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Software developers working under pressure and tight deadlines frequently fail to 
implement secure programming practices during software development stages. Both 
constraints are one of the major contributing factors leading to the exploitation of 
software vulnerabilities for malicious intentions. Furthermore, commercially 
developed software, owing to intellectual property protection, do not provide the 
source code – finished products are only shipped in the form of executable binaries. 
Unfortunately, the exploitation of executable binaries with vulnerabilities, especially 
those coded with the C programming language leads to malicious, undesirable 
effects such as buffer overflows, privilege escalation (spawning an attackers’ shell) 
or premature termination of an executing binary (the C language possesses powerful 
memory manipulation features i.e. pointers). The following gaps were identified in 
these three related past efforts into the integrity validation of executables: CBones, 
Dytan and RTC. First, in CBones, these limitations were identified:  a memory 
debugging tool called Valgrind is required for validation, does not mitigate the 
vulnerable executable and reports high overheads (Normalized Performance of 0.87). 
Second, in Dytan, these limitations were identified: requires the use of a dynamic 
binary instrumentation tool called PINTOOLS for validation, does not mitigate the 
vulnerable executable and reports high overheads (Normalized Performance of 0.85). 
Lastly, in RTC, these limitations were identified the executable source code is 
required for validation and heavy use of static analysis leading to high overheads 
(Normalized Performance of 1.10). In this thesis, we propose our framework for the 
runtime integrity validation of executable binaries: Runtime Integrity Validation of 
Executable Binaries or RIBS. Our framework merges both static (for offline 
profiling) and dynamic (for runtime validation) analysis techniques for the runtime 
validation of the integrity of executables compiled with the C programming 
language. The integrity validation metadata of a trusted, origin executable is stored 
in a Trusted Platform Module (TPM) hardware register to prevent tampering. Such 
ensures that the executable binary integrity validation metadata can be totally 
trusted. In the security evaluation of RIBS, we had subjected RIBS to mitigate 10 
categories of buffer overflow attack patterns in the Wilander and Kamkar testsuite 
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(encompassing the stack, heap and data/bss executable userspace memory areas), 5 
real world shellcodes and 3 real world applications with buffer overflow 
vulnerability. RIBS is successful in the detection and termination of all 18 attacks 
patterns deployed. In terms of performance evaluations, overhead was measured in 
terms of CPU execution time [via GNU clock()]. We measured the CPU execution 
time of RIBS and compared the results with the CPU execution time of two major 
categories of attack mitigation mechanism deployed in the testbed Fedora Core 20 
Linux OS: Address Space Layout Randomization (ALSR)  and 5 other attack 
mitigation mechanisms implemented via the gcc compiler. Performance evaluations 
reveal that RIBS reported highest Normalized Performance (NP) of 0.68, which is 
the lowest as compared to CBones (0.87), Dytan (0.85) and RTC (1.10). 
Conclusively, RIBS performs marginally better as compared to all three efforts 
(CBones, Dytan and RTC) which requires the use of memory debugging tools for 
integrity validation of executable binaries. RIBS does not require the use of any 
tools. RIBS is able to detect integrity violations caused by these categories of 
violations: all forms of buffer overflow attacks mounted via the Wilander and 
Kamkar testsuite and real world privilege escalation attack shellcodes. Furthermore, 
as a last line of defence, RIBS is able mitigate integrity violations in executables via 
the runtime termination of the offending executable. This feature not available in 
CBones, Dytan and RTC. 
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Jurutera perisian sering bekerja di dalam situasi di mana masa yang diberikan untuk 
menyiapkan produk perisian adalah amat terhad, Maka, jurutera perisian menghadapi 
tekanan yang besar. Akibatnya, amalan pengaturcaraan yang selamat tidak 
dipraktikkan dengan sempurna ketika perisian dibangunkan. Ini merupakan faktor 
yang menyumbang kepada eksploitasi kelemahan di dalam perisian untuk tujuan 
berniat tidak murni. Tambahan lagi, perisian komersil, disebabkan oleh keperluan 
untuk melindungi hak cipta, tidak memberikan kod sumber – produk yang telah siap 
dipasarkan dalam bentuk binari yang boleh digunakan/dilancarkan ataupun dikenali 
sebagai executable binaries. Malangnya, eksploitasi kelemahan di dalam executable 
binaries, terutamanya yang dikodkan menggunakan bahasa pengaturcaraan C, 
mengakibatkan kesan-kesan yang tidak diingini, contohnya buffer overflow, 
privilege escalation (salah satu kesan ialah penggodam dapat menguasai terminal 
ataupun shell mangsa) mahupun menamatkan perlaksanaan perisian yang sedang 
digunakan ataupun lebih dikenali dengan penamatan pra-matang (bahasa 
pengaturcaraan C mempunyai kebolehan memanipulasi memori computer yang 
canggih). Kelemahan dikesan di dalam tiga usaha masa lampau yang bertujuan untuk 
mengesahkan kesahihan program: CBones, Dytan dan RTC.  Pertama, kelemahan - 
kelemahan berikut dikesan di dalam CBones: pengesahan kesahihan program 
memerlukan penggunaan peralatan perisian Valgrind, tiada langkah susulan 
penyelesaian terhadap program yang tidak sahih dan overhead yang tinggi 
dilaporkan (Normalized Performance bernilai 0.87). Kedua, kelemahan-kelemahan 
berikut dikesan di dalam Dytan: pengesahan kesahihan program memerlukan 
penggunaan peralatan perisian Pintools yang berupaya melakukan instrumentasi 
program dinamik, tiada langkah susulan penyelesaian terhadap program yang tidak 
sahih dan overhead yang tinggi dilaporkan (Normalized Performance bernilai 0.85). 
Akhir sekali, RTC mempamerkan kelemahan – kelemahan yang berikut: kod sumber 
program diperlukan bagi tujuan pengesahan dan penggunaan analisis statik yang 
melarat menyumbang kepada overhead yang tinggi (Normalized Performance 
bernilai 1.10)    .Maka, di dalam tesis ini, kami membentangkan cadangan 
penyelesaian (framework) untuk mengesahkan integriti (ataupun kesahihan) perisian 
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di dalam bentuk executable binaries, yang dinamakan Runtime Integrity Validation 
of Executable Binaries ataupun RIBS. Pengesahan kesahihan dilakukan di waktu 
perlaksanaan program. Cadangan penyelesaian kami menggunakan kombinasi teknik 
analisis statik (untuk pengumpulan maklumat di luar talian ataupun offline) dan 
dinamik (untuk penentuan kesahihan program sewaktu perlaksanaan). Metadata 
yang digunakan bagi tujuan pengesahan integriti perisian asal disimpan di dalam 
daftar perkakasan Trusted Platform Module. Ini bertujuan mengelakkan sebarang 
gangguan terhadap metadata jesterunya memastikan kebolehpercayaan metadata 
tersebut. Penilaian keberkesanan dilakukan ke atas RIBS melibatkan yang berikut: 
10 jenis serangan buffer overflow sepertimana yang dikelaskan di dalam ujian 
Wilander and  Kamkar , 5 jenis serangan shellcode dan 3 jenis serangan aplikasi 
sebenar yang mempunyai kelemahan buffer overflow .Keputusan penilaian 
keberkesanan ke atas RIBS mendapati bahawa RIBS berjaya mengesan dan 
menamatkan kesemua 18 jenis serangan yang dilancarkan ke atas RIBS. Penilaian 
prestasi ke atas RIBS dilakukan dengan mengukur overhead hasil masa perlaksanaan 
CPU.  Ini dilakukan dengan menggunakan fungsi GNU clock(). Masa perlaksanaan 
CPU untuk RIBS diukur dan dibandingkan dengan masa perlaksanaan CPU untuk 
dua jenis kaedah penangkis serangan perisian yang ditemui di dalam sistem 
pengoperasian Fedora Core 20, iaitu  Address Space Layout Randomization  
(ASLR) dan  5 kategori penangkis serangan perisian yang digabungkan ke dalam gcc 
compiler. Sistem pengoperasian ini digunakan sebagai testbed untuk RIBS. 
Keputusan penilaian prestasi melaporkan Normalized Performance (NP) paling 
tinggi dengan nilai 0.68. Nilai 0.68 merupakan nilai yang terendah jika dibandingkan 
dengan CBones (0.87), Dytani (0.85) dan RTC (1.10). Kesimpulannya, RIBS 
mencatatkan persembahan yang lebih baik berbanding dengan CBones, Dytan dan 
RTC. Ketiga - tiga usaha yang dinyatakan memerlukan penggunaan perisian 
pemeriksaan ingatan komputer untuk berfungsi. RIBS tidak memerlukan 
penggunaaan sebarang perisian untuk tujuan pengesahan kesahihan program. RIBS 
berupaya mengesan semua kategori serangan buffer overflow yang terkandung di 
dalam pakej ujian Wilander and Kamkar dan juga berupaya mengesan serangan jenis 
shellcodes. Tambahan lagi, RIBS berupaya menamatkan perlaksaan program yang 
disahkan tidak sahih. Ini merupakn satu langkah pencegahan yang tidak dilengkapi 
di dalam CBones, Dytan and RTC. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Introduction 
 

To date, major security reporting sites for example, Packetstorm Security 
(Packetstormsecurity, 2016)  and US CERT National Vulnerability Database (NIST, 
2016) continues to report software vulnerability disclosures with no lesser than 5000 
cases from the year 2006 to 2015. The highest number of cases was reported in 2014, 
with an estimated 8000 cases. Software vulnerabilities also plague open source 
applications and OSes (e.g. Debian and Red Hat), touted for its stability and security 
due to the availability of source codes for validation.  
 
 
Globally reputable consultancy firm Pricewater House  Cooper (PWC) reported in a 
recent 2015 Global State of Information Security (IS) Survey 2015 that IS breaches 
worldwide organizations faced a 92% increase (or USD $ 20 million) compared to 
2013 (Consultants, 2016). Security breaches occur in numerous forms, one common 
and direct method of security breach is via the deployment of hijacked software 
applications – in which the integrity of either the source code or the binaries had been 
compromised.  
 
 
One example of such breach occurs in Juniper’s firewall and router operating systems 
(OS). A third party (hackers and even law enforcement – the U.S. National Security 
Agency) was able to stick unauthorized codes into the OS for malicious intentions – 
such as espionage – for information gathering intentions (Bort, 2015). 
 
 
One factor contributing to the cause of integrity violations in software –coding errors 
occurring over products developed over a tight deadline and lack of sufficient quality 
control testing prior to deployment or release. Furthermore, even in the event if bugs 
or errors were discovered, mitigation attempts were often too time consuming or 
lacked of success – such is attributed to the unavailability of the software’s source 
code.  
 
 
Even if the source code is available, time would be consumed to comprehend the 
intricacies of the code to unravel technical details pertaining to the code e.g. 
architecture or functionality. We therefore stress that, there is strong motivation for 
runtime integrity validation of code binaries.  
 
 
1.2 Problem Statement 
 
The first major obstacle towards the integrity validation of software lies in the 
unavailability of source code. Such is a common practice in commercially developed 
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software, whereby only the executable binary is provided to the end user.  The 
weakness or research gap demonstrated by the efforts listed below is that , in the 
absence of source code, integrity validation of software faces challenges in terms of 
the implementation of  a few well established methods , for example (Lozano et al., 
2015), REDAS (Kil et al., 2009) ,  AutoPAG (Lin et al., 2007) , Daikon (Ernst et al., 
2007) and RTC (Yong, 2004).  All require the source code for the implementation of 
the integrity validation mechanism in their respective proposed solutions. 
 
 
Second, in some proposed hardware based solutions towards integrity validation of 
software, increased overheads were incurred at the implementation stage due to the 
required support of some form of hardware which is not found ubiquitously or requires 
some form of modifications either and the design or at the instruction level (Tuck et 
al., 2004) and  (Ozdoganoglu et al., 2006).  
 
 
The research gap or weakness demonstrated by (Tuck et al., 2004) is that the proposed 
solution is emulated (inside Bochs emulator) and not implemented in real time 
systems. Hence, the performance results reported are valid only for the sandboxed 
Bochs emulator.  
 
On the other hand, the research gap demonstrated by SmashGuard (Ozdoganoglu et 
al., 2006) lies in the requirement of a hardware stack for protecting return address and 
the protection offered by SmashGuard does not extend to non stack areas in the 
memory, namely the heap, data and bss regions. 
 
 
TPM solves both the problems of excessively high execution overheads and that of 
the need for specific hardware. The TPM is a low cost component (approximately 
USD 20) equipped with security features permitting user or metadata authentication 
and attestation. The TPM chip has, since its introduction in 2002, has been included 
on motherboards of both high and low end computers, hence the TPM chip presence 
is now ubiquitous (Group, 2008). 
 
 
Furthermore, dynamic analysis solutions on integrity validation work via dynamically 
performing runtime checks on running binaries. This method work upon binary 
execution via dynamically checking for known traces of vulnerabilities – for example 
placement of stack canaries in the gcc code compiler or memory access only in 
permitted areas, as per (Cowan et al., 1998) ,(Zhou et al., 2004) and (Qin et al., 2006) 
. Apart from hardware based solutions, this method also contributes to the increased 
overhead at during execution. (Zhou, Liu, et al. (2004) 
 
 
Essentially, training is required as a form of input in heuristics based solutions, 
especially prior to deployment. Heuristics based solutions incorporate statistical 
methods, which utilizes signatures for diagnosis (functions similar to antivirus). Some 
work in this category are as per (X. Chen et al., 2015), (Brumley et al., 2007), (H. J. 
Wang et al., 2004) and (Singh et al., 2004).   
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Vulnerabilities diagnosis is achieved via deviations from program executions obtained 
via deployment of statistical algorithms or methods. The major research gap or 
drawback of this technique is that despite being automated, both applied statistical 
mitigation methods or algorithms require time consuming input training prior to 
deployment. Another drawback lies in whether both methods are capable of gathering 
inputs from all forms of vulnerabilities – such exposes both techniques to false 
negatives.  
 
 
Third, lies the question of how do someone trust the results of integrity validation, i.e. 
how can the executable binary integrity metadata (or guard) be trusted? Proposed 
validation mechanism can operate effectively but the software integrity cannot be 
totally guaranteed unless the executable binary integrity metadata can be attested as 
trusted. 
 
 
The major research gap or weakness of current and past efforts into integrity validation 
of executables lies in the failure to guarantee the integrity of the validation metadata 
itself. Some examples  are as follows: the use of shadow stack (Dang et al., 2015) or 
return address stored in shadow memory as the integrity validation metadata for 
executables, as per  (Serebryany et al., 2012) , (Nethercote et al., 2007)  and (Y. J. 
Park et al., 2004). 
 
 
Limited work utilizes the TPM in the integrity validation of executable binaries or 
metadata, despite being introduced in 2002: work (Sailer et al., 2015),  (Kil et al., 
2007), (Gu et al., 2008) and (Gu et al., 2010). 
 
 
Fourth, efforts into the evaluation of the integrity of executables focused only on the 
evaluation process itself while neglecting the need to perform mitigation as a follow 
up action on executables that fail the integrity evaluation process.  
 
 
Fifth, related efforts into the integrity validation of executables lacked effectiveness 
evaluations conducted using comprehensive attack testsuite such as RIPE (Wilander 
et al., 2011), which covers all known types of buffer overflow attacks. Buffer overflow 
attack is the most common type of vulnerability found in software. 
 
 
Hence, the major research gap or weakness of these efforts: HCFI  (Christoulakis et 
al., 2016),  Shadow Stack (Dang et al., 2015), Isomeron (Davi et al., 2015), Per Input 
CFI (Niu et al., 2015), PHUKO (Tian et al., 2014), CCFIR (C. Zhang et al., 2013), 
(Gu et al., 2010), CBones (Kil et al., 2007),  AccMon (Zhou, Liu, et al., 2004)  and 
iWatcher  (Zhou, Qin, et al., 2004) shows that the focus is only on integrity evaluation 
(i.e. detection) but neglected on mitigation (i.e. prevention). Effectiveness evaluations 
were not conducted using comprehensive attack testsuite such as RIPE, hence some 
form of vulnerability may not be detected and mitigated. 
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1.3 Objectives 
 
In an attempt to solve the problems outlined above, we propose in this thesis, our 
framework for achieving runtime software integrity in the absence of the source code 
– whereby only the binary is available. Our framework merges technique from both 
static and dynamic analysis – i.e. more conveniently termed as hybrid analysis.  
 
 
The aim of this thesis is to develop a trusted framework to evaluate the integrity of 
executable binaries without the availability of source code. This thesis thus has the 
following objectives towards achieving the aim and solving the problem statements 
outlined in the previous section: 
 

a. to undertake work for the development of the modules or mechanism  
constituting the proposed framework and to evaluate the proposed framework 
in terms of effectiveness and performance.  

b. to protect executable binary validation metadata using Trusted Platform 
Module (TPM). The TPM prevents the tampering of such metadata, as such 
the proposed framework can be trusted and would never lie on the integrity of 
the validation metadata. Hence, our proposed framework introduces a 
mechanism (i.e. the Vulnerability Identification Mechanism or VIM) which 
functions towards ensuring that the integrity of the executable binary 
validation metadata can be guaranteed via the use of TPM.  

c. to develop a mitigation mechanism to counter any threats posed by executables 
that failed the integrity evaluation by our proposed framework. 

 
 
1.4 Scope and Assumptions 
 
In terms of scope, our framework can be applied for the runtime integrity validation 
of various compiled programming languages such as C, C++ and Java. In this 
dissertation, focus is on the runtime integrity validation of executables coded with the 
C programming language. The justification for this choice is that C possesses powerful 
memory manipulation features – pointers being a good example. Hence, integrity 
violations in executable C binaries lead to effects of integrity violations such as buffer 
overflow and privilege escalation attacks.  
 
 
Our proposed framework shall attempt to identify and capture integrity violations 
causing buffer overflows and in executable C binaries. The executables are compiled 
using the gcc compiler, while we note that there exits numerous types of C compilers 
e.g. Intel, Clang, Micro C compiler, C-Parser etc. Furthermore, different compilers are 
available for various OS platforms e.g. Windows, Unix, OS/2 or Mac OS. We propose 
that evaluation using alternative compilers and in alternative OSes, as future work. 
 
 
We further assess the effectiveness of security mechanisms in our testbed platform – 
Fedora Core Linux version 20 (FC 20) - in mitigating two categories of integrity 
violation in software and binaries: buffer-overflow attacks and privilege escalation 
attacks.  
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Effectiveness evaluations were performed using the comprehensive RIPE testsuite 
(Wilander et al., 2011), which encompasses all known forms of buffer overflow 
attacks. The rules used in our proposed framework for the integrity validation of 
executables were derived from CBones (Kil et al., 2007). Performance evaluation shall 
be carried out via measuring the CPU Time of an executable at runtime. The GNU 
clock()  tool is used for obtaining the CPU Time (GNU, 2015a). 
 
 
1.5  Motivation for our proposed framework 
 
The motivation behind our approach is as follows: 
 

a. This thesis serves to complement the existing work on leveraging TPM for the 
integrity validation of executables in the absence of the source code. 
 

b. while credit must be given to majority of the work into integrity validation of 
software for effectiveness test utilizing real world buffer overflow exploits, we 
found that none of the literature presented in Chapter 2 conducted effectiveness 
tests not even with the most short and simple but lethal shellcodes capable of 
privilege escalation attacks.  

 
We are of opinion that an additional work on effectiveness of software integrity 
validation solution tested with shellcodes would complement the wide array of 
effectiveness tests conducted on real world exploits. In this thesis, we propose 
to subject our framework to evaluate real world shellcodes obtained from the 
wild, in order to gauge the effectiveness of our framework in terms of security 
and performance. 

 
a) With the exception of all literature listed in Section 2.4 of Chapter 2, majority 

of the literature mentioned in Chapter 2 neglected addressing the issue of trust 
in the integrity validation metadata (Chiueh, 2001). All assume that the 
integrity validation metadata can be totally trusted.  
 
Questions arise on the reliability of the metadata itself should the metadata be 
compromised. Can the metadata still be trusted as not to lie about its 
compromised state? Ironically, there is no second line of defense should the 
first be compromised. Our framework in this thesis shall provide trust to the 
integrity validation metadata, hence ensuring that our framework can be totally 
trusted. 
 

b) One commonly used integrity validation metadata is the return address 
(Ruwase et al., 2010), (Zhou, Qin, et al., 2004) and (Zhou, Liu, et al., 2004). 
A common technique to guarantee the software integrity is to store the  return 
address in a shadow memory (Serebryany et al., 2012), (Nethercote et al., 
2007), (Y. J. Park et al., 2004) or shadow stack (Dang et al., 2015) .  
 
In essence, a shadow copy of the metadata is created, whereby a replica of the 
trusted return address is kept in a separate storage, for example in a hardware 
register. We found that, as of to date, there exists no effort to address the issue 
of trust for the shadow copy contents. Our proposed framework in this thesis  
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addresses the issue of trust for shadow copy metadata via providing a 
mechanism for validating the integrity of the shadow copy metadata. 
 
 

1.6 Summary of Contributions 
 
The framework proposed in this thesis, termed as ‘Runtime Integrity Validation of 
Executable Binaries’ or RIBS had been developed and deployed for the integrity 
validation of C executables during runtime. The Trusted Platform Module (TPM) had 
been utilized to ensure the total trustworthiness of the executable integrity validation 
metadata.  
 
 
In terms of effectiveness evaluations, RIBS has been extensively evaluated with three 
categories of attack patterns: the RIPE testsuite (Wilander et al., 2011), real world 
privilege escalation shellcodes and vulnerable real world applications. RIBS is 
successful both in the detection and mitigation of integrity violations caused by all 
three attack categories.  
 
 
In order to gauge the performance of RIBS, the CPU time of an executable being 
executed as process is measured. Measurements revealed that RIBS perform better as 
compared to three closely related effort: CBones (Kil et al., 2007), Dytan (Clause et al., 
2007) and RTC (Yong, 2004). 
 
 
1.7 Thesis Organization 
 
This thesis is organized into 5 chapters, Chapter 1: Introduction, Chapter 2: Literature 
Review, Chapter 3: Methodology, Chapter 4: Results and Discussion and finally 
Chapter 5: Conclusion and Future Work. In the paragraphs below, an executive 
summary of each chapter is provided. 
 
 
Chapter 1 : Introduction 
 
In this chapter, the problem statements, objectives and motivation for the presentation 
of our framework is presented. This chapter begins by elaborating on the problems 
faced by current work on validating executables, which in turn lead to the formation 
of our research objectives and the motivation for the development of our proposed 
framework. 
 
 
Chapter 2 : Literature Review 
 
In this chapter, the relevant literature on current and past efforts towards the integrity 
validation of executable are presented. The said efforts are grouped into five major 
categories related to our proposed framework. This chapter further pinpoints the 
shortfall of efforts under each major category. 
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Chapter 3 : Methodology 

In this chapter the architecture and inner mechanism of our proposed framework (i.e. 
RIBS) is detailed. This chapter begins with an overview of the RIBS, elaborating on 
the design of each constituent component of RIBS and followed by the deployment of 
RIBS. Next, the rules used for integrity validation is also described. Subsequently, the  
methodologies utilized for the evaluation of RIBS in terms of effectiveness and 
performance are also discussed. 

Chapter 4 : Results and Discussion 

In this chapter, the results for both the effectiveness and performance are presented 
and discussed. This chapter also presents an analysis of the results obtained Further 
explanations were proposed as to why some rules in RIBS failed to mitigate certain 
attack patterns. 

Chapter 5 : Conclusion and Future Work 

In this chapter, we summarize our findings, outline the contributions made, point out 
any shortcomings and provide pointers for future expansion of our proposed 
framework. 

The problems statements, objectives and motivation had been presented in this 
chapter. The next chapter, i.e. Chapter 2, shall present the literature (both past and 
present) which are related to our work. 
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