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TAN JIAN HUA 

June 2017 

Chair: Janet Lim Hong Ngee, PhD 

Faculty: Science 

Our earth’s natural resources are being depleted at an alarming rate. Green energy is 

now in greater demand than ever as our resources are being consumed faster than they 

can be replenished. Hence, solar energy, the best form and source of renewable energy, 

can fulfil the ever-increasing demand for more and more energy. Therefore, the 

invention of the 3rd generation solar cell, otherwise known as the dye-sensitized solar 

cell (DSSC), can meet this demand and help overcome the dependence on fossil fuels 

and the like. The DSSC is very effective and efficient as it can perform in low-light 

conditions. It is very cost efficient as well when compared to previous generations of 

solar cells. In the present study, indium tin oxide coated on polyethylene terephthalate 

(ITO/PET) was utilized as the flexible substrate for both the photoanode and the 

counter electrode in the dye-sensitized solar cell (DSSC). The main objective of this 

study was to find out the performance of DSSCs sintered at different temperatures 

during the fabrication process. The photoanode comprising of a layer of titanium 

dioxide on an ITO/PET substrate (TiO2/ITO/PET) was prepared by mild sintering at 

140, 150, 160, 170 and 180 ℃. Secondly, the intention of this study was to find out the 

effect different photoanode active area sizes have on the performance of the DSSC 

which had the best performance among samples from the previous step. The active 

areas of the photoanodes were set at 1.0 cm2, 0.25 cm2, and 0.09 cm2. The DSSC 

assembly is incomplete without a counter electrode. The counter electrode is made by 

binding the polypyrrole and graphene oxide onto an ITO/PET substrate 

(PPy/rGO/ITO/PET). It was prepared using electrodeposition and was used in place of 

platinum for the counter electrode. Lastly, the study set out to test whether the DSSC 

works when in a bent condition. A cyclic voltammetry analysis showed that electron 

charge transfer occurs on the sensitized photoanode sintered at temperatures ranging 

from 140 - 180 ℃ during the fabrication process. The photoanode samples exhibited 

two anodic potential peaks, the first ranging from 0.70 V to 0.74 V and the second from 

1.0 V to 1.3 V. However, no cathodic potential peak was seen, thus indicating that the 

oxidized ruthenium dye (N719) molecules have a short lifespan. The photoanode 

sample sintered at 160 ℃ gave the best efficiency when compared to samples sintered 

at other temperatures. The same photoanode with an active area of 0.25 cm2 displayed 
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the best performance with an open circuit voltage (Voc) of 0.63 V, a short circuit 

current density (Jsc) of 3.0 mA cm-2, and an efficiency (𝜂) of 0.91% under 1 sun 

illumination (100mW cm-2, AM 1.5G). Last but not least, the ITO/PET-based DSSC 

continues to work when bent albeit at a reduced efficiency. 
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Sejak kebelakangan ini, sumber-sumber semula jadi di selurah dunia semakin 

berkurang. Maka, permintaan untuk sumber tenaga hijau menjadi hebat disebabkan 

oleh sumber-sumber semula jadi yang hilang lebih cepat daripada yang dihasilkan. Kini, 

sel solar pewarna sensitif (DSSC), iaitu sel solar generasi ketiga, telahpun menjadi 

tumpuan kepada kebanyakan pihak. Hal ini adalah kerana sel pewarna ini dapat 

mengatasi masalah kekurangan bahan api fosil. Selain itu, sel pewarna ini masih efektif 

dan cekap walaupun dalam suasana yang kurang bercahaya. Dalam kajian ini, indium 

tin oksida yang disalut ke atas polietilena terephthalate (ITO/PET) telah digunakan 

sebagai substrat fleksibel untuk fotoanod dan kaunter elektrod dalam sel solar pewarna 

sensitif (DSSC). Objektif utama kajian ini adalah untuk mengetahui prestasi fotoanod 

DSSC yang disediakan pada suhu-suhu yang berlainan. Lapisan fotoanod terdiri 

daripada titanium oksida yang bersalut pada kepingan ITO/PET (TiO2/ITO/PET) yang 

telah disediakan melalui rawatan pembakaran pada suhu 140, 150, 160, 170 dan 180 ℃. 

Selain itu, kajian ini bertujuan untuk mengkaji prestasi elektrokimia sel solar pewarna 

sensitive yang terbaik berdasarkan kawasan aktif fotoanod yang ditetapkan pada 1.0 

cm2, 0.25 cm2, and 0.09 cm2. Penggabungan kaunter electrod dengan fotoanod amat 

penting. Oleh itu, polipirrol bercampur dengan graphene oksida (PPy/rGO/ITO/PET) 

telah disediakan melalui pengelektroenapan untuk mengganti kaunter elektrod yang 

berdasarkan platinum. Analisis voltammetri kitaran (CV) menunjukkan pemindahan 

elektron berlaku pada TiO2/ITO/PET fotoanod yang disediakan pada suhu 140 – 180 ℃. 

Setiap fotoanod mempamerkan dua puncak pengoksidaan, puncak pertama antara 0.70 

V - 0.74 V dan puncak yang kedua pada 1.0 V - 1.3 V. Walau bagaimanapun, reaksi 

pengurangan tidak berlaku, disebabkan oleh jangka hayat molekul oksida pewarna 

ruthenium yang sangat pendek. Analisis menunjuk bahawa fotoanod yang dipanaskan 

pada suhu 160 ℃ mempunyai prestasi yang terbaik berbanding dengan sampel-sampel 

yang lain. Sampel yang dipanaskan pada suhu 160 ℃ dan yang mempunyai kawasan 

aktif fotoanod yang berukur 0.25 cm2, memperolehi prestasi arus litar pintas 

(Jsc)sebanyak 3.0 mA cm-2, voltan litar terbuka (Voc) bernilai 0.63 V, dan kecekapan  (𝜂) 

sebanyak 0.91% di bawah pencahayaan satu matahari (100 mW cm-2, AM 1.5 G). 
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Akhir sekali,  substrat fleksibel ITO/PET masih berfungsi walaupun bengkok, tetapi 

prestasinya tidak secekap berbanding dengan sampel 

biasa (rata) yang lain.
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CHAPTER 1    

 

INTRODUCTION 

 

1.1 Introduction  

 

 

In recent years, communities around the world have been concerned about the 

depletion of natural resources and their impact on the environment such as air pollution, 

water pollution and global warming. Therefore, renewable energy is now in greater 

demand as an alternative source of energy. Renewable energy such as solar, wind, tidal, 

and the like has been widely studied. More attention has been paid to solar energy due 

to its similarity to photosynthesis. The dye-sensitized solar cell (DSSC), a third 

generation solar energy device unlike those from previous generations, is not silicon 

based. The advantages of the dye-sensitized solar cell are its cost effectiveness, low-

light performance and ease of production and handling  (Ng et al., 2015) This system 

provides an alternative method of generating electrical energy from solar energy. 

 

 

In this study, the researcher will discuss the findings on the efficiency of the electron 

charge transfer on an indium doped tin oxide coated polyethylene terephthalate 

(ITO/PET) based substrate in a dye-sensitized solar cell. These performance findings 

are based on the variation of temperatures the photoanode was fabricated at, the 

different active area sizes of the photoanode and the flexible DSSC when bent.  

 

1.2 Background of the Study 

 

 

1.2.1 Dye-Sensitized Solar Cells (DSSCs) 

 

 

Basically, the DSSC is comprised of two components, the photoanode and the counter 

electrode. The processes that take place in the photoanode are the photo-excitation of 

dye molecules upon irradiation and the photo-injection of electrons into the conduction 

band of the TiO2. The counter electrode works as the charge reservoir, and also 

functions as the site for the redox couple reaction of triiodide and iodide ions, as well 

as dye regeneration. 

 

 

The underlying mechanism of the dye-sensitized solar cell begins with the incidence of 

photon energy. The ruthenium dye molecules release electrons upon excitation from 

the required photon wavelength, thus initiating the transfer of electrons from the 

highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular 

orbital (LUMO). The excited electrons are promoted to the conduction band (CB) of 

the semiconductor oxide. The electrons are then transferred through an external circuit, 

eventually reaching the counter electrode. The complex system is completed through 
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the occurrence of a redox reaction as the iodide ion (I-) donates an electron to the 

ruthenium dye on the anode and the oxidized iodide ion in the electrolyte is reduced to 

a triiodide (I3
-) on the cathode  (Caramori et al., 2010; Pandikumar et al., 2016; Zhang 

et al., 2013). 

 

 

1.2.2 Photoanode of Dye-Sensitized Solar Cells 

 

 

To meet the demand for a portable DSSC, plastic substrates have been employed as an 

alternative to glass due to their light-weight and flexibility for mobile electronic 

devices (Chiu et al., 2011; Zhang et al., 2013). The use of conductive polymer 

substrates such as polyethylene terephthalate (PET) in DSSC devices has been widely 

studied because of its low-cost production, high impact resistance, ease of preparation 

and flexibility (Devi & Kavitha, 2016). The selection of the transparent conductive 

oxide substrate (TCO) is crucial because the sheet resistance of TCO electrodes highly 

affects transmittance and photocurrent density (Zhang et al., 2013). In addition, the 

photovoltaic performance also depends on the structure and morphology of the 

semiconductor oxide film. The most common material used as a semiconductor is 

titanium dioxide (TiO2) as it exhibits the lowest energy band gap of 3.2 eV (Gong et al., 

2012). Generally, TiO2 performs better due to its microspherical structure that enables 

excellent electron transfer and accelerates the injection of electrons from the ruthenium 

dye to the TiO2 film (Mikula et al., 2015). The TiO2 semiconductor also exists in 

different forms. For our purpose, the best form is the rutile form, as it is the most stable 

and chemically reactive form when compared to anatase and brookite forms. 

Nevertheless, the nanocrystalline structure of the TiO2 is crucial in determining the 

amount of dye that can be absorbed during immersion and the extent to which 

screening effects hinder the photoexcitation process (Chen & Mao, 2007). The smaller 

surface area of the rutile TiO2 absorbs less dye than an anatase TiO2 (Liu & Aydil, 

2009). As such, the method of synthesizing the photoanode is imperative in 

determining the photovoltaic performance of the DSSC. However, the use of plastic 

substrates presents a problem during the preparation process as they cannot withstand 

being heated to a temperature higher than 150 ℃ (Vivero-Escoto et al., 2012). In order 

to fabricate a DSSC using a low-temperature process, a series of methods has been 

studied such as isostatic high-pressure pressing (Weerasinghe et al., 2012), hot-

pressing (Ezaka et al., 2013), light pressure mechanical rolling (Yun et al., 2016), 

hydrothermal method (Wu et al., 2011), screen printing (Liu & Aydil, 2009), 

electrophoretic (Zhao et al., 2009)  and ultraviolet treatment (Zeng et al., 2010).  

 

 

1.2.3 Counter Electrode 

 

 

The conventional platinum counter electrode is replaced with polypyrrole/ reduced 

graphene oxide (PPy/rGO). Pyrrole (Py) is a conductive polymer that has the ability to 

store huge amounts of charge and has great power conversion efficiency (Weerasinghe 

et al., 2013). The choice to use graphene is due to its outstanding electric conductivity. 

Graphene exists as a single layer atomic structure consisting of pristine carbon atoms 

interconnected in a two-dimensionally arranged honeycomb lattice via the sp² 

molecular bond. The study of graphene has  revealed many astonishing discoveries 
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particularly in relation to optical, electrical, thermal and mechanical applications due to 

its remarkable properties (Zubir et al., 2015). The arrangement of carbon on the 

graphene layer can be seen in figure 1 (a), either in a zigzag or armchair arrangement 

(Gusynin et al., 2008). The array of carbon atoms in a straight cut along the outer row 

of a hexagon produces a zigzag edge. When the edges go through the middle of the 

hexagon at an angle of 30º it is known as an armchair arrangement. Figure 1 (b) shows 

the various possible shapes of graphene such as monolayer graphene, multilayer 

graphene (graphite layer), carbon nanotubes (CNTs) and buckyball (Lloyd Hughes & 

Jeon, 2012). Basically, graphene can be found in reduced graphene oxide (rGO) and 

graphene oxide (GO) forms. The combination of pyrrole and graphene oxide 

synergistically improve the performance of the counter electrode (Lim et al., 2014).  

 

 

Figure 1: (a) Structure of graphene nanoribbons with armchair edges (left) and 

zigzag edges (right); (b) the monolayer graphene and multilayer graphene 

(graphite), carbon nanotube and buckyball structures. Adapted from (Lloyd 

Hughes & Jeon, 2012). 
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1.3 Problem Statement 

 

 

Conventional solar panel technology used today is a great way to tap into the 

seemingly endless source of clean energy available to us from our sun. However, it is 

far from perfect and decades of research have been dedicated to its advancement. 

Common solar panels available today use a rigid glass substrate, which greatly limits 

its range of potential applications. They are heavy, fragile, and have low portability. 

Apart from that, they are also expensive to fabricate due to the large quantities of 

platinum required for the fabrication of the counter electrode. This research aims to 

circumvent these restrictions and limitations through the development of a flexible and 

lightweight solar cell which is also cost efficient. Weight and flexibility are important 

factors to consider when one wishes to add solar power capabilities to a product. For 

example, if one was to design a hybrid car that could harvest light energy to power the 

fuel cells within the vehicle, the weight of the solar panels would be an important 

consideration in the design process. If the panels are too heavy, the power generated 

from the solar panels would not be sufficient to warrant its implementation. If the cost 

of implementing the solar panels into the vehicle is too high, it would not make 

economic sense for the consumer. This is where a lightweight and flexible solar cell 

would be ideal. Application of the solar cell would be relatively easy as the solar cell 

would be able to bend to fit the shape of the vehicle. Being lightweight, it would not be 

a significant burden on the vehicle, thus preserving the performance and handling 

characteristics of the vehicle. The cost of production is also significantly lower than the 

conventional solar cell due to the lower cost of the raw materials required and a much 

simpler manufacturing process. This would make it an ideal candidate for adding solar 

power capabilities to the automotive and aerospace industry, or for emergency use by 

individuals in remote locations. 

 

 

1.4 Objectives 

 

 

General Objective  

 

The main objective of this study is to gather electrochemical performance data on the 

TiO2/ITO/PET photoanode and the PPy/rGO/ITO/PET counter electrode and how they 

perform together as a DSSC.  

 

 

Specific Objectives 

 

 

1. To study the performance of photoanodes sintered at various temperatures. 

2. To study the effect different photoanode active area sizes have on the performance 

of the DSSC. 

3. To study the performance of the DSSC when it is in a bent state.  
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1.5 Scope of Study 

 

 

The scope of this research covers the performance of photoanodes sintered at various 

temperatures during fabrication, the performance different photoanode active area sizes 

have on the efficiency of the DSSC, and lastly to test how the DSSC performs when 

bent. 

 

 

For this study, the researcher sintered the TiO2 paste onto the ITO/PET substrate at 

140 ℃, 150 ℃, 160 ℃, 170 ℃, and 180 ℃. The researcher then tested them to find the 

best performing sample. The sample which gave the best results was the photoanode 

sintered at 160 ℃. The researcher then made fresh samples of varying sizes sintered at 

160 ℃ to measure the most efficient active area size. The active area sizes used for this 

measurement were 1.0 cm2, 0.25 cm2 and 0.090 cm2. To test whether the DSSC works 

when bent, the DSSC was held at an angle of about 60° using paper clips. 

 

 

Cyclic voltammetry, linear sweep voltammetry and impedance spectra analysis were 

carried out on the samples using a potentiostat machine (VersaSTAT Potentiostat 

Galvanostat from Princeton Applied Research). The morphology of the TiO2/ITO/PET 

photoanode was observed using a field emission scanning electron microscope (FEI 

Quanta SEM Model 400F). The materials in the photoanode sample were verified via 

energy dispersion X-ray spectroscopy (EDX) using the same FESEM model. The 

counter electrode was verified using Raman spectroscopy.  
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