
 
 

UNIVERSITI PUTRA MALAYSIA 
 

 
SOURCE CODE ANALYSIS EXTRACTIVE APPROACH TO GENERATE 

TEXTUAL SUMMARY 
 

 
 
 

   
 
 
 
 
 

KAREEM ABBAS DAWOOD 
GS45730 

 
 
 
 
 
 
 
 
 
 

                     FSKTM 2017 3 
 

 
 
 
 



© C
OPYRIG

HT U
PM

 

 

 

SOURCE CODE ANALYSIS EXTRACTIVE APPROACH TO GENERATE 

TEXTUAL SUMMARY 

 

 

By 

KAREEM ABBAS DAWOOD 

GS45730 

 

 

Thesis submitted to the Department of Software Engineering and Information System, 

Faculty of Computer Science and Information Technology, University Putra Malaysia, 

in Fulfilment of the Requirements for the Degree of Computer Science/Software 

Engineering 

 

Jun, 2017 

  



© C
OPYRIG

HT U
PM

 

 

 

ii 

 

APPROVAL 

 

This thesis report is submitted to the Department of Software Engineering and 

Information System, Faculty of Computer Science and Information Technology, 

Universiti Putra Malaysia, and has been accepted as partial fulfillment of the 

requirements for the Master’s Degree of Computer Science/Software Engineering.  

The members of the Examination Committee are as follows: 

 

 

 

  

Supervisor 

Dr. KHAIRONI YATIM BIN SHARIF  

Senior Lecturer/ Head of Software Engineering Research Group 

Department of Software Engineering and Information System 

Faculty of Computer Science and Information Technology 

Universiti Putra Malaysia 

 

 

 

 

 

  

Examiner 

Dr. NORHAYATI BINTI MOHD ALI  

Computer Science and Information Technology 

Universiti Putra Malaysia 



© C
OPYRIG

HT U
PM

 

 

 

iii 

 

DECLARATION 

 

I hereby declare that this thesis, submitted to the Department of Software Engineering 

and Information System as a fulfillment of the requirements for the master’s degree in 

Computer Science/Software Engineering has not been previously, and is not 

concurrently, submitted for any other degree at university Putra Malaysia and other 

universities. I also certify that the work described here is entirely my own except for 

citations, which have been duly acknowledged. 

 

 

 

 

 

 

 

 

  

KAREEM ABBAS DAWOOD 

GS45730 

Date:     Jun, 2017 

  



© C
OPYRIG

HT U
PM

 

 

 

iv 

 

DEDICATION 

 

To soul of my mother, my wife, and my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 

 

v 

 

ACKNOWLEDGEMENTS 

 

In the name of Allah the most Beneficent and the most Merciful, first and foremost, I 

would like to express gratitude to Allah Almighty, for endowing me the opportunity, 

patience and guidance to complete this thesis successfully. 

 

Secondly, I would like to express deep gratitude to my supervisor, Dr. Khaironi Yatim 

Bin Sharif, who has been my greatest guidance and support during this thesis. With his 

experience and advice I have been achieved the goals of this research work.  I would 

also express thanks to postgraduate coordinator Dr.Norhayati Binti Mohammad Ali for 

giving the guidance and invaluable help. 

 

I am also profoundly grateful to my colleagues and friends for their motivation and 

moral support.  

 

Finally, I would like to thank my family for their continuous supports throughout the 

process. Their concerns have been the greatest inspiration for me to sail through the 

phases of stress in doing this thesis.  

 

 

 



© C
OPYRIG

HT U
PM

 

 

 

vi 

 

"ABSTRACT 

 

Nowadays, obtain program features becomes a hot issue in source code comprehension. 

A large amount of efforts spent on source code understanding and comprehension to 

develop or maintain it. As a matter of fact, developers need a solution to rapidly detect 

which program functional need to revise. Hence, many studies in this field are 

concentrating on text mining techniques to take out the data by source code analysis and 

generate a code summary. However, in this thesis, we attempt to overcome this problem 

by propose a novel approach (Abstract Syntax Tree with predefined natural language 

text Template (AST-W-PDT)) to generates human readable summaries for Java methods 

role. The thesis describes how we developed a tool that the java source code can be 

summarized from the methods role. In evaluating our approach, we found that the 

automatically generated summary from a java class 1) is helpful to the developers in 

order to understand the role of the methods and will be useful, and 2) the automatically 

generated summary is precise. 

 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 

 

vii 

 

ABSTRAK 

 

Pada masa kini, mendapatkan ciri program menjadi isu panas dalam pemahaman kod 

sumber. Banyak usaha yang dibelanjakan untuk pemahaman dan pemahaman kod 

sumber untuk membangun atau memeliharanya. Sebagai hakikatnya, pemaju 

memerlukan penyelesaian untuk mengesan dengan pantas mana program berfungsi 

untuk mengkaji semula. Oleh itu, banyak kajian dalam bidang ini menumpukan pada 

teknik perlombongan teks untuk mengambil data dengan analisis kod sumber dan 

menghasilkan ringkasan kod. Walau bagaimanapun, dalam tesis ini, kami cuba 

mengatasi masalah ini dengan mencadangkan pendekatan baru (Abstrak Syntax Tree 

dengan Templat teks bahasa asal yang telah ditetapkan) (AST-W-PDT) untuk 

menghasilkan ringkasan manusia yang dapat dibaca untuk peranan kaedah Java. Tesis 

ini menerangkan bagaimana kita membangunkan alat bahawa kod sumber java dapat 

diringkaskan dari peranan kaedah. Dalam menilai pendekatan kami, kami mendapati 

ringkasan yang dihasilkan secara automatik dari kelas java 1) membantu pemaju untuk 

memahami peranan kaedah dan akan berguna, dan 2) ringkasan yang dihasilkan secara 

automatik adalah tepat. 

 

 

 

 



© C
OPYRIG

HT U
PM

 

 

 

viii 

 

TABLE OF CONTENTS 

                                                                                                                                      Page 

APPROVAL ................................................................................................................... iii 

DECLARATION ............................................................................................................ iii 

DEDICATION ................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................. v 

ABSTRACT ...................................................................................................................... vi 

ABSTRAK ...................................................................................................................... vii 

LIST of TABLES .............................................................................................................. xi 

LIST of FIGURES .......................................................................................................... xii 

GLOSSARY of TERMS ................................................................................................ xiii 

CHAPTER I INTRODUCTION ........................................................................................ 1 

1.1 Background ......................................................................................................... 1 

1.2 Significance of Study .......................................................................................... 4 

1.3 Problem Statement .............................................................................................. 5 

1.4 Research Objectives ............................................................................................ 6 

1.5 Research Approache ............................................................................................ 6 

1.6 Research Scope .................................................................................................... 8 

1.7 Expected results ................................................................................................... 8 

1.8 Thesis Organization ............................................................................................. 8 

1.9 Summary ............................................................................................................. 9 

CHAPTER 2 LITERATURE REVIEW .......................................................................... 10 

2.1 Introduction ....................................................................................................... 10 



© C
OPYRIG

HT U
PM

 

 

 

ix 

 

2.2 The Concept Of Summary And Its Attribute .................................................... 11 

2.2.1 Accuracy .................................................................................................... 12 

2.3 Feature Location ................................................................................................ 13 

2.3.1 Feature Location Analysis Type ................................................................ 14 

2.4 summarizing source code .................................................................................. 18 

2.4.1 Summarization of Software Artifacts......................................................... 19 

2.5 splitting identifiers ............................................................................................. 20 

2.5.1 Lexical approaches ..................................................................................... 20 

2.5.3 Syntactic approaches: ................................................................................. 21 

2.6 Related Work ..................................................................................................... 21 

2.7 Summary ........................................................................................................... 27 

CHAPTER  3 RESEARCH METHODOLOGY ............................................................. 28 

3.1 Introduction ....................................................................................................... 28 

3.2 Phase 1: Problem Identification......................................................................... 29 

3.3 Phase 2: Design ................................................................................................. 29 

3.4 Phase 3: Implemenation .................................................................................... 30 

3.4.1 Java Source Code ....................................................................................... 31 

3.4.2 Preprocessing ............................................................................................. 32 

3.4.2.1 Transformation (AST maps java source code to tree form ) .................. 32 

3.4.2.2 Obtaining Information from an AST Node by ASTVisitor ................... 35 

3.4.3 Splitting Identifier ...................................................................................... 37 

3.4.4 Summary Generator ................................................................................... 39 

3.5 Phase 4: Evaluation ........................................................................................... 41 

3.6 Summary ........................................................................................................... 42 



© C
OPYRIG

HT U
PM

 

 

 

x 

 

CHAPTER 4  EXPERIMENTAL PROCEDURE AND SETUP .................................... 43 

4.1 Study Design ..................................................................................................... 43 

4.2 Research Questions ........................................................................................... 44 

4.3 Study Context .................................................................................................... 45 

4.4 Experimental Procedure .................................................................................... 46 

4.5 Results and Discussions .................................................................................... 48 

4.5.1 Results ........................................................................................................ 48 

4.5.2 Discussion .................................................................................................. 53 

4.6 Open Questions ................................................................................................. 55 

4.7 Threats to Validity ............................................................................................. 56 

4.7.1 Construct Validity ...................................................................................... 56 

4.7.2 External Validity ........................................................................................ 56 

4.8 Summary ........................................................................................................... 57 

CHAPTER 5 CONCLUSION AND FUTURE WORK .................................................. 58 

5.1 Conclusions ....................................................................................................... 58 

5.2 FuturnWork ....................................................................................................... 58 

APPENDIX  A: Automatically Generated Summary of Test Class ................................ 66 

APPENDIX  B: Survey Document .................................................................................. 68 

 

  



© C
OPYRIG

HT U
PM

 

 

 

xi 

 

LIST OF TABLES 

 

         Table No.                 Page 

Table 1.1: Linking between research directions...............................................7  

Table 4.1: Participants Working Experience..................................................46 

Table 4.2: Survey Questions...........................................................................47 

 



© C
OPYRIG

HT U
PM

 

 

 

xii 

 

LIST OF FIGURES 

 

                        Page 

Figure 3.1: Research Methodology Phases................................................................28 

Figure 3.2: Implemention Phases for Approach........................................................31 

Figure 3.3: Structural Properties of aMethod............................................................33 

Figure 3.4: Structural Property Descriptor and Subclasses.......................................34   

Figure 4.1: Bar charts for Participants answer of Q1................................................49 

Figure 4.2: Pie charts for usefulness of  the summary..............................................49 

Figure 4.3: Bar charts for Participants answer of Q2, Q3, and Q4...........................51 

Figure 4.4: Pie charts for Closeness of the Summary to the Source Code  Q2........52  

Figure 4.5: Pie charts for Closeness of the Summary to the Source Code  Q3........52 

Figure 4.6: Pie charts for Closeness of the Summary to the Source Code  Q4........53 

 

 



© C
OPYRIG

HT U
PM

 

 

 

xiii 

 

GLOSSARY OF TERMS 

 

      AST-W-PDT         Abstract Syntax Tree with Predefined natural language Template    

      AST                        Abstract Syntax Tree  

      TF-IDF                   Term Frequency-Inverse Document Frequency    

      SWUM                   Software Word Usage Model  

      JDT                        Java Development Kit  

      API                         Application Programming Interface    

      

                   

 

 

 

 

 

 

 



© C
OPYRIG

HT U
PM

CHAPTER I 

INTRODUCTION 

 

1.1  BACKGROUND  

Software engineering is the process of analyzing software systems in order to improve 

the efficiency [1] . This process can be explained as supplying recommendation, 

illustration and providing reports for enhancing the performance of a particular system. 

To do so, a comprehensive analysis should be concentrated on the significant features 

shown in the source code of the system [2]. Analyzing these features within the code 

provides valuable understanding of the intention of the code which facilitate the process 

of re-use and modification that would be performed on such code. 

Developer spends a large proportion of their time reading and navigating source code in 

order to comprehend it. However, studies of program comprehension consistently find 

that developers would prefer to focus on small sections of code during software 

maintenance, and try to avoid comprehending the entire system [3] . The result is that 

developers skim source code, for example by reading only method signatures or 

important keywords, to save time. Skimming is valuable because it helps programmers 

quickly understand the underlying code, but the drawback is that the knowledge gained 

cannot easily be made available to other programmers. An alternative to skimming code 

is to read a summary of the code. A summary consists of a few keywords, or a brief 

sentence, that highlight the most important functionality of the code[3]. Hence, 

developers need software documentation.  

 



© C
OPYRIG

HT U
PM

 

 

 

2 

 

However, documentation is expensive to produce and maintain, and often becomes 

outdated over time. Developers often lack the time and resources to write 

documentation. Therefore, automated solutions are desirable [4]. One solution is to use 

simple textual descriptions of source code entities that developers can grasp easily, while 

capturing the code semantics precisely[5] . As a consequence, developers can review 

software systems quickly and decide which entities to analyze and modify. A few works 

already proposed to generate code summaries by adapting text summarization 

techniques[6][7]. 

 

Recent research has made inroads towards automatic generation of text summarization 

in natural language descriptions of software[8][9][10][11][12]. In particular, work by 

Sridhara (2010) can form natural language summaries of Java methods[11]. Then 

summaries can then be aggregated to create the software’s documentation. Although 

these techniques are already enough to provide good summaries by finding suitable 

keywords (lexical information), they may present some limitations related to support 

method role. This role is not considered by adapting existing text summarization 

techniques to source code, if do so we thought that the summary will be more readable, 

understandable, and accurate.  

In fact, these techniques focus mainly on lexical dimension (e.g., Latent Semantic 

Indexing [13], term frequency-inverse document frequency(tf-idf) [8], Vector Space 

Mode [8], etc.) to detect relevant terms.  One strategy  was using Software Word Usage 



© C
OPYRIG

HT U
PM

 

 

 

3 

 

Model (SWUM) for text generation is to define templates of natural language sentences, 

and use the output from SWUM to fill these templates [7].  

 

In this research a novel approach is proposed for automatic summary generation taking 

into consideration both lexical and methods role information.  We hypothesize that 

existing summary generators would be more effective if they included information from 

the data within the methods that describe method role (like method signature, variables, 

invocation, and method return value). We define “more effective” in term of 

programmers find the generated summaries to be more helpful to convey the most 

important aspects of its intended functions. 

 

Our novel approach works by collecting data from the methods (like method signature, 

variables, invocation, and method return value), and then using these data with 

predefined natural language template to describe the role of methods. We use Abstract 

Syntax Tree (AST), to identify and extract the data that we need to include it in source 

code summaries.  However, there are multiple differences between the regular text and 

the source code. In the source code, the multi-word identifiers are written without a 

space between them, instead several strategies can be used. First, it may be divided using 

special characters such as ‘Employee-Name’ or ‘Employee_Name’ [14]. Second, it may 

be written using ‘CamelCase’ approach, this approach aims to capitalize the first letter 

of the first words and the first letter of the second word without spacing (e.g. 

EmployeeName) [15]. In this study the camel case and underscore case was used to 



© C
OPYRIG

HT U
PM

 

 

 

4 

 

manipulate the splitting the identifier into single words.  Our system then generates a 

readable English description of role for each method in a Java source code. 

 

To test our hypothesis, we introduce a novel approach to automatically generate source 

code summary that includes methods role. Then we perform a case study to evaluate the 

source code summaries generated by our approach with perspective of novice developers 

who is expected to perform some specific maintenance tasks. Specifically, we contribute 

the following: 

- A novel approach is introduced for generating source code summaries, taking 

into consideration both identifiers and method role information.  Our approach is 

different from previous approaches in that we summarize the role of methods as 

readable English text by using Abstract Syntax Tree Parser (ASTPareser ) in 

addition to predefined natural language template. 

- A complete implementation of our novel approach for Java methods.  

 

1.2  SIGNIFICANCE OF STUDY 

With the dramatic evolution of software engineering, tremendous amount of software 

nowadays is being modified, changed and improved chronically. This continuous 

changing requires understandable developer who can treat the source code. The 

developer should know what the source code is intended to do by each included 

function. However, dealing with a large-scale source code would significantly hinder the 

process of modification by the user. Therefore, developer will tend to search manually 



© C
OPYRIG

HT U
PM

 

 

 

5 

 

on the desired portions that wanted to be modified. Meanwhile, the manual searching 

would be tedious and time consuming especially when there are thousands of lines. 

Therefore, Source Code Analysis Extractive Approach to Generate Summarization has 

been proposed and implemented for this purpose in order to facilitate the process of 

extracting code summary.  

 

1.3  PROBLEM STATEMENT 

Recently, information retrieval has been applied on software engineering applications in 

order to enhance the productivity of systems. This can be shown by allowing the 

developer to search within the source code for specific portions. Program 

comprehension is essential for code maintenance and evolution activities. It saves time 

and efforts of developers who want to perform any code changes [11]. Programmers 

need software documentation. However, documentation is expensive to produce and 

maintain, and often becomes outdated over time. Programmers often lack the time and 

resources to write documentation. Therefore, automated solutions are desirable [2]. 

Textual summaries for source code provide great help to code understanding activities. 

Such process depends mainly on the natural language processing techniques by utilizing 

the syntax and semantic of the words. The most important semantics that have been 

addressed is the identifiers. Such identifiers can provide a big picture of the whole 

source code. This can facilitate the process of code summary. The problem under 

consideration in this research is how to support program understanding efforts for the 

source code. 



© C
OPYRIG

HT U
PM

 

 

 

6 

 

1.4  RESEARCH OBJECTIVES 

The research objectives of this study are illustrated as follows: 

- To design and implement source code summarizer tool that it conveys the most 

important aspects of its intended function. 

- To evaluate the efficiency of the approach for generating source code summary 

from the perspective of novice developers who is expected to perform some 

specific maintenance tasks. 

 

1.5  RESEARCH APPROACHE 

Table 1.1: shows the link between the research problems, research objectives, and 

research approaches. There are three main approaches that are used in this research as 

the following:  

- Critical data analysis using literature review: through the revision of the literature 

related to our research, the main idea is the source code summarization and 

comprehension. Also, the most suitable methods of source code summarization 

could be analyzed in order to make the summary more readable, understandable, 

and not missing essential information. 

- Quantitative data collection using a questionnaire: via this approach, the primary 

data is collected, where a Likert scale is used to determine the answers. The aim 

of this approach is to evaluate the efficiency of the approach for generating code 

summary from the perspective of novice developers who is expected to perform 

some specific maintenance tasks. The quantitative data collected from 15 



© C
OPYRIG

HT U
PM

 

 

 

7 

 

postgraduate students from the Faculty of Computer Science and Information 

Technology at University Putra Malaysia (UPM). 

- Quantitative empirical evaluation: this approach is used in order to evaluating the 

quality of generated summary. 

 

  Table 1.1: Linking between research directions 

Research Problem Research Objectives Objectives Activities Approach 

The problem under 

consideration in this 

research is how to support 

program understanding 

efforts for the source code. 

 

Automated solutions are 

desirable. And Textual 

summaries for source code 

provide great help to code 

understanding activities. 

Such process depends 

mainly on the natural 

language processing 

techniques by utilizing the 

syntax and semantic of the 

words. 

 

1-To design and 

implement source 

code summarizer tool 

that it conveys the 

most important 

aspects of its 

intended function. 

 

2-To evaluate the 

efficiency of the 

approach for 

generating code 

summary from the 

perspective of novice 

developers who is 

expected to perform 

some specific 

maintenance tasks. 

  

  

 

 

Phase 1:  

 To conducts a comprehensive 

literature review for the code 

summarization by identifying the 

problem, tools and techniques used for 

this problem.  

 

L
iteratu

re R
ev

iew
 

Phase 2: 

To implement an effective source code 

summarizer tool that it conveys the 

most important aspects of its intended 

function. 

Im
p

lem
en

tatio
n

 

an
d

 C
o

llect th
e 

D
ata

 

Phase 3: 

To evaluate the efficiency of the 

approach for generating code summary 

from the perspective of novice 

developers. 

 

Q
u

an
titativ

e E
v

alu
atio

n
 

 

 



© C
OPYRIG

HT U
PM

 

 

 

8 

 

1.6  RESEARCH SCOPE 

This study aims to propose a source code analysis extractive approach to generate 

summarization. The type of analysis used to focus on entities and sub-entities, mainly 

the role of methods through signature and invocation. The source code of each method is 

analyzed to extract a textual summary about its role. The summary of a method will 

generate from its contents. The contents include method name, parameters, local 

variables, return value types, and methods’ invocations.  

 

1.7  EXPECTED RESULTS  

The expected results of this study are: 

1. Automated summarizer that helps developers in term of reducing the effort and 

time spend to reading and navigating source code in order to comprehend it. 

2. Evaluate and verify the finding by comparing the generated summaries to 

summaries written manually by experts. And /or a group of programmers  judge the 

generated summaries and determine if it is readable, understandable ,and not missing 

essential information [7][8]. 

 

1.8   THESIS ORGANIZATION  

This thesis composed of five chapters that are being described as follows: 

Chapter 1 provides the headlines of this research where the background of the study, 

problem statement, objectives, scope, and expected result are being discussed. 



© C
OPYRIG

HT U
PM

 

 

 

9 

 

Chapter 2 conducts a comprehensive literature review for the code summarization by 

identifying the problem, tools and techniques used for this problem. In addition, this 

chapter aims to concentrate on the method role. 

Chapter 3 discusses the implementation of the proposed approach (Research 

Methodology) by discussing how the ASTParser with predefined natural language 

template (AST-W-PDT) is used to present novel approach that use java method to 

generate the summary, this approach is differ from the other by summarizing the role of 

each method in the provided java code. 

Chapter 4 discusses experiment setting in which the mechanism of attaining the results 

be identified; and analyzes the experimental results that have been obtained by the 

proposed method. Consequentially, the results are analyzed technically in terms of the 

effectiveness.  

Chapter 5 provides the final conclusion of the research in which a summary of the 

whole thesis is being described. In addition, an emphasis of the research contribution is 

also provided. Finally, the future directions that could be inspired by this research is 

described.  

 

1.9  SUMMARY 

This chapter has provided the outline of the research in which the background of the 

study, problem statement, research objectives, and research architecture are being 

described properly. Next chapter will discuss the literature review by describing the 

related work and their techniques in more details.  



© C
OPYRIG

HT U
PM

 

 

 

62 

 

REFERENCES   

[1] B. Du Bois, “Towards an Ontology of Factors Influencing Reverse Engineering,” 

2005. 

[2] S. W. Thomas, “Mining software repositories using topic models,” Proceedings 

of the 33rd International Conference on Software Engineering. pp. 1138–1139, 

2011. 

[3] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An Eye-Tracking 

Study of Java Programmers and Application to Source Code Summarization,” 

IEEE Trans. Softw. Eng., vol. 41, no. 11, pp. 1038–1054, 2015. 

[4] P. W. McBurney, “Automatic Documentation Generation via Source Code 

Summarization,” Proc. - Int. Conf. Softw. Eng., vol. 2, pp. 903–906, 2015. 

[5] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension with 

source code summarization,” 2010 {ACM}/{IEEE} 32nd {International} 

{Conference} {Software} {Engineering}, vol. 2, no. May 2016, pp. 223–226, 

2010. 

[6] C. Science and M. Studies, “J-Summarizer,” vol. 7782, pp. 59–62, 2016. 

[7] P. W. McBurney and C. McMillan, “Automatic Source Code Summarization of 

Context for Java Methods,” IEEE Trans. Softw. Eng., vol. 42, no. 2, pp. 103–119, 

2016. 

[8] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker, 

“Automatic generation of natural language summaries for Java classes,” IEEE Int. 

Conf. Progr. Compr., pp. 23–32, 2013. 

[9] H. Burden, “Natural Language Generation from Class Diagrams Categories and 

Subject Descriptors.” 

[10] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “AUSUM: Approach for 

Unsupervised Bug Report Summarization,” Proc. ACM SIGSOFT 20th Int. Symp. 

Found. Softw. Eng. (FSE ’12), p. 11:1-11:11, 2012. 

[11] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker, “Towards 

automatically generating summary comments for Java methods,” Proc. 



© C
OPYRIG

HT U
PM

 

 

 

63 

 

IEEE/ACM Int. Conf. Autom. Softw. Eng. - ASE ’10, p. 43, 2010. 

[12] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating parameter comments 

and integrating with method summaries,” IEEE Int. Conf. Progr. Compr., pp. 71–

80, 2011. 

[13] Y. Liu, X. Sun, X. Liu, and Y. Li, “Supporting program comprehension with 

program summarization,” 2014 IEEE/ACIS 13th Int. Conf. Comput. Inf. Sci. ICIS 

2014 - Proc., pp. 363–368, 2014. 

[14] E. Enslen, E. Hill, and L. Pollock, “Mining Source Code to Automatically Split 

Identifiers for Software Analysis ∗,” pp. 71–80, 2009. 

[15] D. Lawrie and D. Binkley, “Expanding Identifiers to Normalize Source Code 

Vocabulary,” 2011. 

[16] Chitti babu K, Kavitha C., and SankarRam N, “Entity based source code 

summarization (EBSCS),” 2016 3rd Int. Conf. Adv. Comput. Commun. Syst., pp. 

1–5, 2016. 

[17] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of 

how developers seek, relate, and collect relevant information during software 

maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987, 2006. 

[18] D. Latoza, Thomas, G. Venolia, and R. Deline, “Maintaining mental models: a 

study of developer work habits,” Proc. 28th Int. Conf. Softw. Eng., pp. 492–501, 

2006. 

[19] J. Starke, C. Luce, and J. Sillito, “Searching and skimming: An exploratory 

study,” IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 157–166, 2009. 

[20] I. Mani, M. T. Maybury, and M. Sanderson, “Advances in Automatic Text 

Summarization,” Comput. Linguist., vol. 26, no. 2, pp. 280–281, 1999. 

[21] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in source 

code: A taxonomy and survey,” J. Softw. Evol. Process, vol. 25, no. 1, pp. 53–95, 

2013. 

[22] K. Chen and V. Rajlich, “Case Study of Feature Location Using Dependency 

Graph,” pp. 241–249, 2000. 

[23] R. Koschke and J. Quante, “On dynamic feature location,” Proc. 20th IEEE/ACM 



© C
OPYRIG

HT U
PM

 

 

 

64 

 

Int. Conf. Autom. Softw. Eng. SE - ASE ’05, pp. 86–95, 2005. 

[24] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich, “of 

Methods Based on Execution Scenarios and Information Retrieval,” IEEE Trans. 

Softw. Eng., vol. 33, no. 6, pp. 420–432, 2007. 

[25] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance 

feedback in IR-based concept location,” IEEE Int. Conf. Softw. Maintenance, 

ICSM, pp. 351–360, 2009. 

[26] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An Information Retrieval 

Approach to Concept Location in Source Code,” Proc. 11th Work. Conf. Reverse 

Eng. (WCRE ’04), pp. 214–223, 2004. 

[27] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing source code 

context of NL-queries for software maintenance and reuse,” Proc. - Int. Conf. 

Softw. Eng., pp. 232–242, 2009. 

[28] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, “Using natural 

language program analysis to locate and understand action-oriented concerns,” 

Proc. 6th Int. Conf. Asp. Softw. Dev., pp. 212–224, 2007. 

[29] U. Hahn and I. Mani, “of Automatic Researchers are investigating summarization 

tools and methods that,” Comput. 33.11, no. November, pp. 29–36, 2000. 

[30] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated text 

summarization techniques for summarizing source code,” Proc. - Work. Conf. 

Reverse Eng. WCRE, pp. 35–44, 2010. 

[31] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello, 

“Improving automated source code summarization via an eye-tracking study of 

programmers,” Proc. 36th Int. Conf. Softw. Eng., pp. 390–401, 2014. 

[32] R. P. L. Buse and W. R. Weimer, “Automatic documentation inference for 

exceptions,” Proc. 2008 Int. Symp. Softw. Test. Anal. (ISSTA ’08), p. 273, 2008. 

[33] E. Wong, “Mining Question and Answer Sites for Automatic Comment 

Generation by,” pp. 562–567, 2014. 

[34] S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating natural language 

summaries for crosscutting source code concerns,” IEEE Int. Conf. Softw. 



© C
OPYRIG

HT U
PM

 

 

 

65 

 

Maintenance, ICSM, no. Section II, pp. 103–112, 2011. 

[35] C. Ludwig, “Text Retrieval,” vol. 24, no. 5, pp. 1–21, 2007. 

[36] D. Lawrie and D. Binkley, “Expanding identifiers to normalize source code 

vocabulary,” IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 113–122, 2011. 

[37] N. Dragan, M. L. Collard, and J. I. Maletic, “Automatic identification of class 

stereotypes,” IEEE Int. Conf. Softw. Maintenance, ICSM, 2010. 

[38] “Abstract Syntax Tree.” [Online]. Available: 

http://www.eclipse.org/articles/Article-JavaCodeManipulation_AST/. [Accessed: 

09-Apr-2017]. 

[39] D. Freitag, “Machine Learning for Information Extraction in Informal Domains,” 

Mach. Learn., vol. 39, no. 2/3, pp. 169–202, 2000. 

[40] K. Spärck Jones, “Automatic summarising: The state of the art,” Inf. Process. 

Manag., vol. 43, no. 6, pp. 1449–1481, 2007. 

 

 

 

 

  




