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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Master of Science 

 
 

ELECTROCHEMICAL DETECTION OF ASCORBIC ACID AT MgB2- 
MWCNT AND MgB2/PEDOT HYBRID MODIFIED GLASSY CARBON  

ELECTRODES 
 

By 
 

DARLENE BANAN 
 

April 2017 
 
 
Chair  : Associate Professor Tan Wee Tee, PhD 
Faculty  : Science 
 
 
Magnesium boride–multiwalled carbon nanotube (MgB2-MWCNT) modified 
electrode and poly-3,4-ethylenedioxythiophene/magnesium boride 
(PEDOT/MgB2) modified electrode were used to study the electrochemical 
oxidation of ascorbic acid (AA).  Abrasive immobilization technique was used 
to modify the surface of glassy carbon electrode (GCE) with MgB2-MWCNT 
mixture through mechanical attachment method while electrodeposition 
technique was used to prepare PEDOT/MgB2 through electropolymerization 
process.   
 
 
The modified MgB2-MWCNT electrode showed good electrocatalytic 
properties towards AA oxidation.  Compared to bare GCE, the MgB2-MWCNT 
modified electrode enhanced the oxidation current for AA by about two folds.  
At the MgB2-MWCNT modified electrode surface, the oxidation of AA 
occurred through diffusion-adsorption process, where a reduction of 60% of 
the activation energy required to diffuse AA at bare GCE was recorded when 
MgB2-MWCNT modified GCE was used.  The MgB2-MWCNT modified 
electrode exhibits a lower detection limit and better sensitivity towards AA 
oxidation compared to bare GCE; limit of detection for AA is 1.2 µM and 
sensitivity is 89 mA/M AA.  The MgB2-MWCNT modified electrode achieved 
good reproducibility for AA oxidation in which %RSD for both oxidation 
current and oxidation peak potential were in the range of 4-7% and 2-6% 
respectively.  A recovery rate of 100.70 ± 4.01% was obtained when the MgB2-
MWCNT modified electrode was used to detect AA in real samples.   
 
 
The PEDOT/MgB2 modified electrode demonstrated excellent electrocatalytic 
ability towards the mediation of AA oxidation.  Cyclic voltammograms 
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showed that the oxidation peak of AA was enhanced by about two folds and 
oxidation peak potential was shifted by about 100 mV towards the negative 
direction at the PEDOT/MgB2 modified electrode compared to bare GCE.  
Oxidation of AA at the PEDOT/MgB2 modified electrode surface was 
governed simultaneously by AA diffusion along with weak AA adsorption.  

The PEDOT/MgB2 modified electrode has a detection limit of 1.3 M and 
sensitivity of 82 mA/M AA where a reproducibility with %RSD of 5.65% for 
AA oxidation current and 4.20% for AA oxidation peak potential were 
obtained.  Simultaneous detection of AA in the presence of dopamine (DA) at 
the PEDOT/MgB2 modified electrode indicates better selectivity over bare 
GCE, where a peak separation of about 300 mV was obtained between the 
oxidation peaks of AA and DA. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Sarjana Sains 

 
 

PENGESANAN ELEKTROKIMIA ASID ASKORBIK PADA ELEKTROD 
KARBON KACA TERUBAHSUAI HIBRID MgB2-MWCNT DAN 

MgB2/PEDOT 
 

Oleh 
 

DARLENE BANAN 
 

April 2017 
 
 

 Pengerusi : Prof. Madya Tan Wee Tee, PhD 
Fakulti  : Sains 
 
 
Elektrod terubahsuai magnesium borida – karbon nanotiub dinding ganda 
(MgB2-MWCNT) dan poli-3,4-etilenadioksitiofena/ magnesium borida 
(PEDOT/MgB2) digunakan untuk mengkaji pengoksidaan elektrokimia asid 
askorbik (AA).  Teknik imobilisasi abrasif digunakan untuk mengubahsuai 
permukaan elektrod karbon kaca (GCE) dengan campuran MgB2-MWCNT 
melalui kaedah lekatan mekanikal manakala teknik pengelektroenapan pula 
digunakan untuk menyediakan PEDOT/MgB2 melalui proses 
pengelektropolimeran.     
 
 
Elektrod terubahsuai MgB2-MWCNT menunjukkan sifat elektrokatalitik yang 
baik terhadap pengoksidaan AA.  Berbanding GCE tanpa ubahsuai, elektrod 
terubahsuai MgB2-MWCNT meningkatkan arus pengoksidaan AA kira-kira 
sebanyak dua kali ganda.  Pada permukaan elektrod terubahsuai MgB2-
MWCNT, pengoksidaan AA berlaku melalui proses resapan-jerapan, di mana 
penurunan sebanyak 60% tenaga pengaktifan yang diperlukan untuk 
membaur AA pada GCE tanpa ubahsuai direkodkan semasa elektrod 
terubahsuai MgB2-MWCNT digunakan.  Elektrod terubahsuai MgB2-MWCNT 
mempamerkan had pengesanan lebih rendah dan sensitiviti lebih baik 
terhadap pengoksidaan AA berbanding GCE tanpa ubahsuai; had pengesanan 
untuk AA ialah 1.2 µM dan sensitiviti ialah 89 mA/M AA.  Elektrod 
terubahsuai MgB2-MWCNT mempunyai kebolehan reproduksi untuk 
pengoksidaan AA yang baik, di mana %RSD untuk kedua-dua arus 
pengoksidaan dan keupayaan puncak pengoksidaan berada dalam lingkungan 
4-7% dan 2-6% masing-masing.  Kadar dapat kembali sebanyak 100.70 ± 4.01% 
diperolehi semasa elektrod terubahsuai MgB2-MWCNT digunakan untuk 
mengesan AA di dalam sampel nyata.  
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Elektrod terubahsuai PEDOT/MgB2 menunjukkan keupayaan elektrokatalitik 
cemerlang terhadap pemangkinan pengoksidaan AA.  Voltamogram kitaran 
menunjukkan bahawa puncak pengoksidaan AA ditingkatkan kira-kira dua 
kali ganda dan keupayaan puncak pengoksidaan beralih kira-kira 100 mV ke 
arah negatif pada elektrod terubahsuai PEDOT/MgB2 berbanding GCE tanpa 
ubahsuai.  Pengoksidaan AA pada elektrod terubahsuai PEDOT/MgB2 
dikawal serentak oleh pembauran AA dan penjerapan AA yang lemah.  

Elektrod terubahsuai PEDOT/MgB2 mempunyai had pengesanan 1.3 M dan 
sensitiviti 82 mA/M AA, di mana kebolehan reproduksi dengan %RSD 
sebanyak 5.65% untuk arus pengoksidaan AA dan 4.20% untuk keupayaan 
puncak pengoksidaan AA diperolehi.  Pengesanan serentak AA dengan 
kehadiran dopamin (DA) pada elektrod terubahsuai PEDOT/MgB2 
menunjukkan selektiviti yang lebih baik berbanding GCE tanpa ubahsuai, di 
mana pemisahan puncak kira-kira sebanyak 300 mV diperolehi di antara 
puncak pengoksidaan AA dan DA.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 
 

Electrochemical analysis has become one of the most important disciplines in 
analytical chemistry.  Up to date, electrochemical techniques are being used 
widely in a variety of applications, which include utilization in the medicinal 
and pharmaceutical industry, monitoring of industrial materials and 
environmental analysis (Farghaly et al., 2014; Bozal et al., 2011).  Electroanalysis 
is highly favored due to its advantages such as having a low operational cost, 
high sensitivity, low sample consumption (Farghaly et al., 2014), ease of 
operation (Ribeiro et al., 2016) as well as portability (Barton et al., 2016). 
                                                                                                                                                                                                                                                                                                                     
   
Since the emergence of various electroanalytical techniques, the most focused 
area for research and development revolves around electrode modification.  The 
motivation of these researches lies greatly in finding electrode materials that 
have high sensitivity, better selectivity and good stability for operational and 
practical applications.  It has been shown that hybrid electrode modifiers display 
great improvement in sensitivity and selectivity over single compound 
modifiers (Yang et al., 2016; Ngai et al., 2015).  Hybrid modifiers are made by 
combining two or more compounds, either by physical (Ngai et al., 2015) or 
chemical means (Yang et al., 2016), and attaching it to the electrode surface. The 
property of the electrode would then be affected by the combined properties of 
the modifying materials being used.  
 
 
Ascorbic acid (AA) is an organic molecule that acts as an important biological 
compound especially for the development of human metabolism.  As an 
antioxidant, AA plays an important role in the biological system as well as in the 
pharmaceutical, cosmetic, chemical and food industry (Yilmaz et al., 2008).  AA 
has also been applied in the prevention and treatment of different diseases and 
illnesses such as the common cold, infertility, cancer and mental illness (Vinoth 
et al., 2015).  The electroanalysis of AA at bare electrode can be challenging as 
electrochemical oxidation of AA requires a high potential (Du et al., 2016) and 
furthermore, electrode fouling caused by adsorption of products on the 
electrode surface may occur during analysis (Shahrokhian and Zare-Mehrjardi, 
2007).  Electrochemical analysis of AA may also be difficult due to interference 
from coexisting compounds, such as dopamine (DA), which results in 
overlapping voltammetric response of both compounds and this consequently 
leads to low sensitivity and poor reproducibility of the electrode (Du et al., 2016). 
 
 
For the electroanalysis of AA, numerous substances such as metals, surfactants, 
nanoparticles and nanocomposites, as well as polymers had been successfully 
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used as electrode modifiers (Pisoschi et al., 2014).  Among these substances are 
carbon nanotubes (CNT) and poly-3,4-ethylenedioxythiopene (PEDOT).  CNT is 
known to be a good electron mediator due to its ability to promote electron 
transfer reaction as well as minimize surface fouling on electrochemical devices 
(Ahammad et al., 2009).  PEDOT is a conductive polymer that offers promising 
features for practical applications due to its good stability and high conductivity 
(Pyshkina et al., 2010).   
 
 
Magnesium boride (MgB2) is a binary compound that has once sparked the 
interest of many researchers when its superconducting ability was made known 
by Akimitsu and his group in 2001 (Nagamatsu et al., 2001).  Tan et al. first 
reported MgB2 applications in electroanalysis in 2009.  To our knowledge, only 
one other paper (Zidan et al., 2011) was published on the successful application 
of MgB2 as electrode modifier after that.   
 
 
This research is focused on the possible application of MgB2 as an electrode 
modifier for the electrochemical detection of AA.  For this research, multi-walled 
CNT (MWCNT) and PEDOT are chosen to be combined with MgB2 as hybrid 
electrode modifiers, based on their distinct individual properties.    
 
 
1.2 Problem Statement  
 

Previous studies had shown that MgB2 modified GCE were able to exhibit 
electrocatalytic activity towards the redox reaction of both ferricyanide (Tan et 
al., 2009) and paracetamol (Zidan et al., 2011).  However, up to this date, no 
attempts have been made to fabricate and examine the performance of MgB2 
hybrid modified electrode.  Therefore, this research focuses on the prospect of 
fabricating a modified electrode by combining MgB2 with MWCNT and PEDOT, 
and investigating the possibility of electrocatalytic activity on AA oxidation.   
 
 
At the surface of GCE, the cyclic voltammogram of AA often overlapped with 
interfering compounds such as DA.  Therefore, this research also addresses the 
ability of MgB2 hybrids in improving the selectivity of GCE during simultaneous 
detection of AA and DA.  Another important aspect to look at is the feasibility 
of the modified electrodes in real life applications.  In this research, detection of 
the presence of AA in real life samples at the MgB2 hybrid electrodes are also 
investigated.      
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1.3 Objectives of the Research 
 

The objectives of the current research are as follows: 
 
i) To fabricate MgB2 hybrid modified electrodes through mechanical 

attachment  (MgB2-MWCNT modified electrode) and 
electropolymerization (PEDOT/MgB2 modified electrode) 

 
ii) To compare the electrochemical reaction of ascorbic acid at bare, MgB2-

MWCNT  and PEDOT/MgB2 modified electrode using cyclic 
voltammetry (CV), chronoamperometry (CA) and chronocoulometry 
(CC) techniques.  

 
iii)  To detect AA in real life samples and samples containing DA using 
               MgB2-MWCNT and PEDOT/MgB2 modified electrode  
 
iv)  To examine the morphology of the electrode surface before and after  
              electrochemical  reactions of AA using SEM-EDX  
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1.4 Thesis Outline  
 

This thesis is divided into five main chapters.  Chapter 1 gives a brief 
introduction, the problem statement that is to be addressed and the objectives of 
this research.   
 
 
In Chapter 2, the basic principles underlying the three electrochemical methods 
that are used in this research (CV, CA and CC) are outlined.  The properties of 
MgB2, MWCNT and PEDOT and their applications as materials for electrode 
modification in electroanalysis are reviewed.  Electrode preparation and 
modification approach used in previous studies are summarized in the last 
section of this chapter. 
 
 
In Chapter 3, the types of electrodes, chemicals and instruments being used are 
listed.  Methods of electrode preparation and modification are described and the 
experimental procedures and parameters of the CV, CA and CC analysis are 
explained.  The mathematical equations used for result analysis are also 
included accordingly.   
 
 
The experimental results are presented and discussed in Chapter 4.  The first 
section in this chapter discusses the experimental results from MgB2-MWCNT 
modified GCE, while the following two sections review experimental results 
from PEDOT/MgB2 modified GCE.  In the last section of this chapter, the SEM-
EDX results of both modified electrodes are compared and discussed. 
 
  
The last chapter of this thesis (Chapter 5) includes a summary and conclusion 
drawn based on the findings of this research.  A few suggestions to improve the 
overall findings of the research are made and the possible applications of MgB2 
as a material for electrode modification for future study are recommended in the 
last section of this chapter. 
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