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Mercury (Hg) is a natural trace component found in the petroleum reservoir. 
The presence of Hg is detrimental to petroleum production facilities as it forms 
corrosion induced through Hg amalgamates. Moreover, it has an effect on 
human beings if it is discharged into the waterways and atmosphere leading to 
severe, acute and chronic poisoning. Ion imprinted polymer (IIP) being one of 
the latest adsorbents which is alternative technique that is more selective and 
effective than the conventional removal method of Hg.  
 
 
IIP is synthetic polymers having a predetermined selectivity for a template ion, 
which makes them ideal materials to be used in removal processes. In this 
study, the IIP was developed for the removal of Hg(II) ions from aqueous 
solutions and actual samples. The IIP particles and monoliths was prepared by 
thermal polymerization technique with Hg(II) as a template ions, [2-
(methacryloyloxy)ethyl] trimethylammonium cysteine (MAETC) as a ligand, 
methacrylic acid (MAA) as a functional monomer, 2-hydroxyethyl methacrylate 
ethylene glycol (HEMA) as a co-monomer, dimethacrylamide (EGDMA) as a 
cross-linker, benzoyl peroxide (BPO) as an initiator and methanol or 
acetonitrile as a porogen. The IIP-20A monolith was selected as the best 
monolithic IIP due to its high adsorption capacity and good physical properties. 
 
 
The prepared IIP-particle and all of the monolithic IIPs were characterized 
using Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), 
field emission scanning electron microscope (FESEM) and Brunauer Emmet-
Teller (BET) for determining the polymerization and imprinting process 
occurred. In the down-flow technique of IIP-20A monolith, pH, dosage, initial 
concentration, reusability, selectivity and kinetic study were investigated. 
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Removal of Hg(II) of pH dependent was found maximum at pH 4.7. The 
removal percentage of Hg(II) increased with increasing of adsorbent dose and 
the total uptake of Hg(II) increased with increasing initial concentration of Hg(II) 
ions. The kinetic study of Hg(II) adsorption by IIP-20A monolith was fit well with 
Adam’s Bohart model. The adsorbents have very good selectivity towards 
Hg(II) ions even in the presence of other metals (Pb(II), Cd(II), As(II) and 
Cr(III)) and can be reusable up to fifteen cycles. 
 
 
The comparison of removal test of Hg(II) ions for up-flow column technique 
(pilot plant-scale) showed that the IIP-20A monolith having good adsorption 
capacities compared with IIP-particle (packed in a coffee filter). Other than that, 
the IIP-20A monolith has been successfully applied for the recovery of trace 
Hg(II) in actual samples (river water, wastewater and condensate). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



© C
OPYRIG

HT U
PM

iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 

FABRIKASI DAN PENCIRIAN POLIMER CETAKAN ION UNTUK 
PENYINGKIRAN MERKURI 

 
 

Oleh 
 
 

SITI KHADIJAH BT AB. RAHMAN 
 

 
Mei 2017 

 
 
 
Pengerusi : Profesor Nor Azah Yusof, PhD 
Fakulti  : Sains 
 
 
Mercury (Hg) adalah kesan komponen semulajadi yang terdapat dalam 
takungan petroleum. Kehadiran Hg mendatangkan keburukan dalam fasiliti 
penghasilan petroleum, kerana ia akan merangsang pembentukan hakisan 
melalui pencantuman Hg. Selain itu, ia mempunyai kesan ke atas manusia jika 
ia dilepaskan ke dalam laluan air dan atmosfera kerana membawa kepada 
keracunan yang amat teruk dan kronik. Polimer cetakan ion (IIP) ialah salah 
satu daripada penjerap terkini yang merupakan teknik alternatif yang lebih 
selektif dan berkesan jika di bandingkan dengan kaedah penyingkiran Hg yang 
konvensional. 
 
 
IIP adalah polimer sintetik yang mempunyai selektiviti terhadap ion tertentu. 
Justeru, ia menjadikan IIP sebagai bahan yang ideal untuk digunakan dalam 
proses penyingkiran. Dalam kajian ini, IIP telah dikembangkan bagi 
penyingkiran Hg(II) ion dari larutan akueus dan sampel sebenar. IIP dalam 
bentuk serbuk dan monolit telah disintesis menggunakan teknik pempolimeran 
haba dengan menggunakan Hg(II) ion sebagai acuan, [2- (metakriloiloksi) etil] 
trimetilammonium cysteine (MAETC) sebagai ligan, asid metakrilik (MAA) 
sebagai monomer berfungsi, 2-hidrosietil metakrilat etilena glikol (HEMA) 
sebagai monomer-bersama, etilena glikol dimetakrilat (EGDMA) sebagai 
penggabung, benzoil peroksida (BPO) sebagai pemula dan metanol atau 
asetonitril sebagai porogen. IIP-20A monolit telah dipilih sebagai polimer 
monolitik yang terbaik kerana kapasiti penjerapannya yang tinggi dan sifat-sifat 
fizikalnya yang baik. 
 
 
IIP dalam bentuk serbuk dan monolit yang telah dihasilkan telah dicirikan 
menggunakan Fourier inframerah (FTIR), analisis terma gravimetrik (TGA), 
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medan pengimbas mikroskopi elektron (FESEM) dan Brunauer Emmet-Teller 
(BET) bagi menentukan proses pempolimeran dan pencetakan ion itu telah 
berlaku. Dalam kajian menggunakan teknik aliran ke bawah bagi IIP-20A 
monolit, kajian bagi kesan pH, dos penjerap, kepekatan awal, kemampuan 
kitar semula, ujian selektiviti dan kinetik telah dikaji. Penyingkiran maksimum 
Hg(II) bagi kesan pH telah dicapai pada pH 4.7. Manakala, peratusan 
penyingkiran Hg(II) meningkat dengan peningkatan dos bahan penjerap dan 
penjerapan bagi ion Hg(II) meningkat dengan peningkatan kepekatan awal 
bagi ion Hg(II). Ujian kinetik bagi penjerapan Hg(II) oleh IIP-20A monolit adalah 
sesuai dengan model Adam’s Bohart. Penjerap ini mempunyai selektiviti yang 
sangat baik kepada Hg (II)  ion walaupun dengan kehadiran ion logam lain 
seperti Pb (II), Cd(II), As(II) dan Cr (III) dan penjerap ini juga boleh dikitar 
semula sehingga lima belas kali kitaran.  
 
 
Perbandingan ujian penyingkiran Hg(II) bagi teknik kolum aliran ke atas 
menunjukkan bahawa IIP-20A monolit mempunyai kapasiti jerapan yang 
sangat baik berbanding dengan IIP-serbuk yang dibungkus dalam penapis 
kopi. Selain itu, IIP-20A monolit telah berjaya diaplikasikan bagi menyingkirkan 
Hg(II) dalam sampel yang sebenar (air sungai, air kumbahan dan kondensat). 
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MIIP Metal ion imprinted polymer  
MIONPs Magnetic iron oxide nanoparticles  
MIPs Molecularly imprinted polymers  
MOTAC Methacryloyl(oxyethyl)trimethyl ammonium chloride  
MRS Mercury removal systems  
MRU Mercury removal unit 
MSS-AC Mango seeds shells-activated carbon  
MWCNTs Multi-walled carbon nanotubes  
NIPs Non imprinted polymers 
NMOs Nanosized metal oxides 
PEG Polyethylene glycol 
PEI Poly(ethyleneimine)   
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Absorption spectrometer- 96 

WHO World health organization 



© C
OPYRIG

HT U
PM

1 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1  Background of Research 
 

Mercury (Hg) is considered as a global pollutant due to its toxicity, persistence, 
long range of transport potential and bioaccumulation (Yun et al., 2013). 
Emission and distribution of Hg to the environment can occur from natural, 
anthropogenic and re-emitted sources (Zheng et al., 2012, Wang et al., 2012).  
Petrochemical industries (Gaulier et al., 2015), urban discharges, agricultural 
materials, mining and coal combustion, industrial discharges (Rodríguez et al., 
2012), metal refining and manufacturing and chloralkali production (Wang et 
al., 2012) are the principal anthropogenic sources of Hg pollution in the 
environment.  

 
 
Petroleum is one of the most important energy sources for the modern society, 
along with the raw material form any industrial products such as chemical 
fertilizer, plastics and more (Yun et al., 2013).  Hg is a natural contaminant 
commonly found as traces in all fossil fuels including natural gas, gas 
condensates, crude oil, coal, tar sands and other bitumens that are processed 
in the petrochemical industries (Gaulier et al., 2015, de Jesus et al., 2013). A 
total of approximately 2000 tons per year of Hg are estimated to be released 
from petrochemical industries (fossil fuel combustion) and metal production 
combined. For instance, natural gas and liquid production frequently generate 
hydrocarbon streams containing trace levels of Hg, especially in Southeast 
(SE) Asia where Hg concentration can reach up to 1200 µg/L (wt) which is the 
highest value in the world (Sainal et al., 2007). Table 1.1 shows the 
hydrocarbons from different geological locations containing Hg in microgram 
levels. The values shown are estimations and may change from time to time, 
depending on geological factors and production practices (Sainal et al., 2007). 
 

The effects of Hg in feeds on processing systems include equipment 
degradation, toxic waste generation, and poisoning of catalysts, which all tend 
to reduce the quality of the final products and increase the risk to the health 
and safety of the workers (Wilhelm and Bloom, 2000). Besides that, in the 
production of offshore oil and gas, water becomes contaminated with 
elemental, organic and inorganic Hg. The amount of components that are 
exposed to the environment increases with the volume of wastewater, 
condensate and produced water due to high petroleum demand and maturity of 
oil and gas wells. The wastewater, condensate and produced water shall be 
treated before being discharged to the environment or re-injected into the 
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original reservoir, depending on its quality and environmental constraints 
(Chaturabul et al., 2015). 
 

Table 1.1: Estimated world levels of mercury in natural gas and liquids 
 

Location Mercury Concentration 
Gas (µg/m3) Liquid (µg/L) 

Europe 100-150 - 
South America 50-120 50-100 
Gulf of Mexico (USA) 0.02-0.4 - 
Overthrust Belt (USA) 5-15 1-5 
Africa 80-100 500-1000 
North Africa 50-80 20-50 
Indonesia 200-300 10-500 
Gulf of Thailand 100-400 400-1200 
Malaysia 1-200 10-100 

 

The toxic contaminants from these activities can enter into the environmental 
cycle and food chains easily, through emission during processing stages or 
unregulated disposal of wastes or accidents (Sainal et al., 2007). When Hg(II) 
solution is deposited in the sea, lakes or streams, the anaerobic bacteria 
convert it into methyl-mercury (CH3Hg+) (Wilcox et al., 2012). The toxicity of 
CH3Hg+ is associated with its bioaccumulation in the fish, which then enters the 
food chain, thereby influencing human health (Wilcox et al., 2012, Rodríguez et 
al., 2012). Symptoms of Hg poisoning can be numerous and may occur either 
rapidly or over long periods of time. High exposures of elemental Hg can cause 
kidney malfunction, respiratory failure, and death (Ganjali et al., 2011). 
According to the World Health Organization (WHO) guideline values, the 
limitation of Hg inside water is 1μg/L for the total Hg and 1μg/kg Hg in the air. 
In addition, WHO estimated a tolerable concentration of 0.2 μg/kg for long-term 
inhalation exposure to elemental Hg vapour and a tolerable intake of a total Hg 
of 2 μg/kg body weights per day (WHO, 2007). 
 

From the above considerations, it has been proven that the removal of Hg(II) 
from actual samples is very important to protect the people and the 
environment. Various available commercial methods are available in 
petrochemical industries for mercury removal systems (MRS) in hydrocarbon 
streams such as impregnated activated carbon, adsorption on activated carbon 
by amalgamation with a metal (such as silver impregnated alumina, silver 
zeolites, metal sulphides, gold and metal oxides) (UK Essays, 2015), ion-
exchange resin material, membrane filtration, electrochemical treatment 
technologies (Fu and Wang, 2011, Purkayastha et al., 2014), sulphur-
containing molecular sieve, and ionic salt containing activated carbon (Sainal 
et al., 2007). However, these available commercial methods have several 
advantages and disadvantages. For instance, chemisorption on sulphur 
impregnated activated carbon is cheap and mostly used in the oil and gas 
industry. However, it has some disadvantages such as disposal problems 
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when the adsorbent is contaminated with Hg and it is not efficient when 
treating hydrocarbon gas with the moisture content of more than 50% because 
the moisture can be adsorbed into the pore spaces of the activated carbon. 
Other than that, adsorption by amalgamation with a metal such as silver and 
gold has a high removal capacity of Hg but this adsorbent is very expensive 
(UK Essays, 2015). 
 

For these reasons, the basic requirements for a successful MRS are the 
economics of the process and the removal medium needs to be capable of 
reducing Hg concentrations to extremely low and acceptable levels. Besides 
that, the selection of the MRS has been done as per the following criteria and 
considerations such as proven and reliable technology, process effectiveness 
for the removal of Hg, stable and robust (physically and chemically), has the 
ability to integrate with existing facilities (minimal modification to the existing 
facilities), and the removal agent should be inexpensive and easy to get 
(Sainal et al., 2007). 
 

1.2  Problem Statement 
 

Mercury removal systems (MRS) for both gas and processed liquid 
hydrocarbon streams are commercially available. The available MRS deals 
excellently with gas hydrocarbon because natural gases are normally present 
as elemental Hg at a bulk concentration. However, the conventional MRS for 
hydrocarbon liquid or hydrocarbon waste (such as produced water, wastewater 
and condensate) has not selective to target ion and may still render high Hg(II) 
content in the hydrocarbon waste above the environmental discharge limit (not 
greater than 0.005 mg/L).  
 

Nowadays, the ion imprinted polymer (IIP) which is a suitable method for the 
removal of Hg(II) in actual sample due to high sample load capacity, high 
selectivity to target ion, easy preparation and reusable in repeated cycles. 
Generally, many IIP for the removal of Hg(II) from previous researchers were 
prepared IIP in particles formed. Unfortunately, when IIP in particles formed 
packed in the column it will increase the pressure of column, slow water 
transport and increase of risk of bubble formation. Therefore, IIP-particle 
packed column is not suitable to commercialize and apply to the industrial 
column. 
 

In view of this, the suitable physical of the IIP was proposed as an alternative 
approach that to overcome the disadvantages and weaknesses of the 
conventional IIP-particle packed column. The present work proposes the 
determination of the performance of IIP for the removal of Hg(II) ions in 
aqueous solution and actual samples. Here, we scaled up the preparation of 
IIP in particles and monoliths form by bulk radical polymerization using [2-
(Methacryloyloxy)ethyl] trimethylammonium cysteine (MAETC) as the metal 
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complexing monomer. The physical form of the IIP-particle was optimized 
using extruded, tableting and packaging techniques for improving the pressure 
of column, and decreasing the risk of bubble formation in the column. The 
performances of IIP towards Hg(II) ions from aqueous solution were 
determined using the batch and column technique. Mercury removal unit 
(MRU) which was designed as well as a mimic with the actual of the 
petrochemical industry set up was used in the column technique. Besides that, 
the application of the developed IIP in the recovery of Hg(II) ions from actual 
samples was also studied. The commercialization of IIP as sorbents in MRU is 
very promising, considering the reducing of Hg(II) ions concentrations to 
extremely low and acceptable levels that can be achieved. 
 

1.3  Objectives of this Research 
 

The general objective of this research is to prepare an ion imprinted polymer 
(IIP) for the efficient and selective removal of Hg.The following specific 
objectives are designed to achieve the general objective: 
 

i. To scale-up and optimize the preparation of ion imprinted polymer 
(IIP). 

ii. To obtain the suitable physical form of IIP 
iii. To carry out spectroscopic, morphological and thermal stability for the 

prepared IIP. 
iv. To determine the performance of IIP in the down-flow technique based 

on the pH, dosage, initial concentration, kinetic, reusability and 
selectivity study.  

v. To determine the performance of IIP using the up-flow column 
technique based on pH, dosage and flow rate. 

vi. To evaluate the performance of the IIP on the analysis of actual 
samples (wastewater, condensate (from oil and gas industry) and river 
water). 
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