execution Constraint on
Instruction Pointer (IP)

39

3.2.12 Rule 12 - Return Instruction Execution Constraint
on Instruction Pointer (IP)

39

3.3 Case Study on executable binary attack 39
3.4 Vulnerability Identification Mechanism (VIM) 43

3.4.1 Deployment of the VIM 43
3.4.1.1 Trace Module 43
3.4.1.2 Trap & Identify Module 44

3.5 Integrity Validation Mechanism (IVM) 45
3.5.1 PCR Extender (PCE) 46
3.5.2 Integrity Assessment Engine (IAE) 49
3.5.3 The Implementation of the SAP in Integrity

Validation of Executing Executable binary
49

3.6 Communicating with the TPM and Inclusion of the TPM
Library into RIBS

55

3.7 Vulnerability Mitigation Mechanism (VMM) 58
3.8 Evaluations on RIBS 60

3.8.1 Effectiveness Evaluations 60
3.8.1.1 Experimental Parameters 64

3.8.2 Performance 64
3.8.3 Experimental Set-Up 65

3.9 Description on Operation of Offense Applications used for
the Security Evaluation of RIBS

65

3.9.1 Attack Patterns 66
3.9.1.1 AP 1- Stack Overflow (via return address) 66
3.9.1.2 AP 2- Stack Overflow via Pointer (all the

way to target: Return Address)
66

3.9.1.3 AP 3- BSS Overflow via Pointer (all the
way to target: Return Address)

67

3.9.1.4 AP 4 - Stack Overflow (via Old Base
Pointer)

67

3.9.1.5 AP 5 - Stack Overflow (via Function
Pointer as Local Variable)

68

© C
OPYRIG

HT U
PM

xii

3.9.1.6 AP 6 - Stack Overflow (via Function

Pointer as Parameter)

70

3.9.1.7 AP 7 - Stack Overflow (via longjmp) 72

3.9.1.8 AP 8 - BSS Overflow (via Function
Pointer as Local Variable)

74

3.9.1.9 AP 9 - BSS Overflow (via longjmp) 74

3.9.1.10 AP 10 - Heap Overflow (via
overflowing heap buffer)

74

3.9.2 Shellcodes 74

3.9.3 Real World Applications 75

3.9.3.1 Vulnerability in ncompress 75

3.9.3.2 Vulnerability in polymorph 76

3.9.3.3 Vulnerability in gzip 77

4 RESULTS AND DISCUSSION 79

4.1 Effectiveness Evaluations 79

4.1.1 Effectiveness Evaluations on RIBS 79

4.1.2 Effectiveness Evaluations on RIBS, ASLR and gcc

based Buffer Overflow Attack Mitigation

Mechanisms

82

4.1.3 Comparison of the Effectiveness of RIBS versus

CBones

87

4.2 Justification behind the failure of gcc Attack Mitigation

Mechanisms to attack/ mitigate some attack patterns

88

4.3 Discussion on False Positives and Negatives 97

4.4 Performance 97

4.4.1 Overhead Measurement using GNU clock() 99

4.4.2 Results from Overhead Measurements 101

4.4.3 Comparison of Performance Overhead with Related

Frameworks

108

5 CONCLUSION AND FUTURE WORK 109

5.1 Conclusion 109

5.1.1 Contributions of this Thesis 109

5.2 Future Work 111

5.3 Limitations 112

5.4 Epilogue 113

REFERENCES 114

BIODATA OF STUDENT 126

LIST OF PUBLICATIONS 128

© C
OPYRIG

HT U
PM

xiii

LIST OF TABLES

Table Page

2.1 Literature Summary for efforts in the Integrity Validation of
Software with Hardware Support

10

2.2 Literature Summary for efforts in the Integrity Validation of
Software with TPM Hardware Support

11

2.3 Literature Summary for efforts in the Integrity Validation of
Software with Source code Availability

12

2.4 Literature Summary for Integrity Validation of Software without
Source Code Availability

14

2.5 Literature Summary for Runtime Validation and Overheads
Incurred

17

2.6 Literature Summary for Training Requirement 19

2.7 Literature Summary for efforts in Achieving Trust in the Integrity
Validation Metadata

20

2.8 Literature Summary for efforts in the Randomization of Metadata
in Executables

22

2.9 Literature Summary for efforts in the Frameworks Utilizing
Hybrid Analysis on Executables

23

2.10 Literature Summary for efforts in the Integrity Validation of
Executables with Hardware Support

24

2.11 Differences between RIBS, CBones Dytan and RTC 26

2.12 Literature Summary for efforts in the Instrumentation of
Executables

28

2.13 Evaluation of gcc Compiler based Attack Mitigation Mechanisms
by RIPE and RIBS

29

3.1 Rules utilized by RIBS. 36

3.2 Attack Patterns for security evaluations on RIBS 61

3.3 Attack Features of 64 bit Shellcodes used for Effectiveness
Evaluations of RIBS

62

© C
OPYRIG

HT U
PM

xiv

3.4 Attack Features of Vulnerable Real World Applications for
Effectiveness Evaluations of RIBS

62

3.5 Attack prevention mechanisms in Fedora Core 20 63

3.6 Effectiveness Evaluation Parameters: gcc Flags Settings during
Compilation Stage

64

4.1 Security Evaluations on RIBS using the Wilander & Kamkar
testsuite

80

4.2 Security Evaluation of RIBS on Real World shellcodes 81

4.3 Security Evaluation of RIBS on real world applications 81

4.4 Comparison of Security Evaluations on Mitigation Mechanisms in
Attester OS via the Wilander and Kamkar buffer overflow
testsuite

83

4.5 Comparison of Security Evaluations on Attack Mitigation
Mechanisms in Attester OS via Real World Shellcodes

85

4.6 Comparison of Security Evaluations on Attack Mitigation
Mechanisms in Attester OS via Real World Applications

86

4.7 Empirical Analysis of RIBS vs. FC 20 Mitigation Mechanisms on
all 18 Attack Patterns (10 Wilander + 5 shellcodes + 3 real world
applications)

87

4.8 Comparison of Effectiveness Evaluation between RIBS and
CBones

88

4.9 Configurations for overhead test on RIBS vs. attack mitigation
mechanisms

98

4.10 Summary of overhead tests conducted on RIBS vs. attack
mitigation mechanisms

99

© C
OPYRIG

HT U
PM

xv

LIST OF FIGURES

Figure Page

3.1 High level overview of the deployment sequence of
components in the RIBS framework

33

3.2 High Level Overview of the RIBS framework 33

3.3 Deployment sequence of ribs constituent components
during runtime validation of executable binary

34

3.4 Stack Layout 37

3.5 Stack frame views for main and sub-function(s) 39

3.6 Stack layout after code compilation 40

3.7 GDB disassembly of an executable C binary 41

3.8 Stack layout – Non violation of rule- Return Address Constraint 42

3.9 Stack layout – Violation of rules: Return Address Constraint and
Base/Frame Pointer Constraint

43

3.10 Deployment Sequence of RIBS Constituent Components
during the Profiling Stage

47

3.11 CRTM from BIOS to binary 48

3.12 Runtime Validation of Metadata and Executable Binary 51

3.13 The IAE sub module implementing Integrity Violation Diagnosis
(Rules Violation NOT Detected) - Part I

52

3.14 The IAE sub module implementing Integrity Violation Diagnosis
(Rules Violation NOT Detected) - Part II

53

3.15 The IAE sub module implementing Integrity Violation Diagnosis
(Rules Violation Detected) - Part I (Violation of Return Address
Constraint)

54

3.16 The IAE sub module implementing Integrity Violation Diagnosis
(Rules Violation Detected) - Part II (Violation of Return Address
Constraint)

55

3.17 VMM successful in terminating an executing binary with
detected rules violation

59

© C
OPYRIG

HT U
PM

xvi

4.1 Function Prologue and Epilogue in an executable C binary 89

4.2 Function Prologue and Epilogue in an executable C binary
(modified)

90

4.3 Location of the canary in the stack 91

4.4 shellcode() effects : causing overwriting of the main() stack
return address and frame pointer all the way to an attackers’
shellcode

93

4.5 How the Compile Time Buffer Check mechanism fails 94

4.6 Code for Attack Pattern (AP) 6 95

4.7 Original Program Control Flow for AP 6 (no overflow) 96

4.8 Altered Program Control Flow for AP 6 (with overflow) 96

4.9 Schematic Diagram Illustrating the Measurement of the CPU
Time of the Attack Patterns /Shellcode/Real World Applications
executables

101

4.10 Overhead measurement results for attack patterns no. 1 to 10 104

4.11 Overhead measurement results for attack patterns no. 1 to 5 105

4.12 Overhead measurement results for attack patterns no. 5 to 10 106

4.13 Overhead measurement results for shellcodes and real world
applications

107

4.14 Comparison of Performance Overheads between RIBS and
related frameworks

108

© C
OPYRIG

HT U
PM

xvii

LIST OF CODE LISTINGS

Code Listing Page

1 C code for a simple buffer overflow vulnerable program 40

2 Trap Module 45

3 The IAE Component implementing Integrity Violation

Diagnosis
50

4 TCG’s TPM TSPI Library added to our framework 57

5 Implementation of the VMM 59

6 Code for AP 2 67

7 Code for AP 4 68

8 Code for AP 5 69

9 Code for AP 6 71

10 Code for AP 7 73

11 Code for AP 10 74

12 Code for shellcode-36858 75

13 Buffer Overflow Vulnerability in ncompress 76

14 Buffer Overflow Vulnerability in polymorph 77

15 Buffer Overflow Vulnerability in gzip 78

16 Code for shellcode-77 90

© C
OPYRIG

HT U
PM

xviii

LIST OF ABBREVIATIONS

COT Chain of Trust

EK Endorsement Key

glibc GNU C Library

GRUB Grand Unified Bootloader

IAE Integrity Assessment Engine

IMA Integrity Measurement Architecture

IVM Integrity Validation Mechanism

IP Instruction Pointer

OS Operating System

PCE PCR Extender

PCR Platform Configuration Register

ROT Root of Trust

SAP Static Attestation Protocol

TCG Trusted Computing Group

TDDL Trusted Device Driver Layer

TPM Trusted Platform Module

TSPI TCG Service Provider Interface

TSS Trusted Software Stack

VIM Vulnerability Identification Mechanism

VMM Vulnerability Mitigation Mechanism

© C
OPYRIG

HT U
PM

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

To date, major security reporting sites for example, Packetstorm Security
(Packetstormsecurity, 2016) and US CERT National Vulnerability Database (NIST,
2016) continues to report software vulnerability disclosures with no lesser than 5000
cases from the year 2006 to 2015. The highest number of cases was reported in 2014,
with an estimated 8000 cases. Software vulnerabilities also plague open source
applications and OSes (e.g. Debian and Red Hat), touted for its stability and security
due to the availability of source codes for validation.

Globally reputable consultancy firm Pricewater House Cooper (PWC) reported in a
recent 2015 Global State of Information Security (IS) Survey 2015 that IS breaches
worldwide organizations faced a 92% increase (or USD $ 20 million) compared to
2013 (Consultants, 2016). Security breaches occur in numerous forms, one common
and direct method of security breach is via the deployment of hijacked software
applications – in which the integrity of either the source code or the binaries had been
compromised.

One example of such breach occurs in Juniper’s firewall and router operating systems
(OS). A third party (hackers and even law enforcement – the U.S. National Security
Agency) was able to stick unauthorized codes into the OS for malicious intentions –
such as espionage – for information gathering intentions (Bort, 2015).

One factor contributing to the cause of integrity violations in software –coding errors
occurring over products developed over a tight deadline and lack of sufficient quality
control testing prior to deployment or release. Furthermore, even in the event if bugs
or errors were discovered, mitigation attempts were often too time consuming or
lacked of success – such is attributed to the unavailability of the software’s source
code.

Even if the source code is available, time would be consumed to comprehend the
intricacies of the code to unravel technical details pertaining to the code e.g.
architecture or functionality. We therefore stress that, there is strong motivation for
runtime integrity validation of code binaries.

1.2 Problem Statement

The first major obstacle towards the integrity validation of software lies in the
unavailability of source code. Such is a common practice in commercially developed

© C
OPYRIG

HT U
PM

2

software, whereby only the executable binary is provided to the end user. The
weakness or research gap demonstrated by the efforts listed below is that , in the
absence of source code, integrity validation of software faces challenges in terms of
the implementation of a few well established methods , for example (Lozano et al.,
2015), REDAS (Kil et al., 2009) , AutoPAG (Lin et al., 2007) , Daikon (Ernst et al.,
2007) and RTC (Yong, 2004). All require the source code for the implementation of
the integrity validation mechanism in their respective proposed solutions.

Second, in some proposed hardware based solutions towards integrity validation of
software, increased overheads were incurred at the implementation stage due to the
required support of some form of hardware which is not found ubiquitously or requires
some form of modifications either and the design or at the instruction level (Tuck et
al., 2004) and (Ozdoganoglu et al., 2006).

The research gap or weakness demonstrated by (Tuck et al., 2004) is that the proposed
solution is emulated (inside Bochs emulator) and not implemented in real time
systems. Hence, the performance results reported are valid only for the sandboxed
Bochs emulator.

On the other hand, the research gap demonstrated by SmashGuard (Ozdoganoglu et
al., 2006) lies in the requirement of a hardware stack for protecting return address and
the protection offered by SmashGuard does not extend to non stack areas in the
memory, namely the heap, data and bss regions.

TPM solves both the problems of excessively high execution overheads and that of
the need for specific hardware. The TPM is a low cost component (approximately
USD 20) equipped with security features permitting user or metadata authentication
and attestation. The TPM chip has, since its introduction in 2002, has been included
on motherboards of both high and low end computers, hence the TPM chip presence
is now ubiquitous (Group, 2008).

Furthermore, dynamic analysis solutions on integrity validation work via dynamically
performing runtime checks on running binaries. This method work upon binary
execution via dynamically checking for known traces of vulnerabilities – for example
placement of stack canaries in the gcc code compiler or memory access only in
permitted areas, as per (Cowan et al., 1998) ,(Zhou et al., 2004) and (Qin et al., 2006)
. Apart from hardware based solutions, this method also contributes to the increased
overhead at during execution. (Zhou, Liu, et al. (2004)

Essentially, training is required as a form of input in heuristics based solutions,
especially prior to deployment. Heuristics based solutions incorporate statistical
methods, which utilizes signatures for diagnosis (functions similar to antivirus). Some
work in this category are as per (X. Chen et al., 2015), (Brumley et al., 2007), (H. J.
Wang et al., 2004) and (Singh et al., 2004).

© C
OPYRIG

HT U
PM

3

Vulnerabilities diagnosis is achieved via deviations from program executions obtained
via deployment of statistical algorithms or methods. The major research gap or
drawback of this technique is that despite being automated, both applied statistical
mitigation methods or algorithms require time consuming input training prior to
deployment. Another drawback lies in whether both methods are capable of gathering
inputs from all forms of vulnerabilities – such exposes both techniques to false
negatives.

Third, lies the question of how do someone trust the results of integrity validation, i.e.
how can the executable binary integrity metadata (or guard) be trusted? Proposed
validation mechanism can operate effectively but the software integrity cannot be
totally guaranteed unless the executable binary integrity metadata can be attested as
trusted.

The major research gap or weakness of current and past efforts into integrity validation
of executables lies in the failure to guarantee the integrity of the validation metadata
itself. Some examples are as follows: the use of shadow stack (Dang et al., 2015) or
return address stored in shadow memory as the integrity validation metadata for
executables, as per (Serebryany et al., 2012) , (Nethercote et al., 2007) and (Y. J.
Park et al., 2004).

Limited work utilizes the TPM in the integrity validation of executable binaries or
metadata, despite being introduced in 2002: work (Sailer et al., 2015), (Kil et al.,
2007), (Gu et al., 2008) and (Gu et al., 2010).

Fourth, efforts into the evaluation of the integrity of executables focused only on the
evaluation process itself while neglecting the need to perform mitigation as a follow
up action on executables that fail the integrity evaluation process.

Fifth, related efforts into the integrity validation of executables lacked effectiveness
evaluations conducted using comprehensive attack testsuite such as RIPE (Wilander
et al., 2011), which covers all known types of buffer overflow attacks. Buffer overflow
attack is the most common type of vulnerability found in software.

Hence, the major research gap or weakness of these efforts: HCFI (Christoulakis et
al., 2016), Shadow Stack (Dang et al., 2015), Isomeron (Davi et al., 2015), Per Input
CFI (Niu et al., 2015), PHUKO (Tian et al., 2014), CCFIR (C. Zhang et al., 2013),
(Gu et al., 2010), CBones (Kil et al., 2007), AccMon (Zhou, Liu, et al., 2004) and
iWatcher (Zhou, Qin, et al., 2004) shows that the focus is only on integrity evaluation
(i.e. detection) but neglected on mitigation (i.e. prevention). Effectiveness evaluations
were not conducted using comprehensive attack testsuite such as RIPE, hence some
form of vulnerability may not be detected and mitigated.

© C
OPYRIG

HT U
PM

4

1.3 Objectives

In an attempt to solve the problems outlined above, we propose in this thesis, our
framework for achieving runtime software integrity in the absence of the source code
– whereby only the binary is available. Our framework merges technique from both
static and dynamic analysis – i.e. more conveniently termed as hybrid analysis.

The aim of this thesis is to develop a trusted framework to evaluate the integrity of
executable binaries without the availability of source code. This thesis thus has the
following objectives towards achieving the aim and solving the problem statements
outlined in the previous section:

a. to undertake work for the development of the modules or mechanism
constituting the proposed framework and to evaluate the proposed framework
in terms of effectiveness and performance.

b. to protect executable binary validation metadata using Trusted Platform
Module (TPM). The TPM prevents the tampering of such metadata, as such
the proposed framework can be trusted and would never lie on the integrity of
the validation metadata. Hence, our proposed framework introduces a
mechanism (i.e. the Vulnerability Identification Mechanism or VIM) which
functions towards ensuring that the integrity of the executable binary
validation metadata can be guaranteed via the use of TPM.

c. to develop a mitigation mechanism to counter any threats posed by executables
that failed the integrity evaluation by our proposed framework.

1.4 Scope and Assumptions

In terms of scope, our framework can be applied for the runtime integrity validation
of various compiled programming languages such as C, C++ and Java. In this
dissertation, focus is on the runtime integrity validation of executables coded with the
C programming language. The justification for this choice is that C possesses powerful
memory manipulation features – pointers being a good example. Hence, integrity
violations in executable C binaries lead to effects of integrity violations such as buffer
overflow and privilege escalation attacks.

Our proposed framework shall attempt to identify and capture integrity violations
causing buffer overflows and in executable C binaries. The executables are compiled
using the gcc compiler, while we note that there exits numerous types of C compilers
e.g. Intel, Clang, Micro C compiler, C-Parser etc. Furthermore, different compilers are
available for various OS platforms e.g. Windows, Unix, OS/2 or Mac OS. We propose
that evaluation using alternative compilers and in alternative OSes, as future work.

We further assess the effectiveness of security mechanisms in our testbed platform –
Fedora Core Linux version 20 (FC 20) - in mitigating two categories of integrity
violation in software and binaries: buffer-overflow attacks and privilege escalation
attacks.

© C
OPYRIG

HT U
PM

5

Effectiveness evaluations were performed using the comprehensive RIPE testsuite
(Wilander et al., 2011), which encompasses all known forms of buffer overflow
attacks. The rules used in our proposed framework for the integrity validation of
executables were derived from CBones (Kil et al., 2007). Performance evaluation shall
be carried out via measuring the CPU Time of an executable at runtime. The GNU
clock() tool is used for obtaining the CPU Time (GNU, 2015a).

1.5 Motivation for our proposed framework

The motivation behind our approach is as follows:

a. This thesis serves to complement the existing work on leveraging TPM for the
integrity validation of executables in the absence of the source code.

b. while credit must be given to majority of the work into integrity validation of
software for effectiveness test utilizing real world buffer overflow exploits, we
found that none of the literature presented in Chapter 2 conducted effectiveness
tests not even with the most short and simple but lethal shellcodes capable of
privilege escalation attacks.

We are of opinion that an additional work on effectiveness of software integrity
validation solution tested with shellcodes would complement the wide array of
effectiveness tests conducted on real world exploits. In this thesis, we propose
to subject our framework to evaluate real world shellcodes obtained from the
wild, in order to gauge the effectiveness of our framework in terms of security
and performance.

a) With the exception of all literature listed in Section 2.4 of Chapter 2, majority

of the literature mentioned in Chapter 2 neglected addressing the issue of trust
in the integrity validation metadata (Chiueh, 2001). All assume that the
integrity validation metadata can be totally trusted.

Questions arise on the reliability of the metadata itself should the metadata be
compromised. Can the metadata still be trusted as not to lie about its
compromised state? Ironically, there is no second line of defense should the
first be compromised. Our framework in this thesis shall provide trust to the
integrity validation metadata, hence ensuring that our framework can be totally
trusted.

b) One commonly used integrity validation metadata is the return address
(Ruwase et al., 2010), (Zhou, Qin, et al., 2004) and (Zhou, Liu, et al., 2004).
A common technique to guarantee the software integrity is to store the return
address in a shadow memory (Serebryany et al., 2012), (Nethercote et al.,
2007), (Y. J. Park et al., 2004) or shadow stack (Dang et al., 2015) .

In essence, a shadow copy of the metadata is created, whereby a replica of the
trusted return address is kept in a separate storage, for example in a hardware
register. We found that, as of to date, there exists no effort to address the issue
of trust for the shadow copy contents. Our proposed framework in this thesis

© C
OPYRIG

HT U
PM

6

addresses the issue of trust for shadow copy metadata via providing a
mechanism for validating the integrity of the shadow copy metadata.

1.6 Summary of Contributions

The framework proposed in this thesis, termed as ‘Runtime Integrity Validation of
Executable Binaries’ or RIBS had been developed and deployed for the integrity
validation of C executables during runtime. The Trusted Platform Module (TPM) had
been utilized to ensure the total trustworthiness of the executable integrity validation
metadata.

In terms of effectiveness evaluations, RIBS has been extensively evaluated with three
categories of attack patterns: the RIPE testsuite (Wilander et al., 2011), real world
privilege escalation shellcodes and vulnerable real world applications. RIBS is
successful both in the detection and mitigation of integrity violations caused by all
three attack categories.

In order to gauge the performance of RIBS, the CPU time of an executable being
executed as process is measured. Measurements revealed that RIBS perform better as
compared to three closely related effort: CBones (Kil et al., 2007), Dytan (Clause et al.,
2007) and RTC (Yong, 2004).

1.7 Thesis Organization

This thesis is organized into 5 chapters, Chapter 1: Introduction, Chapter 2: Literature
Review, Chapter 3: Methodology, Chapter 4: Results and Discussion and finally
Chapter 5: Conclusion and Future Work. In the paragraphs below, an executive
summary of each chapter is provided.

Chapter 1 : Introduction

In this chapter, the problem statements, objectives and motivation for the presentation
of our framework is presented. This chapter begins by elaborating on the problems
faced by current work on validating executables, which in turn lead to the formation
of our research objectives and the motivation for the development of our proposed
framework.

Chapter 2 : Literature Review

In this chapter, the relevant literature on current and past efforts towards the integrity
validation of executable are presented. The said efforts are grouped into five major
categories related to our proposed framework. This chapter further pinpoints the
shortfall of efforts under each major category.

© C
OPYRIG

HT U
PM

7

Chapter 3 : Methodology

In this chapter the architecture and inner mechanism of our proposed framework (i.e.
RIBS) is detailed. This chapter begins with an overview of the RIBS, elaborating on
the design of each constituent component of RIBS and followed by the deployment of
RIBS. Next, the rules used for integrity validation is also described. Subsequently, the
methodologies utilized for the evaluation of RIBS in terms of effectiveness and
performance are also discussed.

Chapter 4 : Results and Discussion

In this chapter, the results for both the effectiveness and performance are presented
and discussed. This chapter also presents an analysis of the results obtained Further
explanations were proposed as to why some rules in RIBS failed to mitigate certain
attack patterns.

Chapter 5 : Conclusion and Future Work

In this chapter, we summarize our findings, outline the contributions made, point out
any shortcomings and provide pointers for future expansion of our proposed
framework.

The problems statements, objectives and motivation had been presented in this
chapter. The next chapter, i.e. Chapter 2, shall present the literature (both past and
present) which are related to our work.

© C
OPYRIG

HT U
PM

114

REFERENCES

Alam, S., Horspool, R. N., Traore, I., & SogukPintoolsar, I. (2015). A framework for
metamorphic malware analysis and real-time detection. Computers & Security,
48, 212-233. doi: http://dx.doi.org/10.1016/j.cose.2014.10.011

Backes, M., & Nürnberger, S. (2014). Oxymoron: Making Fine-Grained Memory

Randomization Practical by Allowing Code Sharing.
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/backes

Baratloo, A., Singh, N., and Tsai. (December, 1999). Libsafe: Protecting critical

elements of stacks. http://www.research.avayalabs.com/project/libsafe/,

Bernat, A. R., & Miller, B. P. (2011). Anywhere, any-time binary instrumentation.

Paper presented at the Proceedings of the 10th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools, Szeged, Hungary.

Blacklight. (2012). Bytecode injection using ptrace. Retrieved 3rd December 2015,

from https://www.youtube.com/watch?v=6ZcsoBzunUY and
http://blacklight.devio.us/vidtut/index.cgi?id=

Bochs. (2015). The Bochs Emulator. Retrieved 7th Nov 2015, from,

http://bochs.sourceforge.net/

Bort, J. (2015). The FBI is investigating Juniper’s big, embarrassing security hole.

Retrieved 18th Jan 2016, from http://www.businessinsider.my/fbi-
investigates-juniper-hack-attack-2015-12/?r=US&IR=T

Brumley, D., Wang, H., Jha, S., & Song, D. (2007). Creating Vulnerability Signatures

Using Weakest Preconditions. Paper presented at the Proceedings of the 20th
IEEE Computer Security Foundations Symposium.

c0ntex. (2014). Bypassing non-executable-stack during exploitation using return-to-

libc Retrieved 29th October 2015, from
http://css.csail.mit.edu/6.858/2014/readings/return-to-libc.pdf

Challener, D. (2009). A Paractical Guide to Trusted Computing: IBM Press.

Chawla, I., & Singh, S. K. (2015). An Automated approach for Bug Categorization

using Fuzzy Logic. Paper presented at the Proceedings of the 8th India
Software Engineering Conference, Bangalore, India.

Chen, G., Jin, H., Zou, D., Zhou, B. B., Liang, Z., Zheng, W., & Shi, X. (2013).

SafeStack: Automatically Patching Stack-Based Buffer Overflow
Vulnerabilities. IEEE Transactions on Dependable and Secure Computing,
10(6), 368-379. doi: 10.1109/TDSC.2013.25

© C
OPYRIG

HT U
PM

115

Chen, X., Slowinska, A., Andriesse, D., Bos, H., & Giuffrida, C. (2015). StackArmor:
Comprehensive Protection From Stack-based Memory Error Vulnerabilities
for Binaries. http://www.internetsociety.org/doc/stackarmor-comprehensive-
protection-stack-based-memory-error-vulnerabilities-binaries

Cheng, Y., Ding, X., & Deng, R. H. (2015). Efficient Virtualization-Based Application

Protection Against Untrusted Operating System. Paper presented at the
Proceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, Singapore, Republic of Singapore.

Cheng, Y., Fu, X., Du, X., Luo, B., & Guizani, M. (2017). A lightweight live memory

forensic approach based on hardware virtualization. Information Sciences,
379, 23-41. doi: http://dx.doi.org/10.1016/j.ins.2016.07.019

Chiueh, T. a. H., F. . (2001). RAD: A Compile-Time Solution to Buffer Overflow

Attacks. Paper presented at the Proceedings of the The 21st International
Conference on Distributed Computing Systems.

Christoulakis, N., Christou, G., Athanasopoulos, E., & Ioannidis, S. (2016). HCFI:

Hardware-enforced Control-Flow Integrity. Paper presented at the
Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy, New Orleans, Louisiana, USA.

Clause, J., Li, W., & Orso, A. (2007). Dytan: a generic dynamic taint analysis

framework. Paper presented at the Proceedings of the 2007 international
symposium on Software testing and analysis, London, United Kingdom.

Consultants, P. C. (2016). The Global State of Information Security Survey 2016.

Retrieved 15 September 2015., from http://www.pwc.com/gx/en/consulting-
services/information-security-survey/

Cowan, C., Beattie, S., Johansen, J., & Wagle, P. (2003). Pointguard: protecting

pointers from buffer overflow vulnerabilities. Paper presented at the
Proceedings of the 12th conference on USENIX Security Symposium -
Volume 12, Washington, DC.

Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Zhang, Q. (1998).

StackGuard: automatic adaptive detection and prevention of buffer-overflow
attacks. Paper presented at the Proceedings of the 7th conference on USENIX
Security Symposium - Volume 7, San Antonio, Texas.

Dalton, M., Kannan, H., & Kozyrakis, C. (2008). Real-world buffer overflow

protection for userspace & kernelspace. Paper presented at the Proceedings of
the 17th conference on Security symposium, San Jose, CA.

Dang, T. H. Y., Maniatis, P., & Wagner, D. (2015). The Performance Cost of Shadow

Stacks and Stack Canaries. Paper presented at the Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security,
Singapore, Republic of Singapore.

© C
OPYRIG

HT U
PM

116

Das, S., Zhang, W., & Liu, Y. (2014, 9-11 July 2014). Reconfigurable Dynamic
Trusted Platform Module for Control Flow Checking. Paper presented at the
2014 IEEE Computer Society Annual Symposium on VLSI.

Davi, L., Liebchen, C., Sadeghi, A.-R., Snow, K. Z., & Monrose, F. (2015). Isomeron:

Code Randomization Resilient to (Just-In-Time) Return-Oriented
Programming. http://www.internetsociety.org/doc/isomeron-code-
randomization-resilient-just-time-return-oriented-programming

Demsky, B. (2011). Cross-application data provenance and policy enforcement. ACM

Trans. Inf. Syst. Secur., 14(1), 1-22. doi: 10.1145/1952982.1952988

Designer, S. (2001). Linux kernel patch from the openwall project: Non-executable

user stack. from http://www.openwall.com/linux/README

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S.,

& Xiao, C. (2007). The Daikon system for dynamic detection of likely
invariants. Science of Computer Programming, 69(1–3), 35-45. doi:
http://dx.doi.org/10.1016/j.scico.2007.01.015

Etoh, H. (2003). GCC Extension for Protecting Applications from Stack-Smashing

Attacks. from http://www.trl.ibm.com/projects/security/ssp/

Evtyushkin, D., Elwell, J., Ozsoy, M., Ponomarev, D., Ghazaleh, N. A., & Riley, R.

(2014). Iso-X: A Flexible Architecture for Hardware-Managed Isolated
Execution. Paper presented at the Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, Cambridge, United Kingdom.

Fedora, P. (2015). Security Features Matrix Retrieved 27th Feb 2016, from

https://fedoraproject.org/wiki/Security_Features_Matrix

Fiasco. (2016). The L4re Microkernel. Retrieved 23 Aug 2016, from http://os.inf.tu-

dresden.de/fiasco/,

Garay, J. A., & Huelsbergen, L. (2006). Software integrity protection using timed

executable agents. Paper presented at the Proceedings of the 2006 ACM
Symposium on Information, computer and communications security, Taipei,
Taiwan.

Gelbart, O., Leontie, E., Narahari, B., & Simha, R. (2009). A compiler-hardware

approach to software protection for embedded systems. Computers &
Electrical Engineering, 35(2), 315-328. doi:
http://dx.doi.org/10.1016/j.compeleceng.2008.06.010

GNU. (2015a). The GNU clock() Retrieved 3rd December 2015, from

http://www.gnu.org/software/libc/manual/html_node/CPU-Time.html

GNU. (2015b). The GNU GCC Compiler. Retrieved 19 October 2015, from

https://gcc.gnu.org/

© C
OPYRIG

HT U
PM

117

Group, T. C. (2007). Trusted Software Stack (TSS) Specification Version 1.2 , Level
1 , Part1 Commands & Structures Manual

Group, T. C. (2008). [Replacing Vulnerable Software with Secure Hardware].

Group, T. C. (2015). Trusted Computing Group. Retrieved 14th Nov 2015, from

www.trustedcomputing.com

Gu, L., Cheng, Y., Ding, X., Deng, R. H., Guo, Y., & Shao, W. (2010). Remote

Attestation on Function Execution (Work-in-Progress). In L. Chen & M. Yung
(Eds.), Trusted Systems: First International Conference, INTRUST 2009,
Beijing, China, December 17-19, 2009. Revised Selected Papers (pp. 60-72).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Gu, L., Ding, X., Deng, R. H., Xie, B., & Mei, H. (2008). Remote attestation on

program execution. Paper presented at the Proceedings of the 3rd ACM
workshop on Scalable trusted computing, Alexandria, Virginia, USA.

Henderson, A., Prakash, A., Yan, L. K., Hu, X., Wang, X., Zhou, R., & Yin, H. (2014).

Make it work, make it right, make it fast: building a platform-neutral whole-
system dynamic binary analysis platform. Paper presented at the Proceedings
of the 2014 International Symposium on Software Testing and Analysis, San
Jose, CA, USA.

Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., & Davidson, J. W. (2012, 20-23 May

2012). ILR: Where'd My Gadgets Go? Paper presented at the 2012 IEEE
Symposium on Security and Privacy.

Huffmire, T., Sherwood, T., Kastner, R., & Levin, T. (2008). Enforcing memory

policy specifications in reconfigurable hardware. Computers & Security, 27(5–
6), 197-215. doi: http://dx.doi.org/10.1016/j.cose.2008.05.002

Intel. (2015a). Intel Architecture Software Developer’s Manual Volume 2: Instruction

Set Reference. Retrieved 10th October 2015., from
http://download.intel.com/design/intarch/manuals/24319101.pdf

Intel. (2015b). Pintoolstools – Adynamic Binary Instrumentation Tool. Retrieved

19th October 2015, from https://software.intel.com/en-us/articles/Pintools-a-
dynamic-binary-instrumentation-tool

James Newsome, Dawn Song. (2005). Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software Paper
presented at the Proceedings of the 12th Annual Network and Distributed
System Security Symposium.

Jin, H., Cheng, G., Zou, D., & Zhang, X. (2013). Cherub: Fine-grained application

protection with on-demand virtualization. Computers & Mathematics with
Applications, 65(9), 1326-1338. doi:
http://dx.doi.org/10.1016/j.camwa.2012.02.001

© C
OPYRIG

HT U
PM

118

Journal, L. (2015). ptrace system call. Retrieved 15th September 2015, from
http://www.linuxjournal.com/article/6100

Kil3r, B. (2000). Bypassing Stackguard and Stackshield. Retrieved 11 September

2016, from http://phrack.org/issues/56/5.html

Kil, C. (2008). Mechanisms for Protecting Software Integrity in Networked Systems.

(PhD), North Carolina State University.

Kil, C., Jun, J., Bookholt, C., Xu, J., & Ning, P. (2006, Dec. 2006). Address Space

Layout Permutation (ASLP): Towards Fine-Grained Randomization of
Commodity Software. Paper presented at the 2006 22nd Annual Computer
Security Applications Conference (ACSAC'06).

Kil, C., Sezer, E. C., Azab, A. M., Ning, P., & Zhang, X. (2009, June 29 2009-July 2

2009). Remote attestation to dynamic system properties: Towards providing
complete system integrity evidence. Paper presented at the 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks.

Kil, C., Sezer, E. C., Ning, P., & Zhang, X. (2007). Automated Security Debugging

Using Program Structural Constraints.
http://dx.doi.org/10.1109/ACSAC.2007.7http://doi.ieeecomputersociety.org/1
0.1109/ACSAC.2007.7

Laurenzano, M., Tikir, M. M., Carrington, L., & Snavely, A. (2010). PEBIL: Efficient

static binary instrumentation for Linux.
http://dx.doi.org/10.1109/ISPASS.2010.5452024

Lee, R. B., Karig, D. K., McGregor, J. P., & Shi, Z. (2004). Enlisting Hardware

Architecture to Thwart Malicious Code Injection. In D. Hutter, G. Müller, W.
Stephan & M. Ullmann (Eds.), Security in Pervasive Computing: First
International Conference, Boppard, Germany, March 12-14, 2003. Revised
Papers (pp. 237-252). Berlin, Heidelberg: Springer Berlin Heidelberg.

Leontie, E. (2010). Compiler Hardware Technique for Protecting Against Buffer

Overflow Attacks. https://www.seas.gwu.edu/~simha/research/HWStack.pdf

Leontie, E., Bloom, G., Narahari, B., Simha, R., & Zambreno, J. (2009). Hardware-

enforced fine-grained isolation of untrusted code. Paper presented at the
Proceedings of the first ACM workshop on Secure execution of untrusted code,
Chicago, Illinois, USA.

Lin, Z., Jiang, X., Xu, D., Mao, B., & Xie, L. (2007). AutoPaG: towards automated

software patch generation with source code root cause identification and
repair. Paper presented at the Proceedings of the 2nd ACM symposium on
Information, computer and communications security, Singapore.

Liu, X., Wei, Q., & Ye, Z. (2014, 8-10 Nov. 2014). Static-Dynamic Control Flow

Integrity. Paper presented at the P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2014 Ninth International Conference on.

© C
OPYRIG

HT U
PM

119

Lozano, A., Mens, K., & Kellens, A. (2015). Usage contracts: Offering immediate
feedback on violations of structural source-code regularities. Science of
Computer Programming, 105, 73-91. doi:
http://dx.doi.org/10.1016/j.scico.2015.01.004

Lueck, G., Patil, H., & Pereira, C. (2012). PintoolsADX: an interface for customizable

debugging with dynamic instrumentation. Paper presented at the Proceedings
of the Tenth International Symposium on Code Generation and Optimization,
San Jose, California.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Hazelwood, K.

(2005). Pintools: building customized program analysis tools with dynamic
instrumentation. SIGPLAN Not., 40(6), 190-200. doi:
10.1145/1064978.1065034

Lyu, Y.-H., Hong, D.-Y., Wu, T.-Y., Wu, J.-J., Hsu, W.-C., Liu, P., & Yew, P.-C.

(2014). DBILL: an efficient and retargetable dynamic binary instrumentation
framework using llvm backend. SIGPLAN Not., 49(7), 141-152. doi:
10.1145/2674025.2576213

Mart, #237, Abadi, n., Budiu, M., #218, Erlingsson, l., & Ligatti, J. (2005). Control-

flow integrity. Paper presented at the Proceedings of the 12th ACM conference
on Computer and communications security, Alexandria, VA, USA.

McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., & Seshadri, A. (2007, 20-23 May

2007). Minimal TCB Code Execution. Paper presented at the 2007 IEEE
Symposium on Security and Privacy (SP '07).

McCune, J. M., Parno, B. J., Perrig, A., Reiter, M. K., & Isozaki, H. (2008). Flicker:

an execution infrastructure for tcb minimization. Paper presented at the
Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, Glasgow, Scotland UK.

Mohaisen, A., Alrawi, O., & Mohaisen, M. (2015). AMAL: High-fidelity, behavior-

based automated malware analysis and classification. Computers & Security,
52, 251-266. doi: http://dx.doi.org/10.1016/j.cose.2015.04.001

Musuvathi, M., Park, D. Y. W., Chou, A., Engler, D. R., & Dill, D. L. (2002). CMC:

a pragmatic approach to model checking real code. SIGOPS Oper. Syst. Rev.,
36(SI), 75-88. doi: 10.1145/844128.844136

Nethercote, N., & Seward, J. (2007). Valgrind: a framework for heavyweight dynamic

binary instrumentation. Paper presented at the Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, California, USA.

Nick L. Petroni, J., Fraser, T., Molina, J., & Arbaugh, W. A. (2004). Copilot - a

coprocessor-based kernel runtime integrity monitor. Paper presented at the
Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13, San Diego, CA.

© C
OPYRIG

HT U
PM

120

Nipun Arora, H. Z., Junghwan Rhee, Kenji Yoshihira, Geoff Jiang. (2013). iProbe: A
Lightweight User-Level Dynamic Instrumentation Framework. Paper
presented at the Proceedings of the 28th IEEE/ACM International Conference
on Automated Software Engineering (ASE'13), Silicon Valley.

NIST. (2016). US CERT National Vulnerability Database. Retrieved 18th Jan 2016,

from https://web.nvd.nist.gov/view/vuln/statistics-results?cves=on

Niu, B., & Tan, G. (2015). Per-Input Control-Flow Integrity. Paper presented at the

Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, Colorado, USA.

One, A. (1998). Smashing the Stack for Fun and Profit. Retrieved 10th March 2015,

from http://phrack.org/issues/49/14.html

Oragnization, M. (2016). Common vulnerabilities and exposures. . Retrieved 15

September 2015., 2015

Ozdoganoglu, H., Vijaykumar, T. N., Brodley, C. E., Kuperman, B. A., & Jalote, A.

(2006). SmashGuard: A Hardware Solution to Prevent Security Attacks on the
Function Return Address. IEEE Transactions on Computers, 55(10), 1271-
1285. doi: 10.1109/TC.2006.166

Packetstormsecurity. (2016). Ignore Security and It’ll Go Away. Retrieved 6th Sept

2015, from https://packetstormsecurity.com/

Pappas, V., Polychronakis, M., & Keromytis, A. D. (2012, 20-23 May 2012).

Smashing the Gadgets: Hindering Return-Oriented Programming Using In-
place Code Randomization. Paper presented at the 2012 IEEE Symposium on
Security and Privacy.

Park, T., & Shin, K. G. (2005). Soft Tamper-Proofing via Program Integrity

Verification in Wireless Sensor Networks. IEEE Transactions on Mobile
Computing, 4(3), 297-309. doi: 10.1109/tmc.2005.44

Park, Y. J., & Lee, G. (2004). Repairing return address stack for buffer overflow

protection. Paper presented at the Proceedings of the 1st conference on
Computing frontiers, Ischia, Italy.

Paulson, L. D. (2004). New chips stop buffer overflow attacks. 37 (10), 28-30.

PAX. (2001). PaX.

Pham, V.-T., B, M., #246, hme, & Roychoudhury, A. (2016). Model-based whitebox

fuzzing for program binaries. Paper presented at the Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
Singapore, Singapore.

© C
OPYRIG

HT U
PM

121

Piromsopa, K., & Enbody, R. J. (2006). Secure Bit: Transparent, Hardware Buffer-
Overflow Protection. IEEE Transactions on Dependable and Secure
Computing, 3(4), 365-376. doi: 10.1109/TDSC.2006.56

Plank, J. (2008). CS360 Lecture Notes Retrieved 27th Feb 2016, from

http://web.eecs.utk.edu/~mbeck/classes/cs360/360/notes/Setjmp/lecture.html

Prasad, M., & Chiueh, T.-c. (2003). A Binary Rewriting Defense Against Stack based

Buffer Overflow Attacks.
http://www.usenix.org/events/usenix03/tech/prasad.html

Qin, F., Wang, C., Li, Z., Kim, H.-s., Zhou, Y., & Wu, Y. (2006). LIFT: A Low-

Overhead Practical Information Flow Tracking System for Detecting Security
Attacks. Paper presented at the Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture.

Roy, A., Hand, S., & Harris, T. (2011). Hybrid binary rewriting for memory access

instrumentation. SIGPLAN Not., 46(7), 227-238. doi:
10.1145/2007477.1952711

Ruwase, O., Chen, S., Gibbons, P. B., & Mowry, T. C. (2010). Decoupled lifeguards:

enabling path optimizations for dynamic correctness checking tools. Paper
presented at the Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation, Toronto, Ontario,
Canada.

Sahay, S. K., & Sharma, A. (2016). GrouPintoolsg the Executables to Detect

Malwares with High Accuracy. Procedia Computer Science, 78, 667-674. doi:
http://dx.doi.org/10.1016/j.procs.2016.02.115

Sailer, R., Zhang, X., Jaeger, T., & Doorn, L. v. (2004). Design and implementation

of a TCG-based integrity measurement architecture. Paper presented at the
Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13, San Diego, CA.

Sailer, R., Zhang, X., Jaeger, T., & Doorn, L. v. (2015). The IMA Wiki Retrieved 14th

Nov 2015, from http://sourceforge.net/p/linux-ima/wiki/Home/

Selorst, M. (2011). TrustedGRUB Secure Bootloader. Retrieved 20 November 2015,

from, http://sourceforge.net/projects/trustedgrub

Serebryany, K., Bruening, D., Potapenko, A., & Vyukov, D. (2012). AddressSanitizer:

a fast address sanity checker. Paper presented at the Proceedings of the 2012
USENIX conference on Annual Technical Conference, Boston, MA.

Seshadri, A., Luk, M., Shi, E., Perrig, A., Doorn, L. v., & Khosla, P. (2005). Pioneer:

verifying code integrity and enforcing untampered code execution on legacy
systems. Paper presented at the Proceedings of the twentieth ACM symposium
on Operating systems principles, Brighton, United Kingdom.

© C
OPYRIG

HT U
PM

122

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., & Boneh, D. (2004). On
the effectiveness of address-space randomization. Paper presented at the
Proceedings of the 11th ACM conference on Computer and communications
security, Washington DC, USA.

Shaneck, M., Mahadevan, K., Kher, V., & Kim, Y. (2005). Remote Software-Based

Attestation for Wireless Sensors. In R. Molva, G. Tsudik & D. Westhoff
(Eds.), Security and Privacy in Ad-hoc and Sensor Networks: Second
European Workshop, ESAS 2005, Visegrad, Hungary, July 13-14, 2005.
Revised Selected Papers (pp. 27-41). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Sherei, S. E. (2016). Return to LibC Tutorial. Retrieved 27th Feb 2016, from

http://www.elsherei.com/?page_id=229

Singh, S., Estan, C., Varghese, G., & Savage, S. (2004). Automated worm

fingerprinting. Paper presented at the Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Implementation - Volume 6, San
Francisco, CA.

Sridhar, S., Shapiro, J. S., Northup, E., & Bungale, P. P. (2006). HDTrans: an open

source, low-level dynamic instrumentation system. Paper presented at the
Proceedings of the 2nd international conference on Virtual execution
environments, Ottawa, Ontario, Canada.

Stallman, R. (Writer). (2015). GCC Compiler Manual version 4.8.5: Free Software

Foundation, Inc.

Stergiopoulos, G., Katsaros, P., & Gritzalis, D. (2017). Program analysis with risk-

based classification of dynamic invariants for logical error detection.
Computers & Security. doi: http://dx.doi.org/10.1016/j.cose.2017.02.007

Tang, A., Sethumadhavan, S., & Stolfo, S. (2015). Heisenbyte: Thwarting Memory

Disclosure Attacks using Destructive Code Reads. Paper presented at the
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, Colorado, USA.

Tenouk. (2015). Stack Frame Construction During Function Calls. Retrieved 10th

October 2015, from
http://www.tenouk.com/Bufferoverflowc/Bufferoverflow2.html

Tian, D., Xiong, X., Hu, C., & Liu, P. (2014). Defeating buffer overflow attacks via

virtualization. Computers & Electrical Engineering, 40(6), 1940-1950. doi:
http://dx.doi.org/10.1016/j.compeleceng.2013.11.032

Trousers. (2009). Trousers TPM Library. Retrieved 3rd December 2015, from

http://trousers.sourceforge.net/

© C
OPYRIG

HT U
PM

123

Tuck, N., Calder, B., & Varghese, G. (2004, 04-08 Dec. 2004). Hardware and Binary
Modification Support for Code Pointer Protection From Buffer Overflow.
Paper presented at the Microarchitecture, 2004. MICRO-37 2004. 37th
International Symposium on.

University, S. (2015). The TPM Architecture and Features. Retrieved 10 November

2015, from https://crypto.stanford.edu/cs155old/cs155-spring06/08-TCG.pdf

Vendicator. (2001). StackShield: A ‘Stack Smashing’ Technique Protection Tool for

Linux,. Retrieved 29th October 2015, from
http://www.angelfire.com/sk/stackshield/download.html

Vishwath Mohan and , P. L. (2015). , Opaque Control Flow Integrity. Paper presented

at the NDSS’15.

Wang, H. J., Guo, C., Simon, D. R., & Zugenmaier, A. (2004). Shield: vulnerability-

driven network filters for preventing known vulnerability exploits. SIGCOMM
Comput. Commun. Rev., 34(4), 193-204. doi: 10.1145/1030194.1015489

Wang, P., & Wang, Y.-S. (2015). Malware behavioural detection and vaccine

development by using a support vector model classifier. Journal of Computer
and System Sciences, 81(6), 1012-1026. doi:
http://dx.doi.org/10.1016/j.jcss.2014.12.014

Wang, T., Song, C., & Lee, W. (2014). Diagnosis and Emergency Patch Generation

for Integer Overflow Exploits. In S. Dietrich (Ed.), Detection of Intrusions and
Malware, and Vulnerability Assessment: 11th International Conference,
DIMVA 2014, Egham, UK, July 10-11, 2014. Proceedings (pp. 255-275).
Cham: Springer International Publishing.

Wang, X., Pan, C.-C., Liu, P., & Zhu, S. (2006). SigFree: a signature-free buffer

overflow attack blocker. Paper presented at the Proceedings of the 15th
conference on USENIX Security Symposium - Volume 15, Vancouver, B.C.,
Canada.

Wartell, R., Mohan, V., Hamlen, K. W., & Lin, Z. (2012). Securing untrusted code

via compiler-agnostic binary rewriting. Paper presented at the Proceedings of
the 28th Annual Computer Security Applications Conference, Orlando,
Florida, USA.

Wei, M., Wagner, S., Hellman, R., & Wessel, S. (2014, 24-26 Sept. 2014). Integrity

Verification and Secure Loading of Remote Binaries for Microkernel-Based
Runtime Environments. Paper presented at the 2014 IEEE 13th International
Conference on Trust, Security and Privacy in Computing and
Communications.

Wilander, J., Nikiforakis, N., Younan, Y., Kamkar, M., & Joosen, W. (2011). RIPE:

runtime intrusion prevention evaluator. Paper presented at the Proceedings of
the 27th Annual Computer Security Applications Conference, Orlando,
Florida, USA.

© C
OPYRIG

HT U
PM

124

Wojtczuk, R. (1998). Defeating Solar Designer's Non-executable Stack Patch.
Retrieved 11 September 2016, from http://insecure.org/sploits/non-
executable.stack.problems.html

Xu, J., Kalbarczyk, Z., Patel, S., and Iyer, R.K. (2002). Architecture Support for

Defending against Buffer Overflow Attacks. Paper presented at the
Procedeings on Workshop Evaluating and Architecting System Dependability

Yong, S. H. (2004). Runtime Monitoring of C Programs for Security and Correctness,.

(PhD), University of Wisconsin Madison.

Yong, S. H., & Horwitz, S. (2003). Protecting C programs from attacks via invalid

pointer dereferences. SIGSOFT Softw. Eng. Notes, 28(5), 307-316. doi:
10.1145/949952.940113

Zeng, B., Tan, G., & Morrisett, G. (2011). Combining control-flow integrity and static

analysis for efficient and validated data sandboxing. Paper presented at the
Proceedings of the 18th ACM conference on Computer and communications
security, Chicago, Illinois, USA.

Zeng, J., Fu, Y., & Lin, Z. (2015). PEMU: A Pintools Highly Compatible Out-of-VM

Dynamic Binary Instrumentation Framework. Paper presented at the
Proceedings of the 11th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, Istanbul, Turkey.

Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Zou, W. (2013,

19-22 May 2013). Practical Control Flow Integrity and Randomization for
Binary Executables. Paper presented at the Security and Privacy (SP), 2013
IEEE Symposium on.

Zhang, M., Qiao, R., Hasabnis, N., & Sekar, R. (2014). A platform for secure static

binary instrumentation. SIGPLAN Not., 49(7), 129-140. doi:
10.1145/2674025.2576208

Zhang, M., & Sekar, R. (2013). Control Flow Integrity for COTS Binaries.

https://www.usenix.org/conference/usenixsecurity13/technical-
sessions/presentation/Zhang

Zhou, P., Liu, W., Fei, L., Lu, S., Qin, F., Zhou, Y.,Torrellas, J. (2004). AccMon:

Automatically Detecting Memory-Related Bugs via Program Counter-Based
Invariants. Paper presented at the Proceedings of the 37th annual IEEE/ACM
International Symposium on Microarchitecture, Portland, Oregon.

Zhou, P., Qin, F., Liu, W., Zhou, Y., & Torrellas, J. (2004). iWatcher: Efficient

Architectural Support for Software Debugging. Paper presented at the
Proceedings of the 31st annual international symposium on Computer
architecture, Munchen, Germany.

© C
OPYRIG

HT U
PM

125

Zhu, E., Liu, F., Wang, Z., Liang, A., Zhang, Y., Li, X., & Li, X. (2015). Dytaint: The
implementation of a novel lightweight 3-state dynamic taint analysis
framework for x86 binary programs. Computers & Security, 52, 51-69. doi:
http://dx.doi.org/10.1016/j.cose.2015.03.008

	1. Abstract-Dedication-Fig-and-Table-List-R6-Post-Viva-FOR-PRINTING -160517
	2. Teh_Jia_Yew_GS24269-PhD_Thesis_Engineering_Faculty_UPM-Rev10-Post-Viva-FOR-PRINTING -160517
	Blank Page
	Blank Page
	Blank Page
	Blank Page

