KENAF-ARAMID FIBRE-REINFORCED POLYVINYL BUTYRAL HYBRID COMPOSITES FOR MILITARY HELMET

SUHAD DAWOOD SALMAN

FK 2017 22
KENAF-ARAMID FIBRE-REINFORCED POLYVINYL BUTYRAL HYBRID COMPOSITES FOR MILITARY HELMET

By

SUHAD DAWOOD SALMAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy

January 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
DEDICATIONS

To you who faced with me the Good and evil time,

Who battle with me the difficult Days,

Who shared with me the stress and effort,

Who always support me…stood with me,

My helper on Life’s path,

My Lover,
My husband Hasan

To my Beloved…My Mother and Father

To my wonderful Sisters…Rafah and Tawheed

To my life Sons…Ameer and Ahmad
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the Degree of Doctor of Philosophy

KENAF ARAMID FIBRE REINFORCED POLYVINYL BUTYRAL HYBRID COMPOSITES FOR MILITARY HELMET

By

SUHAD DAWOOD SALMAN

January 2017

Chairman : Zulkiflle Leman, PhD
Faculty : Engineering

Traditionally, the helmet shell has been used to provide protection against ballistic threats to reduce head injuries and fatalities. Owing to the high cost of aramid fibres and the necessity for environmentally friendly alternatives, a portion of aramid was replaced by plain woven kenaf fibre, with different arrangements and thicknesses, without jeopardising the stringent requirements demanded by military helmet specifications. Furthermore, novel helmets have been produced and tested with a specific threat level (National Institute of Justice standards, NIJ), in order to reduce the dependency on the ballistic resistance components. Experiments were conducted with more focus on the estimation the NIJ level, ballistic limit (V₅₀), maximum energy absorption, hybrid failure mechanism and trauma depth. The NIJ results showed that the laminated hybrids with kenaf fibres passed the 4th level (III-A) up to four layers, using 9 mm FMJ ammunition. While laminated hybrid shell with six kenaf layers and above passed the 3th level (II). Hybrid with 16 aramid/3 kenaf laminated composite recorded the highest V₅₀ among other hybrids composite, 633.7 m/s. The arrangement of fibre layers was also found to affect the ballistic performance of the hybrid composites significantly, placing woven kenaf alternate with aramid fabric layers provided a lower ballistic limit velocity than placing woven kenaf together and aramid layers separately for the same hybrid volume and thickness. The laminated composites were subjected to physical, tensile, flexural, drop weight impact and quasi-static penetration tests. The laminates composed of 19 layers and were fabricated using different number and configurations of plain woven kenaf and aramid layers reinforced Polyvinyl Butyral (PVB) film, by the hot press technique. The experimental results demonstrated that the overall mechanical properties of the kenaf/aramid hybrid were dependent on the kenaf fibre content. Hybrid with 17 aramid/2 kenaf layers exhibited the best mechanical properties compared to other hybrid composites. Generally, the results suggested that stacking sequence, thickness and kenaf fibre content...
significantly influenced the mechanical and ballistic performance. It can be concluded from the research that it is possible to reduce the amount of aramid fibres in conventional PASGT (Personal Armour System Ground Troops) shell by 21% by hybridizing aramid with kenaf fibre, thus providing a lower cost alternative that is environmentally friendly.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Doktor Falsafah

KOMPOSIT POLIVINIL BUTIRAL HIBRID BERTETULANG GENTIAN KENAF-ARAMID UNTUK TOPI KELEDAR TENTERA

Oleh

SUHAD DAWOOD SALMAN

Januari 2017

Pengerusi : Zulkiflle Bin Leman, PhD
Fakulti : Kejuruteraan

Topi keledar digunakan untuk memberi perlindungan terhadap ancaman balistik dan mengurangkan kecederaan di kepala serta kematian. Sebahagian gentian aramid telah digantikan dengan gentian kenaf biasa yang ditenun, dengan menggunakan aturan lapisan komposit berbeza dan ketebalan yang berbeza. Gentian kenaf biasa lebih murah dan lebih bersifat mesra alam tanpa menjegaskan keperluan ketat yang dituntut oleh spesifikasi topi keledar tentera. Tambah pula, topi keledar yang bersifat baharu ini telah dihasilkan dan diuji dengan tahap ancaman tertentu (National Institute of Justice standards, NIJ), dalam usaha untuk mengurangkan keberangkutan kepada komponen rintangan balistik. Eksperimen telah dijalankan dengan memberikan tumpuan lebih kepada anggaran tahap NIJ, had balistik (V_{50}), penyerapan tenaga maksimum, mekanisme kegagalan hibrid dan kedalaman trauma. Keputusan NIJ menunjukkan bahawa dengan menggunakan 9 mm FMJ peluru, kacukan berlapis dengan gentian kenaf telah lulus tahap ke-4 (III-A) sehingga empat lapisan. Hibrid berlamina dengan enam lapisan kenaf dan ke atas telah lulus tahap ke-3 (II). Hibrid dengan shell16 aramid/3 kenaf komposit berlapis merekodkan hadalaj V_{50} yang tertinggi di kalangan hibrid komposit yang lain iaitu sebanyak 633.7 m/s. Selain itu, susunan lapisan serat juga didapati memberi kesan ketara kepada prestasi balistik komposit hibrid, dengan meletakkan tenunan kenaf ganti dengan lapisan fabrik aramid memberikan halaju had balistik yang lebih rendah daripada meletakkan kenaf ditenun bersama-sama dan lapisan aramid berasingan bagi jumlah hibrid dan ketebalan yang sama. Komposit berlapis diuji dengan menggunakan ujian fizikal, tegangan, lenturan, ujian berat jatuh dan ujian penembusan kuasi-statik. Hibrid berlamina terdiri daripada 19 lapisan dan telah direka menggunakan nombor yang berbeza dan konfigurasi dataran kenaf dan aramid lapisan tenunan. Hibrid berlamina ini diperkukuhkan dengan penggunaan polivinil butiral (PVB) filem dan menggunakan teknik tekanan panas. Keputusan eksperimen menunjukkan bahawa sifat-sifat mekanik
keseluruhan hibrid kenaf / aramid bergantung kepada kandungan gentian kenaf. Hibrid dengan 17 lapisan aramid/2 lapisan kenaf mempamerkan sifat-sifat mekanik terbaik berbanding komposit hibrid lain. Secara umumnya, keputusan eksperimen mencadangkan bahawa penyusunan urutan, ketebalan dan kandungan serat kenaf sangat mempengaruhi dalam prestasi mekanikal dan balistik. Kesimpulannya, hasil kajian menunjukkan bahawa jumlah gentian aramid dalam PASGT konvensional (Personal Armour System Ground Troops) mungkin boleh dikurangkan sebanyak 21% dengan menghibridkan gentian aramid dengan serat kenaf, sebagai langkah alternatif untuk kos yang lebih rendah dan bersifat lebih mesra alam.
ACKNOWLEDGEMENTS

First of all, I would like to praise to Allah SWT for giving me the time, patience, physical and mental strength, to have finally completed this research.

I would like to express my deeply indebted and gratitude to the chairman of the supervisory committee, Associate Professor Dr. Zulkiflle Leman for his continuous support and advice throughout this research. Deepest appreciation is also extended to the members of the supervisory committee, Dr. Mohamed Thariq Bin Hameed Sultan, Dr. Mohamad Ridzwan Bin Ishak and Dr. Francisco Cardona, for their valuable comments and suggestions during the study. Special thanks to Mr. John van Hoboken, Mrs. Rayne Ramliza Bt Raybayi, Dr. Ridwan Yahaya, Mr. Mohd Fauzy B. Mohd Nor and to everyone who has helped me in completing this research project.

I am indebted to all the wonderful people at the Department of Mechanical and Manufacturing Engineering for their help during the experimental testings. I am also thankful for the help rendered by the staff at the Science Technology Research Institute for Defence, Malaysian Ministry of Defence (STRIDE). Thanks are also due to the staff at the Brazen Composites Malaysia Company for their assistance on the works.

Lastly, I would like to extend my greatest appreciation to my family, for their overwhelming support and blessing. Also, thanks to all my friends and colleagues for their constant support and encouragement that have directly or indirectly contributed to the completion of this study.
I certify that a Thesis Examination Committee has met on 31 January 2017 to conduct the final examination of Suhad Dawood Salman on her thesis entitled "Kenaf-Aramid Fibre-Reinforced Polyvinyl Butyral Hybrid Composites for Military Helmet" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Mohd Khairol Anuar bin Mohd Ariffin, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Edi Syams bin Zainudin, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Mohd Sapuan bin Salit @ Sinon, PhD
Professor Ir.
Faculty of Engineering
Universiti Putra Malaysia
(Internal Examiner)

Emin Bayraktar, PhD
Professor
LISMA
France
(External Examiner)

\[\signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 28 April 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Zulkiflle Leman, PhD
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Mohamed Thariq bin Hameed Sultan, PhD, P.Eng
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Mohamad Ridzwan bin Ishak, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Francisco Cardona, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ________________________ Date:____________________

Name and Matric No.: Suhad Dawood Salman, GS37260
Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:
Name of Chairman of Supervisory Committee: Assoc. Prof. Dr. Zulkifle Leman

Signature:
Name of Member of Supervisory Committee: Ir. Dr. Mohamed Thariq bin Hameed Sultan

Signature:
Name of Member of Supervisory Committee: Dr. Mohamad Ridzwan bin Ishak

Signature:
Name of Member of Supervisory Committee: Dr. Francisco Cardona
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Aim of this Study</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope of the study</td>
<td>5</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis Layout</td>
<td>5</td>
</tr>
<tr>
<td>1.7</td>
<td>Contribution of Work</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>LITERATURE REVIEW</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Development in Helmet Protection</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Helmet Design and Material Considerations</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Conventional Material Systems</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Modern Material Systems</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Impact Tests</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>Mechanisms Influencing Impact Performance</td>
<td>12</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Material Properties</td>
<td>12</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Fabric Structure</td>
<td>13</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Projectile Geometry</td>
<td>13</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Impact Velocity</td>
<td>14</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Multiple Plies</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Hybrid Composite Materials</td>
<td>15</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Aramid Fibres</td>
<td>16</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Kenaf Fibres</td>
<td>16</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Matrix</td>
<td>18</td>
</tr>
<tr>
<td>2.7</td>
<td>Static Structural Performance of aramid and Kenaf Composites</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Dynamic Structural Performance of Kevlar and Kenaf Composites</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>Performance Measures of Military Helmets</td>
<td>25</td>
</tr>
<tr>
<td>2.10</td>
<td>Ballistic Standard for Helmet</td>
<td>26</td>
</tr>
<tr>
<td>2.11</td>
<td>Summary</td>
<td>26</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS
3.1 Introduction 27
3.2 General Method of Approach 27
3.3 Materials and Tools 29
 3.3.1 Aramid Fibres 30
 3.3.2 Kenaf Fibres 31
 3.3.3 Polyvinyl Butyral (PVB) Resin 31
3.4 Hybrid Composites Preparation 32
 3.4.1 Composite Specimen Fabrication for Mechanical Tests 35
 3.4.2 Composite Specimen and Helmet Shell Fabrication for High Impact Tests 37
3.5 Experimental Procedure 40
 3.5.1 Kenaf Fibre Characterization 40
 3.5.2 Density, Weight Fraction, Volume Fraction and Voids Content 41
 3.5.3 Tensile Test 43
 3.5.4 Flexural Test 44
 3.5.5 Drop Weight Impact Test 45
 3.5.6 Quasi-Static Penetration Test 47
 3.5.7 Ballistic Impact Test 49
3.6 Hybrid Failure Mechanism 54
3.7 Summary 54

4 RESULTS AND DISCUSSION
4.1 Introduction 55
4.2 Kenaf Fibres Characterization 55
4.3 Density, Weight Fraction, Volume Fraction and Voids Content Measurement 56
4.4 Mechanical Properties of Kenaf/Aramid Reinforced PVB Composites 60
 4.4.1 Tensile Properties of Kenaf/Aramid Composites 60
 4.4.2 Flexural Properties of Kenaf/Aramid Composites 66
 4.4.3 Drop Weight Impact Properties of Kenaf/Aramid Composites 70
 4.4.4 Quasi-Static Penetration Properties 82
4.5 Ballistic Impact Properties 89
 4.5.1 NIJ Results 89
 4.5.2 Trauma Injury Results 90
 4.5.3 V_{50} Results 93
 4.5.4 Energy Absorption 96
4.6 Hybrid Failure Mechanism 101
 4.6.1 Tensile Damage Assessment 101
 4.6.2 Flexural Damage Assessment 103
 4.6.3 Drop Weight Impact Damage Assessment 103
 4.6.4 Hybrid Damage Mechanisms under Quasi-Static Penetration Tests 104
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.5</td>
<td>Hybrid Damage Mechanisms under Ballistic Tests</td>
<td>106</td>
</tr>
<tr>
<td>4.7</td>
<td>Design Cost Estimation</td>
<td>110</td>
</tr>
<tr>
<td>4.8</td>
<td>Summary</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>112</td>
</tr>
<tr>
<td>5.1</td>
<td>Conclusions</td>
<td>112</td>
</tr>
<tr>
<td>5.2</td>
<td>Recommendations</td>
<td>113</td>
</tr>
</tbody>
</table>

REFERENCES
APPENDICES
BIODATA OF STUDENT
LIST OF PUBLICATIONS
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Physical and mechanical properties of Heracron® aramid fabric</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Physical and mechanical properties of PVB film</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Specifications of the laminated hybrid composites</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Specifications of the laminated hybrid composites for ballistic tests</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Properties of kenaf yarns</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Properties of plain weave kenaf fabric</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Calculated composite densities, void contents and corresponding fiber volume fractions</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Energy absorption and maximum load of quasi static tested samples</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>NIJ levels results</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>The penetration depth (PD) for each laminated hybrid</td>
<td>90</td>
</tr>
<tr>
<td>4.7</td>
<td>Ballistic resistance results</td>
<td>94</td>
</tr>
<tr>
<td>4.8</td>
<td>Energy absorption of ballistic resistance result</td>
<td>96</td>
</tr>
<tr>
<td>4.10</td>
<td>The expected cost</td>
<td>110</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Historical perspective of U.S. Army helmet design and materials from World War I to the latest headgear system</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic demonstrating the three principal damage mechanisms for low velocity impact: a) matrix cracking, b) shear delamination, c) tensile fibre failure</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Projectile impact into fabric armour</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Sphere impacting single ply of fabric (a) side view, (b) top view of z displacement contours and (c) bottom view showing principal yarns under high stress</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>The kinds of projectile</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Description of the penetration process of compliant laminates with (a) compaction and (b) spring-back</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart describing the outline plan to carry out the research work.</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart describing the composite fabrication process</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Plain woven (a) aramid fibres, (b) kenaf fibres and (c) PVB film</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>The hybrid composite panels preparation process</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Hybrids H5 and H5A stacking sequence</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>Compression moulding hot press and temperature profile</td>
<td>34</td>
</tr>
<tr>
<td>3.7</td>
<td>Composite panels produced from mould after cured and cut by grinding machine</td>
<td>37</td>
</tr>
<tr>
<td>3.8</td>
<td>Ballistic hybrid laminate fabrication processes</td>
<td>38</td>
</tr>
<tr>
<td>3.9</td>
<td>Plain woven kenaf: top view and cross section view</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>Tensile test specimens and sample setup being implemented on the tensile strength testing machine</td>
<td>43</td>
</tr>
<tr>
<td>3.11</td>
<td>Flexural test specimens and sample setup being implemented on the flexural strength testing machine</td>
<td>45</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.12</td>
<td>Overall view of the drop weight impact machine with impactor load cell and support fixture.</td>
<td>47</td>
</tr>
<tr>
<td>3.13</td>
<td>The quasi-static test setup showing the clamping apparatus</td>
<td>48</td>
</tr>
<tr>
<td>3.14</td>
<td>Actual set-up for ballistic impact test</td>
<td>49</td>
</tr>
<tr>
<td>3.15</td>
<td>Actual set-up for flat panels and helmet shells for ballistic tests</td>
<td>50</td>
</tr>
<tr>
<td>3.16</td>
<td>9 mm projectile for NIJ tests</td>
<td>51</td>
</tr>
<tr>
<td>3.17</td>
<td>Clay-backed ballistic testing and trauma depth</td>
<td>52</td>
</tr>
<tr>
<td>3.18</td>
<td>Fragment simulating projectiles for V_{50} tests</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Change in composite density based on fiber volume fractions</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Tensile stress-strain curves of kenaf, aramid composites and their hybrids</td>
<td>61</td>
</tr>
<tr>
<td>4.3</td>
<td>Tensile stress-strain curves of the alternative laminated hybrids of kenaf/aramid fibers.</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Tensile stress-strain curves of each hybrid and its alternative laminate</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Tensile properties of all laminated composites</td>
<td>65</td>
</tr>
<tr>
<td>4.6</td>
<td>Flexural stress-strain curves of kenaf, aramid composites and their hybrids</td>
<td>66</td>
</tr>
<tr>
<td>4.7</td>
<td>Flexural stress-strain curves of the alternative laminated hybrids of kenaf/aramid fibers.</td>
<td>67</td>
</tr>
<tr>
<td>4.8</td>
<td>Flexural stress-strain curves of each hybrid and its alternative laminate</td>
<td>68</td>
</tr>
<tr>
<td>4.9</td>
<td>Flexural properties of all laminated composites</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Hysteresis cycles for drop weight impact force-displacement curves of kenaf, aramid composites and their hybrids at 50 J</td>
<td>71</td>
</tr>
<tr>
<td>4.11</td>
<td>Hysteresis cycles for drop weight impact force-displacement curves of alternative layers of kenaf, aramid composites at 50 J</td>
<td>71</td>
</tr>
</tbody>
</table>
4.12 Hysteresis cycles for drop weight impact force-displacement curves of each hybrid and its alternative laminate at 50 J
4.13 Drop weight impact parameters of all hybrid laminates, peak impact force and absorbed energy at 50 J
4.14 Hysteresis cycles for drop weight impact force-displacement curves of kenaf, aramid composites and their hybrids at 75 J
4.15 Hysteresis cycles for drop weight impact force-displacement curves of alternative layers of kenaf, aramid composites at 75 J
4.16 Hysteresis cycles for drop weight impact force-displacement curves of each hybrid and its alternative laminate at 75 J
4.17 Drop weight impact parameters of all hybrid laminates, peak impact force and absorbed energy at 75 J
4.18 Hysteresis cycles for drop weight impact force-displacement curves of kenaf, aramid composites and their hybrids at 100 J
4.19 Hysteresis cycles for drop weight impact force-displacement curves of alternative layers of kenaf, aramid composites at 100 J
4.20 Hysteresis cycles for drop weight impact force-displacement curves of each hybrid and its alternative laminate at 100 J
4.21 Drop weight impact parameters of all hybrid laminates, peak impact force and absorbed energy at 100 J
4.22 Penetration force-displacement curves of kenaf, aramid composites and their hybrids
4.23 Penetration force-displacement curves of the alternative laminated hybrids of kenaf/aramid fibers
4.24 Penetration force-displacement curves of each hybrid and its alternative laminate
4.25 Maximum penetration load of all hybrid composites
4.26 Penetration energy of all hybrid composites
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.27</td>
<td>Specific energy absorption and energy density of all hybrid composites</td>
</tr>
<tr>
<td>4.28</td>
<td>Energy-fibre volume fraction curves of kenaf and aramid hybrid composites</td>
</tr>
<tr>
<td>4.29</td>
<td>Percentage changes in energy and maximum load of hybrid composites</td>
</tr>
<tr>
<td>4.30</td>
<td>Penetration depths and impact velocity for all hybrid laminated composites</td>
</tr>
<tr>
<td>4.31</td>
<td>The effect of different composite configurations on penetration depth of all hybrid composites</td>
</tr>
<tr>
<td>4.32</td>
<td>Penetration depth-volume fraction curves of kenaf and aramid hybrid composites</td>
</tr>
<tr>
<td>4.33</td>
<td>Residual velocities as a function of impact velocities</td>
</tr>
<tr>
<td>4.34</td>
<td>Ballistic limit (V_{50}) of all composites</td>
</tr>
<tr>
<td>4.35</td>
<td>Ballistic limit (V_{50})-fibre volume fraction curves of kenaf and aramid hybrid composites</td>
</tr>
<tr>
<td>4.36</td>
<td>Residual energy versus striking energy of the projectile</td>
</tr>
<tr>
<td>4.37</td>
<td>Energy absorption of all hybrid composites during ballistic tests</td>
</tr>
<tr>
<td>4.38</td>
<td>Energy absorption-volume fraction curves of kenaf and aramid hybrid composites</td>
</tr>
<tr>
<td>4.39</td>
<td>Energy absorption-Striking velocity of the hybrid composites</td>
</tr>
<tr>
<td>4.40</td>
<td>Specific energy absorption and energy density of all hybrid composites.</td>
</tr>
<tr>
<td>4.41</td>
<td>Percentage changes in energy absorption of hybrid composites</td>
</tr>
<tr>
<td>4.42</td>
<td>Optical pictures of damaged surface of hybrid composite laminates after tensile test (a) aramid composite Ar, (b) hybrid of placing kenaf layers and aramid layers separately H5, (c) hybrid of placing kenaf layers alternate with aramid layers H5A, (d) kenaf composite Kf</td>
</tr>
<tr>
<td>4.43</td>
<td>Optical pictures of damaged surface of hybrid composite laminates after flexural test (a) aramid composite Ar, (b) hybrid of placing kenaf layers and aramid layers separately</td>
</tr>
</tbody>
</table>
H5, (c) hybrid of placing kenaf layers alternate with aramid layers H5A, (d) kenaf composite Kf

4.44 Optical pictures of damaged surface of hybrid composite laminates after drop-weight impact test at 100 J (a) aramid composite Ar and (b) kenaf composite Kf

4.45 Optical pictures of damaged surface of hybrid composite laminates after quasi static test, cross-sectional surface, rear surface and impacted surface, (a) aramid composite Ar, (b) hybrid of placing kenaf layers and aramid layers separately H5, (c) hybrid of placing kenaf layers alternate with aramid layers H5A, (d) kenaf composite Kf

4.46 Optical pictures of ballistic failure modes of hybrid composite laminates, cross-sectional surface, impacted surface and rear surface, (a) aramid composite Ar, (b) hybrid of placing kenaf layers and aramid layers separately H3, (c) hybrid of placing kenaf layers alternate with aramid layers H3A, (d) kenaf composite Kf

4.47 (a) Exterior helmet shell impacted, (b) Interior helmet shell impacted (c) Impact depth using Roma Plastilina clay, at different velocities

4.48 Optical pictures of ballistic failure modes of hybrid composite laminates, cross-sectional surface, impacted surface and rear surface(a) aramid composite Ar, (b) hybrid of placing kenaf layers and aramid layers separately H1, (c) hybrid of placing kenaf layers alternate with aramid layers H1A, (d) kenaf composite Kf
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Standard of Testing Materials</td>
</tr>
<tr>
<td>ACH</td>
<td>Advanced Combat Helmet</td>
</tr>
<tr>
<td>AHP</td>
<td>Analytical Hierarchy Process</td>
</tr>
<tr>
<td>CP</td>
<td>Complete penetration</td>
</tr>
<tr>
<td>E_{abc}</td>
<td>Energy Absorption</td>
</tr>
<tr>
<td>E_b</td>
<td>Modulus of Elasticity in Bending</td>
</tr>
<tr>
<td>E_d</td>
<td>Impact Energy</td>
</tr>
<tr>
<td>FMJ</td>
<td>Full metal jacket</td>
</tr>
<tr>
<td>FRPS</td>
<td>Fibre reinforced polymers</td>
</tr>
<tr>
<td>FSPs</td>
<td>Fragment simulating projectiles</td>
</tr>
<tr>
<td>IEDs</td>
<td>Improvised explosive devices</td>
</tr>
<tr>
<td>LWH</td>
<td>Lightweight helmet</td>
</tr>
<tr>
<td>NIJ</td>
<td>National Institute of Justice</td>
</tr>
<tr>
<td>PASGT</td>
<td>Personnel Armor System Ground Troops</td>
</tr>
<tr>
<td>PD</td>
<td>Penetration depth</td>
</tr>
<tr>
<td>PP</td>
<td>Partial penetration</td>
</tr>
<tr>
<td>PVB</td>
<td>Polyvinyl Butyral</td>
</tr>
<tr>
<td>SPR</td>
<td>Span to punch ratio</td>
</tr>
<tr>
<td>STRIDE</td>
<td>Science and Technology Research Institute for Defence, Malaysian Ministry of Defense</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>vol</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>V_r</td>
<td>Residual Velocity</td>
</tr>
<tr>
<td>V_s</td>
<td>Striking Velocity</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1 Background

Protecting the head from injury is critical to the function and survivability. Traditionally, helmets have been utilized to provide protection against shrapnel and ballistic threats, which have reduced head injuries and fatalities. However, home-made bombs or improvised explosive devices (IEDs) have been increasingly used in the theatre of operations (Samil and David, 2012). There is an urgent need to develop head protection helmet in the way such that it becomes less both costly and environmentally harmful. To the military and civilian people who are exposed to different threats require adequate protective gears to safeguard themselves. From this scenario, the demands for helmet armours are driving the protective equipment industry to create solutions in order to provide lightweight and reliable protection from a variety of ballistic threats and most importantly, helmet armours that are marketable to wide a range of consumers.

Composite materials are continually becoming a more attractive choice of material in various industrial applications as a result of their high strength-to-weight and high stiffness-to-weight ratios. While composite materials offer significant gains in performance as a result of their unique ability to be tailored towards a specific application, they can also offer a means of incorporating biobased materials into a product. This is through the use of natural fibres as ballistic protective fibres. Recently, environmental regulations, costs and lightweight encourage researchers to develop new reliable materials (Kline and Company Inc., 2000). Natural fibre reinforced polymer composites have been a viable option in replacing traditional materials due to their availability (Amar, Manjusri, Lawrence, Susan, Bruce and Georg, 2005; Richardson, Madera-Santana and Hague, 1998). Currently, there is a need to understand their behavior in order to be safely and economically driven into the ground (Cheeseman and Bogetti, 2003).

From ancient times, natural textiles have been used as compliant laminates, not only for clothing and protection against the elements but also for bodily protection. From the use of leather on Grecian shields, layered silk in ancient Japan, to chain mail and suits of armour in the Middle Ages, personal protection has sought to protect its wearer from the corresponding advances in armaments. However, the advent of firearms relegated these forms of protection obsolete until the development of high-strength, high-modulus fibers in the 1960s. These materials ushered in a newer of body armour that offered protection against small arms munitions. To achieve advancements in armour performance levels at a reduced weight, further investigations are required in materials to develop innovative designs.
Natural fibers, when compared to their synthetic or mineral-based counterparts, generally have lower mechanical properties. These low mechanical properties are a major inhibitory when trying to develop high-performance products. One method for increasing their level of mechanical performance is to hybridize natural fibers with synthetic fibres. The benefit of using hybrid composites is that the advantages of one type of fibre can overcome the disadvantages of the other type of fibre. A viable compromise between the higher material properties of synthetic fibres and the environmental benefits of natural fibres is found by utilizing both synthetic and natural fibres to create a hybrid fibre reinforced composite system. Material properties are also improved by the efficient arrangement of the structural members. The use of hybrid natural/synthetic fibre reinforced composites for structural applications has been shown to be a feasible alternative to traditional synthetic building materials (Musch, 2008). As a result, a balance in cost, performance, and sustainability could be achieved through proper composite material design.

A considerable amount of published work which utilized natural fibre material such as sisal, kenaf, and ramie as hybrid composite reinforcements with the synthetic fibres, have been highlighted (Saba, Paridah and Jawaid, 2015). However, woven natural fabric as compacted reinforcement in composite materials subjected to impact loadings is scarce. This work provides an investigative study of the helmet shell materials based on a comprehensive review of existing hybrid studies. Owing to the high cost of aramid fibre and the necessity for environmentally friendly alternatives, a portion of aramid fibre was replaced by kenaf fibre based Polyvinyl Butyral film (PVB) in the hybrid laminated composite. The hybridization has been characterized ballistically and structurally. The focus of the present work is to identify materials and design opportunities that could be used to engineer a lighter helmet shell that meets prescribed baseline performance specifications from hybridization of kenaf and aramid fibres. In addition, aramid/PVB-Phenolic and kenaf/PVB composites were fabricated with specified mechanical and ballistic characteristics.

To design a functional helmet, it is important to analyze the structure of helmets. The main helmet components are the foam liner (integral skin) and the shell (composite). Basically, the function of the foam is to absorb most of the impact energy, while the function of the shell is to resist penetration of any foreign object from touching the head and resulting in direct skull damage, and to distribute the impact load on a wider foam (Carey, Herz, Corner, McEntire, Malabarba, Paquette and Sampson, 2000). Usually, manufacturers design their helmet based on experimental verification. During the experimental verification, the helmet must absorb the energy of the impact and resist penetration (Walsh, Scott and Spagnuolo, 2005). This penetration test is the main criteria for shell thickness determination. If a thicker shell is chosen, the strength will increase, as well as cost and weight, therefore an alternative material should be considered (Aare and Kleiven, 2007).
By the 1970s, a company called DuPont had developed a fabric called Kevlar with bullet resistant properties, and National Institute of Justice (NIJ) began testing the fabric in the armour applications. Since that time, ballistic field test results found the Kevlar ballistic vests to be a successful method to use in the protection field (Chua and Chena, 2010). The general method for characterizing a material’s ballistic performance is to conduct a \(V_{50}\) ballistic test. A \(V_{50}\) is defined as the velocity at which there is an equal probability of a partial or a complete perforation for the given armour and threat. Security classification becomes critical when both the threat and armour are discussed or presented simultaneously, especially if the mass efficiency of the armour is significant. In addition, transient deformation, which is a direct result of the kinetic energy, is concomitant with the ballistic impact and it plays a very significant role in determining the design and materials selection of a helmet system (Czechowski, Jankowski and Kubiak, 2012). In the static and dynamic structural performance, practical durability is a necessary trait for any article used in combat (Faur-Csukat, 2006). Helmets must also pass static structural tests as well. The other considerations which are the comfort, cost, weight distribution, and a host of other factors, also influence design and material selection of a typical helmet. Many of these factors are weighted evaluations through models and experimental testing to reveal possible issues or concerns with the helmet system (Cunniff, 1992).

1.2 Problem Statement

It is a proven fact that hybrid composite materials play an important part in ballistic protection and many published works have been done to highlight its ballistic capabilities (Velmurugan, Sikarwar and Gupta, 2010). Among the top performance is the Kevlar fibre composite, which possesses one of the highest specific modulus. The specific strength and stiffness are significantly greater than monolithic materials such as steel and aluminum, which make them attractive for numerous weight critical applications. However, cost and weight consideration play an important role in helmet application requirements (Torki, Stojanović, Živković, Marinković, Škapin, Uskoković and Aleksić, 2012). Hence a suitable and lightweight solution should be explored by developing new materials. Composite armour provides an excellent solution in terms of strength over weight ratio, but is expensive due to the high demands for its raw materials (carbon, aramid, etc.) to a non-armour application. Thus an alternative material is required to reduce the dependency towards ballistic resistance component, so further understanding of its impact and mechanical properties should be taken into considerations. Therefore, to develop innovative designs of hybrid kenaf/aramid fibre reinforced composites for sustainable construction may be possible to create a material with the combined advantages (Davoodi, Sapuan, Ahmad, Ali, Khalina and Jonoobi, 2010). Sustainability is defined as the ability to balance performance and environmental constraints.
The ballistic testing apparatus is crucial tools in order to identify key parameters defining the perforation and damage phenomenon and also to provide engineering reference data of the armour materials. Hybridization of woven kenaf with aramid fibres to use in the helmet shell application is a really challenging subject and deserves a sophisticated research study, to achieve balance in cost and performance.

1.3 Aim of this Study

The use of natural fibres in the industrial application provides challenges for researchers to improve suitable techniques which can be used for structural applications such as automotive, protective helmet, household and construction industry. The primary aim of this study is to develop a hard helmet shell by combining plain woven kenaf fibres with aramid fabric reinforced Polyvinyl Butyral (PVB) film to form a hybrid composite and engineer a lighter helmet shell that meets prescribed baseline performance specifications and replace or reduce utilization of aramid fibres. The structural performance was controlled by changing the distribution of laminated designs to achieve the most beneficial arrangement of kenaf/aramid layers for helmet shell design while balancing performance and environmental constraints. This approach is expected to develop a helmet shell armour which is less cost and environmental friendly compared with the conventional helmet shell without jeopardizing the ballistic-resistant capabilities.

1.4 Research Objectives

With the background in mind, it is clear that a better knowledge of the ballistic properties of structural fibre reinforced polymers (FRPs) would make it possible to manufacture the ballistic protection of the helmet shell. Therefore, the research objectives are:

1. To determine physical properties of kenaf fibre and the influence of fibre content on tensile, flexural and morphological properties of woven kenaf/ Polyvinyl Butyral (PVB) composites.

2. To determine the effect of stacking sequences of laminates on tensile, flexural, low velocity impact behavior and quasi-static loading of plain woven kenaf and aramid fabric reinforced PVB based composites.

3. To evaluate the impact characteristics and penetration resistance capabilities (V_{50} and impact resistance level NIJ and blunt trauma depth) of woven kenaf and aramid fibres reinforced PVB based composites when subjected to actual ballistic impact tests under different projectile speeds.

4. To fabricate a helmet shell from the best composite combination and perform military actual ballistic tests.
1.5 Scope of the Study

The Personnel Armor System Ground Troops (PASGT) is investigated as the type of ballistic helmet. Presently, there are two types of ballistic threats: (i) the penetration of handgun bullets (NIJ test) and (ii) piercing of fragmented shells (V50 test).

The scope of this research is limited to provide tensile, flexural, quasi-static penetration, drop weight impact and ballistic resistance results for multi layers of woven kenaf/aramid reinforced Polyvinyl Butyral composite, as well as physical and mechanical of kenaf fibre. The woven kenaf fibres were used without any treatment, naturally. In addition, the target struck by two types of projectiles; 9 mm, 8.0 g full metal jacket (FMJ) bullets to investigate the NIJ levels and .22 calibre (diameter of 7.62 mm) fragment simulating projectiles (FSPs) to determine the V50 ballistic limit.

Apart from that, this research emphasizes on the structural integrity of the ballistic helmet shell when impacted at high velocity. Furthermore, the plain weave style was used in this work because it was reported that it has high strength to the impact test. From previous work, it was indicated that the plain weave style has had significant effects on the final results of using natural fibres.

1.6 Thesis Layout

This thesis consists of five chapters where all the contents are summarized at the end of each chapter. Chapter 1 introduces the reader to the context of this study and the objectives which were derived from the problem statement. Chapter 2 overviews the development of helmet armour research by previous work, the development in helmet armour protection, helmet design and material considerations and static and dynamic structural performance and stability that have been developed by other researchers.

Chapter 3 describes the materials and methodology used for this study, a specific approach in designing and planning the course of study, several experimental test procedures and setups incorporated into this research. Chapter 4 presents the results of physical and mechanical properties of the kenaf fibre, plain woven kenaf/PVB, aramid/PVB-Phenolic and kenaf/aramid hybrid composites. In addition, the effects of kenaf volume fraction on the tensile, flexural and drop weight properties were discussed. The morphological properties of the fracture surface of the hybrid composites were also analyzed. Furthermore, this chapter encompasses the quasi-static penetration and ballistic impact properties results of the hybrid composite materials. The effect of layering sequence, trauma injury and failure modes of hybrid composite laminates were also discussed. Finally, Chapter 5 presents the summary of
the findings outlines specific conclusions drawn from the current study and recommendations for future work.

1.7 Contributions of Work

In this present study, the research contributions are as follows:

(a) Experimental procedures for fabrication kenaf/aramid reinforced PVB film using hot press technique.
(b) Examine the possibility to use kenaf fibres in the military helmet shell.
(c) Comparison of volume fraction and thickness for the different kenaf fibre layers in terms of tensile, flexural, impact load, impact energy and penetration resistance applications in the military helmet industry.
REFERENCES

Dittenber, D. B. (2013). *Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials*. (PhD. Thesis), West Virginia University, Morgantown, USA.

Fulton, I. T. (2011). The effect of layup and pressure on mechanical properties of fiberglass and kenaf fiber composites. (M. Sc. Thesis), Mississippi State University, Oktibbeha County, Mississippi, USA.

poly(lactic acid) (PLA) and kenaf fibers. *Composites Science and Technology, 68*(2): 424-432.

Walsh, S. M., Scott, B. R., & Spagnuolo, D. M. (December 2005). The development of a hybrid thermoplastic ballistic material with application

