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January 2017 
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Faculty :  Engineering 

Polyaniline (PANI) has been used for ammonia (NH3) sensing for several decades, 

mostly in electrical based sensors due to its variation in conductivity during the 

interaction. Optical sensors are known to have advantages in certain aspects as 

compared to electrical sensors, but this area of research has not been fully explored. 

Therefore, this research project aims to explore optical based NH3 sensor with the 

incorporation of PANI nanostructure. Tapered multimode fiber (MMF) was chosen as 

the transducing platform for the sensor because of ease in fabrication, high sensitivity 

and its suitability for remote sensing applications. The sensitivity of tapered fiber 

based sensors can be improved by reducing the waist diameter. The influence of PANI 

nanostructure morphology, thickness and dopants on the sensing performance was 

also studied in this thesis. 

In this project, PANI nanostructures were synthesized and deposited on tapered MMF 

using two methods. The first method was in-situ deposition method, where 

poly(methyl vinyl ether-alt-maleic acid)(PMVEA)-doped PANI (PANI-PMVEA) 

nanogranules and nanofibers were grown on tapered MMF surface during 

polymerization process. For the second method, camphorsulfonic acid (CSA)-doped 

PANI (PANI-CSA) nanofibers were spray coated on the tapered MMF. Three 

processes were involved in the preparation of PANI-CSA, namely the synthesis of 

hydrochloric acid-doped PANI (PANI-HCl), the dedoping of PANI-HCl to obtain 

emeraldine base PANI (PANI-EB) powder and the redoping of PANI-EB with CSA 

to obtain PANI-CSA nanostructures. The thickness and morphology of PANI

nanostructures were characterized using scanning electron microscopy (SEM) and 

atomic force microscopy (AFM). The formation of PANI nanostructures in emeraldine 

salt form was confirmed from molecular vibrational analysis using Raman 

Spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The response of 

the sensors towards NH3 at different concentration was measured using cumulative 

absorbance change within the wavelength range of 500 – 800 nm. The sensing 
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performance was evaluated in terms of response time, recovery time, sensitivity and 

repeatability. 

PANI-PMVEA coating thickness and morphology was varied by varying the 

deposition duration and PMVEA/aniline ratio. The highest sensitivity was achieved 

by the most uniformly-distributed nanogranules PANI-PMVEA coating with 

thickness of approximately 913 nm. The achieved sensitivity, response and recovery 

time was 2.19/vol%, 2.82 minutes and 11.52 minutes, respectively. PANI-CSA 

nanofibers were coated on tapered MMF with different waist diameters. The highest 

sensitivity of 2.44/vol% was attained by the smallest diameter (20 µm) sensor with 

PANI-CSA coating of approximately 700 – 850 nm. The response and recovery time 

are 1.73 minutes and 12 minutes, respectively. The sensor using PANI-CSA 

nanofibers have higher sensitivity and faster response than the sensor using PANI-

PMVEA nanostructures at 1% NH3.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah  

KAJIAN KELAYAKAN POLYANILINE BERSTRUKTUR NANO DI SALUT 
PADA FIBER OPTIK TIRUS SEBAGAI PENDERIA AMMONIA

Oleh  

SITI AZLIDA BINTI IBRAHIM @ GHAZALI 

Januari 2017 

Pengerusi :  Mohd. Adzir Mahdi, PhD 
Fakulti :  Kejuruteraan 

Polianilina (PANI) telah digunakan untuk penderiaan ammonia (NH3) selama 

beberapa dekad, kebanyakannya dalam penderia berasaskan elektrik disebabkan oleh 

konduktivitinya yang berubah-ubah ketika bertindak balas dengan gas NH3.  Penderia 

optik diketahui mempunyai kelebihan dalam aspek tertentu berbanding dengan 

penderia elektrik tetapi masih belum diterokai secara meluas. Oleh itu, projek 

penyelidikan ini bertujuan untuk meneroka penderia NH3 berasaskan optik dengan 

menggabungkan nano struktur PANI. Gentian berbilang mod (MMF) tirus dipilih 

sebagai platform transduksi untuk penderia kerana mudah direka, kepekaan yang 

tinggi dan sesuai untuk penggunaan penderiaan jauh. Kepekaan penderia berasaskan 

gentian tirus boleh ditingkatkan dengan mengecilkan diameter tengah. Pengaruh 

morfologi, ketebalan dan bahan dop nano struktur PANI terhadap prestasi penderiaan 

juga dikaji dalam tesis ini. 

Dalam projek ini, nano struktur disintesiskan dan terendap pada MMF tirus 

menggunakan dua kaedah. Kaedah pertama ialah kaedah pengendapan in-situ iaitu 

poli(metil vinil eter-alt-asid maleik) (PMVEA) terdop granul nano dan gentian nano 

PANI (PANI-PMVEA) terhasil pada permukaan tirus MMF semasa proses 

pempolimeran. Bagi kaedah kedua, asid kamforsulfonik (CSA) terdop gentian nano 

PANI (PANI-CSA) disembur menyaluti MMF tirus. Tiga proses yang terlibat dalam 

penyediaan PANI-CSA, iaitu sintesis asid hidroklorik terdop PANI (PANI-HCl), 

pengedopan PANI-HCl untuk mendapatkan serbuk PANI-EB dan pengedopan semula 

PANI-EB dengan CSA untuk mendapatkan struktur nano PANI-CSA. Ketebalan dan 

morfologi nano struktur PANI dicirikan menggunakan imbasan mikroskop elektron 

dan mikroskop daya atom. Pembentukan struktur nano PANI dalam bentuk garam 

yang berwarna hijau zamrud disahkan melalui analisis getaran molekul menggunakan

Spektroskopi Raman dan Spektroskopi Inframerah Transformasi Fourier. Tindak 

balas penderia terhadap NH3 pada kepekatan berbeza diukur menggunakan perubahan 
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keserapan kumulatif dalam julat jarak gelombang 500-800 nm. Prestasi penderiaan 

dinilai dari segi masa tindak balas, masa pemulihan, kepekaan dan keterulangan. 

Ketebalan dan morfologi salutan PANI-PMVEA dipelbagaikan dengan 

mempelbagaikan masa pengendapan dan nisbah PMVEA\anilina. Kepekaan tertinggi 

dicapai dengan taburan granul nano salutan PANI-PMVEA paling sekata dengan 

ketebalan kira-kira 913 nm. Kepekaan, tindak balas dan masa pemulihan yang dicapai 

adalah masing-masing 2.19/vol%, 2.82 minit dan 11.52 minit. Gentian nano PANI-

CSA disalutkan pada MMF tirus dengan diameter tengah yang berbeza. Kepekaan 

tertinggi ialah 2.44/vol% dicapai dengan penderia diameter terkecil (20 µm) dengan 

salutan PANI-CSA kira-kira 700 – 850 nm. Masa tindak balas dan pemulihan adalah 

masing-masing 1.73 minit dan 12 minit. Penderia yang menggunakan gentian nano 

PANI-CSA mempunyai kepekaan lebih tinggi dan tindak balas lebih cepat berbanding 

dengan penderia yang menggunakan nano struktur PANI-MVEA pada 1% NH3.
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CHAPTER 1 

INTRODUCTION 

1.1  Overview 

Silica optical fiber is well-known as a medium for data transmission in the

telecommunication industry, which enables high speed data communications. In the 

past three decades, optical fiber has been studied; not only for communication but also 

for many other applications. One of the most interesting areas is for sensing 

applications. Even though electrical-based sensor is a well-established technology, 

there are some limitations that these electrical sensors face, which can be overcomed

by using optical fiber sensors. Electrical sensors are not suitable to be used in harsh 

environments such as in high voltage machinery or in chemical interaction medium. 

Optical fiber can stand those harsh conditions because it is a dielectric medium that 

does not conduct electrical signal. It is immunes to electromagnetic interference or 

any electrical signal disturbance and it can stands high temperature up to 1200ºC

before it start to soften [1]. In addition, the fiber is inexpensive, small size and not 

susceptible to corrosion.

Fiber optic sensors can be designed either to replace existing sensors or to be applied 

in new applications. In order for optical fiber sensors to be able to replace conventional

sensors, they have to show a significant improvement in terms of performance, 

accuracy, reliability, safety and cost. Optical fiber gyroscopes is one of the important 

example of a sensor that has been successfully replaced the conventional sensor. This 

sensor are used in automobile navigation system, inertial measurement system for 

aircraft, and backup guidance system for Boeing 777 [2]. Applications of fiber optic 

sensors are very broad. It ranges from supporting process control in manufacturing 

system, medical applications, building and structures monitoring system, remote 

monitoring in harsh environment, natural hazard emergency response system, marine 

system monitoring, oil exploration and many more that are impossible to be covered 

here [3].  The number of applications keep increasing because of the rapid research 

and development in this area, and decreasing in the cost factor. The broad range of 

applications is also due to the various configurations and parameters that can be 

measured including pressure, acoustic waves, vibration, position, strain, liquid level, 

flow, velocity, acceleration, rotation rate, temperature, electrical current, magnetic 

field, electromagnetic field, chemical process, and the surrounding refractive index 

[4].

The sensors can be classified based on the working principle such as interferometric 

sensor. This class of sensor obtained the information from the interference between 

two optical signals. Well-known sensors under this category are Mach-Zehnder and 

Michelsen interferometer [2]. Besides that, fiber sensor can be designed based on 

microbending [5], grating [6], or evanescent wave [7][8]. Evanescent wave sensor can 
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be fabricated by removing some part of the cladding or by tapering the conventional 

optical fiber. Recently, research on sensors based on the tapered optical fiber has 

attracted great attention due to various advantages in terms of compactness, 

robustness, strong evanescent field, and simple fabrication method. Tapered optical 

fiber has been studied to measure physical parameters such as temperature [9],

humidity [10], strain [11], refractive index [12], to detect chemicals species [13] and 

also for biosensors [14]. Great potentials of tapered fiber sensors are now recognized 

by the research community.

Detection of chemical species using fiber sensors has been studied since 1970s. There 

are two main approaches to sense chemical using fiber sensor [15]. One of the 

approaches is by measuring the intrinsic optical properties of the analyte such as its 

refractive index, emission or absorption. The other one is done by monitoring the 

change in optical properties of the immobilized indicator, or sensing layer that is 

deposited on the fiber. The second approach usually incorporates some materials as 

sensing layer that can react with the target analyte. Materials for sensing layer are

typically a material that has the switching capability such as conducting polymers 

(organic), semiconductor metal oxides (inorganic), and composite materials. 

Conducting polymer is an organic material that has semiconductor or metal-like 

conductivity. Its synthesis method and processing is easier than metals, making it very 

attractive as sensing layer. It has served as sensing layer in electronic gas sensors since 

1980s. The sensors were reported to have high sensitivities, short response time, and 

the most attractive feature is good response at room temperature [16]. Conducting 

polymers that have been investigated as sensing layer are polyaniline (PANI), 

polypyrrole (PPy), and polythiophine (PTh). Among these polymers, PANI has been 

widely studied because of its simple synthesis, low cost, high conductivity and high 

environmental stability [17]. It has been used to sense nitrogen dioxide (NO2), 

hydrogen sulphide (H2S), sulfur dioxide (SO2), and most widely for ammonia (NH3). 

Recent development on the nanostructure PANI has increase the interest to incorporate 

PANI as sensing layer, since nanostructure materials have shown much higher 

sensitivity compared to bulk material. 

Applying optical fiber sensors for gas sensing applications has open up new 

possibilities of in-situ monitoring on various types of gases at remote or hard-to-reach 

areas. Real-time and continuous monitoring of certain gas species is in huge demand

in process control, automotive, medical, agricultural and many more. Combining the 

advantages of optical fiber sensors with sensitive nanomaterials for gas sensing 

application is an interesting research direction to be explored. 
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1.2 Problem Statement

NH3 is a natural gas that exists in our atmosphere. The main sources include

decomposition of manure in agricultural and wildlife, chemical plants (fertilizer & 

refrigerator manufacturing industries), natural bacterial nitrification activities, and 

motor vehicles. In industries that use pure NH3 such as fertilizer and refrigerator 

industries, leakage in the system may lead to life threatening situations. Exposure to 

high NH3 concentrations is hazardous to human health; at concentration of 500 ppm,

the person exposed will experience breathing difficulties, and irritation to the nose, 

eyes and throats. At concentration higher than 1000 ppm can cause pulmonary 

oedema, long term lung disorder and can be fatal. Exposure to extremely high 

concentration (5000 – 10,000 ppm) is deadly within 5 – 10 minutes [18]. More 

worrying, the gas is flammable at 50ºC at very high concentration (150,000 ppm) [19].

In history, one of the worst disasters related to NH3 happened in April 1947, when a 

ship that carried solid fertilizers exploded while it was docking in Texas City [20] The 

incident had damaged more than 1,500 buildings and killed almost 600 people. 

Therefore, it is extremely important to develop an NH3 gas monitoring system with 

good sensors to avoid such safety hazards. 

Research on electrical-based NH3 sensors employing PANI is well established. The 

sensing mechanism is based on measuring changes in conductance (conductometry) 

or resistance (chemresistors) as PANI chemically reacts towards NH3. However, as 

mentioned earlier, electrical-based sensors are not suitable to be deployed in certain 

environment especially when there is risk of explosion. PANI has also been used in 

optical-based sensors by measuring changes in light absorbance, reflectance or 

transmittance. The sensors were realized by depositing thin PANI film on waveguides 

[21], glass substrate [22][23][24], and optical fibers [25][26][27]. The use of 

waveguide as the transducing platform in [21] requires the use of optical bench setup, 

which is quite bulky and sensitive to misalignment problem. The technique which uses

glass substrate in [22] and [24] is more suitable for remote monitoring application 

because it is less bulky than the waveguide bench setup. However, misalignment of 

the two fibers that carry light to and from the sensing glass surface is a big challenge 

that needs to be addressed. The use of optical fibers as the transducing platform 

overcome the misalignment problem, and enables the sensor to be used for remote 

monitoring applications.

Evanescent-based fiber sensor is very attractive due to its simple and cheap fabrication 

methods. It can be realized using side-polished, D-shaped, removed-clad or tapered 

fibers [28]. Tapered fiber was shown to be more sensitive than side-polished and D-

shape fiber [29]. This is due to the presence of evanescent wave surrounding the taper 

waist region, while D-shape or side polished fiber only has evanescent at one side of 

the fiber. Usually, to fabricate removed-clad fiber, the cladding of silica optical fibers

were removed using chemical etching method [30]. The major drawback with 

chemical etching method is that it is difficult to control; hence cause low 

reproducibility. With the advanced in fiber tapering technology, a more reproducible 

and controllable process to produce evanescent fiber sensors is realized. Tapering does 
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not involve the removal of the fiber cladding, but it reduces the fiber diameter by 

heating while pulling the fiber. Since the transition between the original fiber and the 

tapered fiber waist is smooth, it is less fragile than remove-clad fiber. Due to various 

advantages of tapered fiber compared to other types of evanescent fiber, it was chosen 

to be used in this thesis. To the best of author’s knowledge, there is no work reported 

on NH3 sensor developed by using PANI on tapered optical fiber. Therefore, in this 

thesis, a new NH3 sensor deploying PANI as sensitive layer, coated on tapered MMF 

was developed. 

Currently, research on gas sensors using nanostructure materials is a hot topic due to 

the impressive sensitivity improvement. High surface to volume ratio increases the 

adsorption and fusion rate of gas molecules into the nanostructures, which leads to 

faster response and higher sensitivity. Deployment of PANI nanostructures 

(nanogranules, nanofibers, nanotubes, etc) in electrical-based sensors has been widely 

studied [31] [32], [33]. On the other hand, study on optical sensor characteristics that 

employ PANI nanostructure is still at the infancy stage. Only few optical sensing 

research works are found in literature that deposited PANI nanostructure on glass 

substrate and observed the absorbance response towards NH3 [34][23]. Since the 

sensor in [34] used the most similar measurement setup and unit, it can be used as the 

benchmark for this work. Their sensor has achieved the sensitivity of 0.1018/vol%.

From the author’s thorough literature survey, there is no work reported so far regarding 

the study on the NH3 optical fiber sensor by employing PANI nanostructures as 

sensitive sensing layer.

Factors that influence the PANI sensing performance includes its morphology and 

type of dopants. For tapered fiber sensor, the tapered fiber dimension such as its waist 

diameter determines the penetration depth and the strength of evanescent field 

surrounding it; hence influence the sensor’s sensitivity. In addition, PANI deposition 
methods will determine its morphology and thickness, which also affects the sensor’s 
performance. In this thesis, detail investigation on the influence of these parameters 

on the sensor’s absorbance response is carried out systematically. 

1.3 Objectives

The aim of this thesis is to develop optical fiber NH3 sensors by integrating PANI 

nanostructures with tapered optical fibers.  The specific objectives are listed as 

follows:

� To synthesis and deposit PANI nanostructure on tapered optical fiber.

� To characterize the PANI nanostructure material properties and analyse its 

relation with the sensing performance in terms of sensitivity, response time, 

recovery time and repeatability.
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� To analyse the influence of tapered fiber geometrical properties on the 

sensing performance.

� To understand and explain the optical sensing mechanism to sense the

interaction between PANI nanostructures and NH3 gas molecules. 

In order to achieve these objectives, the following research questions are outlined:

� What are the suitable synthesis and deposition methods to coat PANI

nanostructures on tapered optical fiber?

� How do the synthesis and deposition methods affect the sensing layer’s 
morphology and thickness?

� How different are the sensing performances of PANI nanostructures with 

different morphologies and thickness?

� How different are the sensing performances of tapered fiber sensors with

different waist diameters?

1.4 Scope and limitation

This thesis is focusing on evanescence-based optical fiber sensor using tapered 

multimode fiber. Two types of PANI nanostructures were used as the sensing layer, 

which are PANI-CSA nanofibers and PANI-PMVEA nanogranules. The sensing 

mechanism is based on evanescent wave absorption. The sensors were tested at room 

temperature (26°C) to sense NH3 at four different concentrations (0.125%, 0.25%, 

0.5% and 1%). The sensors were not tested for different temperature because it is 

purposely designed for room temperature applications. PANI, a type of conducting 

polymer, was chosen as the sensing layer because it is known to have good response 

at room temperature. Besides, the polymer is not suitable to be used at high 

temperature because it will decompose at temperature of more than 100°C. 

The tapered fiber used in this thesis was fabricated from conventional graded index 

multimode fiber with core/cladding ratio of 62.5 µm/125 µm. The tapered fiber has 

fixed down taper and up taper length of 2mm, and fixed waist length of 10 mm. In the 

method that uses PANI-CSA as sensing layer, the waist diameter was varied between 

20 µm to 50 µm. The diameter was not reduced below 20 µm because the fiber 

becomes very fragile and difficult to handle. A preliminary work using tapered fiber 

with waist diameter of 15µm was done, but it was not continued because the fiber was 

broken. So, it was decided not to use the fiber with diameter of less than 20 µm. 

Meanwhile, the sensor with 50 µm showed a very low sensitivity due to very small 

evanescent penetration depth. Therefore, it is useless to further increase the diameter. 

For sensor with PANI-PMVEA coating, the diameter was not varied because the focus 

of that chapter is to study the effect of sensing layer morphology and thickness. 
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This thesis also does not focus on the doping level of the CSA and PMVEA into PANI. 

In Chapter 3, PMVEA was only varied by 5%, which does not really affect the doping 

level, because the amount of polymer coated on the fiber is very small relative to the 

total amount of polymer produced in 100 ml of solution.  Meanwhile, in Chapter 4, 

the amount of CSA was not varied. 

1.5 Thesis Organisation

This research work is reported in a thesis that consists of 5 chapters. Chapter 1 

provides a brief overview of the tapered fiber sensor fields followed by the problem 

statements and objectives. Theoretical background and review on the previous 

reported research findings related to this work are presented in Chapter 2. In Chapter 

3, the sensor fabrication process that involves in-situ deposition of PANI-PMVEA 

nanogranules on tapered fiber is elaborated in details. The analyses on the PANI 

coating properties together with the sensing results are included in the same chapter. 

Chapter 4 discusses the sensor fabrication method that involves synthesis and spray 

coating of PANI-CSA nanofibers together with the PANI coating properties and 

sensing performance. Finally, research findings and outlines of future 

recommendations for this research are concluded in Chapter 5.
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