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Superionic conductors are compounds that exhibit higher values of ionic 
conductivity within a solid state. The high ionic conductivity of these materials is 
used in various applications such as rechargeable lithium ion batteries. NASICON is 
known as sodium super ionic conductor which is a family of NZP (Sodium 
Zirconium Phosphate). The NASICON-type material has an exceptional property 
due to its ability to provide accommodation to atoms of various sizes in its lattice 
sites. However, the conductivity of NZP was found to be low below applicable 
range. Most studies on NASICONS were conducted on Lithium Titanium system 
(LTP), but reduction of Ti4+ by Li+ to Ti3+ limits their performance due to the 
material instability. The Hf4+ is more stable and reductive gases toward lithium metal 
than Ti4+.

In this research work, NASICON-type materials with various composition Li1+xM2-

xAlx(PO4)3 were prepared via solid-state synthesis technique using raw materials 
Li2CO3, TiO2, HfO2, Al2O3, (NH4)2HPO4 and NH4H2PO4. Thermal behavior of the 
as-prepared Lithium Aluminium Titanium Phosphate (LATP) and Lithium 
Aluminium Hafnium Phosphate (LAHP) were analysed using TGA technique from 
room temperature to 1300 oC. For LTP compound, it was observed that increase in 
aluminium content lead to sample formation to lower temperature. Unlike, LHP 
compound where the increase in Al contents or x substitution lead the sample 
formation toward higher temperature. The finding shows that thermal stability is 
generally affected by both increase in x-content (Li2CO3) and aluminium content.   
The XRD Rietvel refinement analysis indicated that increase in Al content in the 
samples (LTP and LHP) increases the number of secondary phases. It is seen from 
the analysis that samples with low Al substitution indicated little number of 
secondary phases. 
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The FESEM micrographs of un-substituted LTP samples indicated a spherical like 
morphology with non uniform size and agglomerate as temperature increases. For 
un-substituted LHP the grains were observed closely attached to one another at all 
temperatures. Whereas, for the Al subsituted samples, the morphology change from 
spherical to a glaasy like phase. The technique of elemental analysis (EDX) also 
confirmed the chemical compositions of all the samples synthesized.  

Electrical properties of the optimized compounds sintered at 1100 C were examined 
in the frequency range 40 Hz to 1 MHz at various temperatures from room 
temperatue to 280 ⁰C. The findings in the present research indicated that material’s 
dielectric relaxation behavior and variation of ac conductivities with change in 
frequency is in accordance with the Jonscher’s power law. An earlier report showed 
that, the series Li1+xAlxTi2-x(PO4)3 with x = 0.3 and 0.45 have the highest 
conductivity. Whereas, the present research on the Li1+xAlxHf2-x(PO4)3 with various 
compositions showed that sample with x = 0.25 has the highest conductivity σ = 2.5 
× 10�3 Ω�1 m�1 with low dc activation energy of 0.36 eV. The frequency exponent (n) 
was found to be within the range 0 ≤ n ≤ 1which is in good agreement with the 
correlated barrier hopping (CBH) model.
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Konduktor superionik ialah kompaun yang menunjukkan kekonduktivitian ionik 
yang lebih tinggi dalam keadaan pepejal. Bahan ini mempunyai kekonduktivitian 
ionik yang tinggi yang digunakan dalam pelbagai aplikasi seperti bateri ion lithium 
yang boleh dicas semula. NASICON yang dikenali sebagai konduktor superion 
natrium merupakan kumpulan NZP (Natrium Zirkonium Fosfat. Bahan jenis 
NASICON memiliki ciri-ciri istimewa disebabkan kemampuannya menampung 
atom-atom pelbagai saiz dalam kekisinya. Walau bagaimanapun, kekonduktivitian 
NZP didapati lebih rendah daripada julat yang boleh digunakan dalam aplikasi. 
Kebanyakan kajian yang dijalankan ke atas NASICON dilakukan ke atas sistem 
Lithium Titanium (LTP), tetapi penurunan Ti4+ kepada Ti3+oleh Li+ mengehadkan 
prestasi bahan disebabkan ketidakstabilan bahan itu. Hf4+ adalah lebih stabil dan gas-
gas penurun terhadap logam lithium berbanding Ti4+.  

Dalam kajian ini, bahan jenis NASICON dengan pelbagai komposisi Li1+xM2-

xAlx(PO4)3 telah disediakan melalui teknik sintesis keadaan pepejal menggunakan 
Li2CO3, TiO2, HfO2, Al2O3, (NH4)2HPO4 and NH4H2PO4 sebagai bahan mentah. 
Sifat termal bahan Lithium Aluminium Titanium Fosfat (LATP) dan Lithium 
Aluminium Hafnium Fosfat (LAHP) yang disediakan telah dianalisis menggunakan 
teknik TGA bermula dengan suhu bilik sehingga 1300 oC. Bagi kompaun LTP, 
didapati pertambahan kandungan Al atau penggantian x mendorong kepada 
pembentukan sampel pada suhu lebih rendah. Sebaliknya bagi LHP, pertambahan 
kandungan aluminium mendorong kepada pembentukan sampel pada suhu lebih 
tinggi. Dapatan menunjukkan kestabilan terma secara umumnya dipengaruhi oleh 
pertambahan kandungan kandungan bahan x (Li2CO3) dan kandungan aluminium. 
Analisis penulenan Reitval menggunakan XRD menunjukkan bahawa pertambahan 
kandungan Al dalam sampel (LTP dan LHP) meningkatkan bilangan fasa sekunder. 
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Perkara tersebut dapat dilihat daripada analisis apabila sampel mempunyai 
kandungan penggantian Al yang rendah menunjukkan bilangan fasa sekunder yang 
sedikit. 

Mikrograf FESEM bagi LTP tanpa penggantian menunjukkan morfologi berbentuk 
sfera dengan saiz yang tidak seragam dan mendap apabila suhu bertambah. Bagi 
LHP tanpa penggantian, dapat diperhatikan bahawa butiran adalah rapat terikat 
antara satu sama lain pada semua suhu. Manakala untuk sampel dengan penggantian 
Al, morfologinya bertukar dari sfera kepada seakan-akan fasa kaca. Technique of 
elemental analysis (EDX) telah digunakan untuk mengesahkan komposisi bagi 
semua sampel yang disentesis. 

Sifat elektrik bagi kompaun yang dioptimum disinter pada suhu 1100 C telah diuji 
pada julat frekuensi antara 40 Hz sehingga 1 MHz pada pelbagai suhu bermula dari 
suhu bilik sehingga 280 ⁰C. Dapatan kajian semasa menunjukkan sifat ‘dielectric 
relaxation’ dan variasi kekonduksian ac dengan perubahan frekuensi adalah selaras
dengan hukum kuasa Jonscher. Laporan yang lebih awal menunjukkan siri 
Li1+xAlxTi2-x(PO4)3 dengan x = 0.3 dan 0.45 mempunyai kekonduktivitian paling 
tinggi. Sebaliknya, kajian semasa ke atas Li1+xAlxHf2-x(PO4)3 pelbagai komposisi 
menunjukkan sampel dengan  x = 0.25 mempunyai kekonduktivitian paling tinggi σ
= 2.5 × 10�3 Ω�1 m�1 dengan tenaga pengaktifan yang rendah iaitu 0.36 eV.
Komponen frekuensi (n) didapati selaras dengan model ‘corellated barrier hoping
(CBH)’ berada dalam julat 0 ≤ n ≤ 1.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

The compounds that were developed and used over the course of history serve as an 
excellent indicator of evolution in technology and civilization as a whole. The 
earliest materials were those that were readily available in nature, like stone, clay, 
wood and metals, and the technology involved was to reshaping and restructuring 
physically these materials to suit specific purposes such as weaponry and utensils 
and the devices for storing energy. The most complex and difficult process at this 
stage involved the fabrication of ceramics such as porcelain by baking clays, a 
process that dates back to the eighteenth century BC. The discovery of procedures 
for the extraction of metals and fabrication of alloys was a major revolution in the 
history of materials. It was a situation of complete transformation of physical, 
chemical and electrical properties of a material. Equally remarkable was the 
discovery of NASICON-type super ionic conductors; a process in which the 
conduction properties of the starting substance, normal ionic conductors, was 
completely modified. Super ionic conductors are part and parcel of our electronic 
industry, due to the alternative they offer for renewable energy sources and other 
potential applications. 

1.2 Research Background 

The key technology in modern society is the battery(Armand and Tarascon, 2008). A
device consists of electrochemical cells that transform stored chemical energy into 
electrical energy. The first battery was invented by Alessando Volta in 1800 and 
technically improved Daniel cell in 1836 is still a common power source for many 
household and industrial application according to 2005 estimate (Park et al., 2010) 
There is a great need for batteries with high power and energy density for advanced 
researchers to put more effort in this work. At present liquid electrolytes such as 
LiClO4 dissolved in propylene carbonate are used in lithium batteries. This 
electrolyte has many disadvantages such as limited temperature range of operation, 
device failure due to electrode corrosion by electrolyte solution and unsuitable 
shapes. A suitable solid electrolyte is required to overcome these disadvantages 
(Thangadurai et al., 1999). Solid electrolytes promise the potential to replace organic 
electrolytes and thereby improve the safety of next generation high-energy batteries 
(Kamaya et al., 2011). Two different approaches are pursued for this purpose. In the 
first, a plasticizer, TiO2 or Al2O3 can be added to make the electrolyte from liquid to 
solid composite. The second approach is to synthesize solids having desired ionic 
conductivity and other properties (Anantharamulu et al., 2011). Ionic conducting 
solids with conductivity of order 10-14 to 10-6 Scm-1 at ambient temperature are 
known as normal ionic conductors such as KCl and NaCl. The activation process 
involves energy due to defect formation and energy due to ion migration (Hladik, 
1972). Ionic conducting solids with conductivity of order 10-6 Scm-1or more with 
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negligible electronic conductivity of order 10-12 Scm-1 at room temperature as well as 
high temperature are called super ionic conductors. In this type of conductors, the 
crystal bonding is ionic (Chandra, 1981), the electrical conductivity is high, the 
charge carriers are ions, and the electronic conductivity is very low or negligible. 
The high ionic conductivity of these materials is used in various applications such as 
rechargeable lithium ion batteries for laptop computers, mobile phones and 
electrodes and electrolyte materials. It can also be used in making devices such as 
membranes, fuel cells, and gas sensors. In solid state ionic, ionic conduction occurs 
due to the imperfections or defects caused by the long- range diffusion of ions in 
materials. Faraday first observed the effect in 1839 in many materials such as PbF2

and Ag2S (Patcheammalle, 2010). The flow of ions through the lattice occurs in two 
ways i.e. via interstitial sites or hopping through the vacancies at the normal lattice 
sites (LeClaire and Lidiard, 1956). 

1.3 Problem Statement     

In NASICON-type material NaZr2P3O12 (NZP), the conducting mobile ion is Na+ but 
there is the problem of stability of sodium ion when in contact with metal electrodes 
leading to its reduction when in operation in cells. The conductivity of the NZP 
compound was also reported to be very low, below the applicable range and has poor 
sinterability. However, the conductivity can be increased by several orders of 
magnitude if the Na is replaced fully by Lithium (Li) and the Zr and P are replaced 
by element of different valences and radii (Aono et al., 1991).  

Most work were carried out in the titanium system LiTi2(PO4)3 (LTP) where the 
small size of Ti4+ cations make the size of the sites in the channels more appropriate 
for lithium cations (Maldonado-Manso et al., 2005). However, it was observed that, 
there is also the the problem of poor sinterability and controversial phase transition 
in the preparation of LTP. It was reported that Hf4+ ion is more stable toward a 
lithium metal and reductive gases than the Ti4+ ion, which is an additional advantage 
for battery applications (Chang et al., 2005).

LiHf2(PO4)3 crystallizes in NASICON structure but there is problem for the material 
to undergo a toptactic and reversible phase transition at low temperature (Losilla et 
al., 1998). The Li+ conductivity in LiHf2(PO4)3 based solid electrolytes is greatly 
enhanced by employing spark plasma synthesis (SPS) technique and partial 
substitution of Hf4+ with Al3+ resulting in the highest conductivity of 1.1x10-4 Scm-1 

by the compound LiAlHf(PO4)3. The activation energy of the total conductivity 
(bulk + grain boundary) was reported to reduce from 0.39 to 0.28 eV with Al
substitution (Chang et al., 2005). Few works were reported on LHP due to its poor 
sinterability and controversial phase transition at low temperature during synthesis 
(Losilla et al., 1997). To overcome such problems, few studies have reported to 
improve the ionic conductivity of LHP, which includes densification by ionic 
substitution (Aono et al., 1993; Chang et al., 2005), which involved lithium salt 
addition (Aono et al., 1993) and Spark Plasma Synthesis technique (Chang et al.,
2005).  
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Previous studies on NASICON-type such as Lithium Titanium Phosphate (LTP) and 
Lithium Hafnium Phosphate (LHP) focused on preparation methodologies, structural 
transformation and dc conductivity of the material. But, other behaviour of the 
materials such as thermal properties or thermodynamic behaviour, ac conductivity, 
dielectric and relaxation behaviour of the materials were not fully reported even 
though they are important to identify proper applicability of the material as an 
electrolyte. To our knowledge, aluminium substitution in LHP was only reported by 
Chang et al. (2005) using spark plasma sintering technique (SPS). The effect of SPS 
technique and the ionic substitution with aluminium ion were investigated based on 
the material densification to enhance the Li+ ion conductivity, but thermal behaviour 
of the aluminium substituted composition was not fully discussed by the authors.  

1.4 Research Aim and Objectives  

In this work, we will study and determine the electrical properties of some 
NASICON-type materials (LTP and LHP) prepared by conventional solid-state 
synthesis technique based on the problems stated in Section 1.3. The specific 
research objectives of the study are as follows; 

1. Preparation of the materials (LTP and LHP) using solid state synthesis 
method and to determine the thermal behaviour from room temperature to 
1300 C and to examine the phase stability of the materials as Al substitution 
increases. 

2. Evaluation of sintering behaviour, phase composition and structural phase 
transformation in the temperature range 500 C to around the maximum 
sintering temperature (i.e. 1200 C) and to investigate the effect of Al 
substitution in both LTP and LHP. 

3. The sintering characteristics (1000-1200 C) for the synthesis of the 
compounds correlated with microstructure, structural data analysis and to 
study the effect of Al substitution on the microstructure. 

4. The impedance spectroscopy analysis from room temperature to a higher 
temperature at the frequency range of 40 Hz to 1 MHz. (electrical 
conductivity and dielectric relaxation behaviour of the materials)  

1.5 Scope and Limitations of the Study 

This research investigate the effects of aluminium substitution in the LiTi2(PO4)3 and 
LiHf2(PO4)3 NASICON-types materials that were prepared out via conventional 
solid-state synthesis technique. Eight compounds according to the stoichiometric 
compositions of each Li1+xTi2-xAlx(PO4)3 and Li1+xHf2-xAlx(PO4)3  (x = 0, 0.2, 0.25, 
0.3, 0.4, 0.5, 0.75 and 1.0) were prepared. This work is limited to producing a 
NASICON-type structure with R-3c space group with hexagonal crystal structure. 
This is because a wide range of stoichiometry of x-value can produce different 
structure with various electrochemical properties. The sintered materials were 
characterized by Impedance Spectroscopy, X-Ray Diffraction (XRD),
Thermogravimery Analysis TGA, FTIR, and FESEM/EDX. The XRD was used to 
investigate the crystalline phases, the structural parameters, such as lattice 
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parameters, theoretical and experimental densities. Thermal analysis was carried out 
on both systems prepared using TGA. Surface morphology and microstructure of the 
sintered compounds was examined using FESEM/EDX.

1.6 Significance of the Study 

At the end of the study, the properties of the synthesized chemical compounds 
(LATP and LAHP) and the electrical conductivity of the sintered materials will be 
known. This will provide information for modelling and fabrication of future 
NASICON materials. The significance of the study is in their application in some 
areas such as lithium ion rechargeable batteries, electrochemical sensors and fuel 
cells, among others. 

1.7 Outlines of the Chapters 

This thesis is designed into six chapters. Chapter 1 gives a general introduction of 
the research work, comprising of research background, problem statement, aims and 
objectives, significance of the study and scope and limitation of the work. Chapter 2
presents the previous research and reviews related to superionic conductors such as fast-
ionic polymers, fast-ionic composites, amorphous or glassy materials and polycrystalline 
materials which include Garnet-type, Perovskite-type, LISICON-type and NASICON-
type. Properties of NASICON-type materials are also presented which include thermal 
and thermodynamic properties, structure and physical properties and electrical 
properties. Chapter 3 covers the fundamentals and theoretical aspects of the subject;
structure, phase transformation and electrical properties which include electrical 
conductivities (ac and dc), complex impedance, complex permittivity formalisms 
and the complex modulus formalisms. This chapter also explains the theoretical 
aspect of equivalent circuit modelling and the various types of polarization 
mechanisms. Chapter 4 deals with materials and sample preparation method and the 
different characterizations measurements involved in the research are also covered. 
Chapter 5 presents the results and discussion, whereas Chapter 6 concludes and 
describes all the major research contributions. 
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