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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

 

MULTIPLE SOLUTIONS OF CONVECTION BOUNDARY LAYER FLOW 

FOR DIFFERENT TYPES OF FLUIDS WITH VARIOUS BOUNDARY 

CONDITIONS 

 

By 

 

SITI HIDAYAH BINTI MUHAD SALEH 

 

April 2017 

 

Chair: Associate Professor Norihan Md. Arifin, PhD  

Faculty: Science 

 

In this study, similarity solutions of boundary layer flow and heat transfer in viscous 

fluid, micropolar fluid and nanofluid are considered for either mixed convection or 

magnetohydrodynamic (MHD)-forced convection. The objectives of the thesis are to 

analyse mathematical models of heat and mass transfer problems and to obtain the 

numerical results of each problem. The scope of this study is limited to two-dimensional 

or three-dimensional, steady or unsteady, incompressible, laminar boundary layer flows 

in viscous fluid, micropolar fluid or nanofluid. The first two problems are restricted to 

mixed convection effects while the rest are explored on forced convection. These 

problems are modeled to investigate and study their effects on a choice of fluids with 

various boundary conditions.  The studies on stagnation point flow behavior have also 

been integrated including the non-aligned stagnation point. Besides, the effects of 

stretching/shrinking surface, permeable surface and also convective boundary condition 

have also been considered. Moreover, the consequence of moving wall also has been 

studied. The mathematical models for this problem are formulated, analyzed and 

simplified, and further transformed to non-dimensional form using non-dimensional 

variables. Next, the governing nonlinear partial differential equations are transformed to 

a system of ordinary differential equations using the similarity variables and are solved 

numerically using the shooting technique. Numerical results presented include the 

velocity, temperature, nanoparticle fraction (nanofluid) and angular velocity (micropolar 

fluid) profiles as well as the fluid flow and heat transfer characteristics for a range of the 

governing parameters. All the numerical solutions are presented in the form of tables and 

figures. Additionally, the existences of multiple solutions are contributed by the applied 

numerical method (shooting method) and the involvement of certain parameters in the 

system. The multiple solutions are reached for shrinking sheet case. Besides, it was also 

occur when mixed convection, suction and unsteadiness parameter added into the system 

of equations. The numerical results presented constitute an invaluable reference against 

which other exact or approximate solutions can be compared in the future. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

PENYELESAIAN BERGANDA BAGI ALIRAN LAPISAN SEMPADAN 

OLAKAN BAGI JENIS BENDALIR BERBEZA DENGAN PELBAGAI 

SYARAT SEMPADAN 

 

Oleh 

 

SITI HIDAYAH BINTI MUHAD SALEH 

 

April 2017 

 

Pengerusi: Profesor Madya Norihan Md. Arifin, PhD 

Fakulti: Sains 

 

Dalam kajian ini, penyelesaian persamaan aliran lapisan sempadan dan pemindahan 

haba dalam bendalir likat, bendalir mikropolar dan nanobendalir telah dipertimbangkan 

sama ada untuk olakan campuran dan juga olakan paksa magnetohidrodinamik (MHD). 

Objektif tesis ini adalah untuk membina model matematik bagi masalah pemindahan 

haba dan jisim serta mendapatkan penyelesaian berangka bagi setiap permasalahan. 

Skop kajian adalah tertumpu kepada dua dimensi atau tiga dimensi, mantap atau tak 

mantap, tak termampat, aliran lapisan sempadan dalam bendalir likat, bendalir 

mikrokutub atau nanobendalir. Dua permasalahan pertama mengkaji tentang olakan 

campuran manakala empat daripada masalah yang lain bertumpu kepada olakan paksa. 

Model matematik bagi permasalahan-permasalahan ini adalah bertujuan untuk 

mengkaji dan mempelajari tentang kesannya terhadap beberapa jenis bendalir pilihan 

dengan jenis syarat sempadan tertentu. Kajian terhadap aliran titik genangan turut 

disatukan termasuk titik genangan tak sejajar. Selain itu, kesan permukaan meregang 

atau mengecut, permukaan separa medium dan juga olakan syarat sempadan olakan 

juga dipertimbangkan. Tambahan lagi, kesan dinding bergerak turut dikaji. Model-

model matematik bagi masalah ini diformulasi, dianalisis serta dipermudahkan dan 

kemudiannya dijelmakan kepada bentuk tak berdimensi dengan menggunakan 

pemboleh ubah tak berdimensi. Seterusnya, sistem persamaan menakluk dalam bentuk 

persamaan pembezaan separa tak linear tersebut kemudiannya dijelmakan ke bentuk 

sistem persamaan pembezaan biasa dengan menggunakan pemboleh-pemboleh ubah 

keserupaan. Kemudian, persamaan-persamaan ini kemudiannya diselesaikan secara 

berangka menggunakan kaedah ‘tembakan’. Penyelesaian berangka yang diperoleh 

mengandungi profil-profil halaju, suhu, dan halaju sudut (bendalir dwikutub), di 

samping ciri-ciri aliran bendalir dan pemindahan haba bagi julat parameter tertakluk. 

Penyelesaian berangka diberikan dalam bentuk jadual dan rajah. Selain itu, kewujudan 

penyelesaian berganda telah disumbangkan oleh aplikasi kaedah berangka (kaedah 

tembakan) dan penglibatan parameter-parameter tertentu di dalam sistem. Penyelesaian 

berganda tersebut diperoleh pada kes permukaan mengecut. Selain itu juga, 

penyelesaian berganda juga berlaku apabila parameter olakan campuran, sedutan dan 
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ketakstabilan dimasukkan ke dalam sistem persamaan. Penyelesaian berangka yang 

dihasilkan boleh dijadikan sumber rujukan berharga untuk tujuan penyemakan 

keputusan penyelesaian tepat atau penyelesaian hampir pada masa hadapan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Boundary Layer 

 

The theory of boundary layer was first presented by German engineer, Ludwig Prandtl 

in 1904 at the Third International Congress of Mathematicians at Heidelberg. 

According to Prandtl’s concept, when a real fluid flows past a stationary solid 

boundary, the flow was separated into two main regions (see Figure 1.1). The larger 

part concerns a free stream of fluid, far from any solid surface, which is considered to 

be inviscid. The flow behavior at this larger part is similar to the upstream flow where 

the effect of viscosity can be neglected. The smaller part is a thin layer adjacent to the 

solid boundary where the effects of skin friction, viscous force and rotation cannot be 

ignored is called the boundary layer (Acheson, 1990; Schlichting, 1979). All the way 

through experimental observations, Prandtl discovered that large velocity gradients 

normal to the streamlines merely happen in area that is close to the surface. Prandtl 

concluded that it might be adequate to concede viscosity effect within these boundary 

layers in an examination of a flow field, while the outer surface flow of the boundary 

layers may be considered inviscid. Most importantly, Prandtl shows that the Navier-

Stokes equations can be simplified to obtain an approximate set of boundary layer 

equations (Bejan, 1984). 

 

There are many reasons why the boundary layer theory is employed very often in 

solving fluid flow and heat transfer problems (Bejan, 2013b; Cebeci and Bradshaw, 

1984). This is because the boundary layer equations are parabolic which is easier to 

solve compared to the full Navier-Stokes equations, either in elliptic or  hyperbolic 

form and, are more complex and difficult. Further, the boundary layer theory also gives 

more information about the flow separation from the surface of a body than full 

Navier-Stokes equations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 : Boundary Layer (Acheson, 1990) 
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Figure 1.2 : Velocity and Thermal Boundary Layer (Ozisik, 1985) 

 

Boundary layer was divided into two types which is velocity boundary layer and 

thermal boundary layer (Ozisik, 1985). In Figure 1.2, the experiment shows that all the 

fluid molecules that close to the wall was not move when the viscous fluids flow 

through the surface. For that reason, the velocity at the boundary was zero. Distant 

from the surface, fluid molecules velocity approximately approach to uniform value 

U
 when A  is higher than 

h . The area of 
h  thickness is called velocity boundary 

layer where the velocity acceleration and shear stress lies in this area. 

 

Basically, thermal boundary layer happens when surface temperature 
wT  is different 

from the surrounding temperature T
. From Figure 1.2, if 

wT T , where 
wT  and T

 

are surface temperature and surrounding temperature respectively, then the heat will 

move or transfer from solid surface to the fluid molecules on the surface. This energy 

will increase the inner energy of the fluid molecules and automatically will make the 

molecule temperature goes to T
 asymptotically at 

T  from the surface. Therefore, 

this area is named thermal boundary layer with 
T  thickness.  

 

1.2  Boundary Layer Stagnation Point Flow 

 

The stagnation point notes the position in the fluid flow where the approaching flow 

divides and get ahead to both sides along a surface. At a stagnation point, the fluid 

velocity is zero and all of the kinetic force has been transformed to an internal force 

and is added to the local static enthalpy. In terms of fluid mechanics, the point in the 

flow field where the local velocity of the fluid becomes zero is called a stagnation-

point. This point located at the surface of the object where the fluid is brought to be at 

rest because of a force exerted by the object. The Bernoulli equation shows that the 

total pressure in provisions of static pressure is entitled stagnation where the pressure is 

at maximum value when the fluid velocity is zero (Jafar et al., 2011). 

T
 

U
 

v  

x  
 u y  

 T y  

h  
T  

U
 

T
 

wT  



© C
OPYRIG

HT U
PM

3 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.3 : Stagnation point on a plane flow (Schlichting, 1979) 

 

Stagnation-point flows take place when a fluid approaches the impermeable boundary 

of a body, for example, on an aircraft wing or on an oscillating cylinder immersed in 

fluid. These flows have a stagnation-point exist in the fluid, about which the 

streamlines locally look like a saddle point. Another example of particular application 

is blood flow at a joint within an artery. 

 

Figure 1.3 is the simplest model of this stagnation point flow, is that leading to a 

stagnation point in plane that is two-dimensional flow. The velocity allocation in the 

region of the stagnation point at 0x y   in frictionless potential flow is specified by 

U ax and V ay  where a  denotes a constant. The figure clarifies a plane potential 

flow which comes from the y -axis and collides on a flat wall place at 0y  , splits 

into two streams on the wall and passes in both directions. The viscous flow must stick 

on to the wall, whereas the potential flow moves along it (Schlichting, 1979). The 

stagnation regions come across the highest pressure, the highest rate of heat transfer 

and the highest rate of mass decomposition (Nandy and Mahapatra, 2013).  

 

The two dimensional stagnation point which flows moving towards a stationary plate 

was first studied by Hiemenz (1911), to transform the Navier-Stokes equations to 

nonlinear ordinary differential equations by applying similarity transformation. 
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1.3 Steady and Unsteady Flow 

 

Steady flow is defined as that in which the conditions such as pressure, velocity and 

cross-section may differ from point to point but remain unchange with time. The flow 

is called as unsteady or non-steady if at any point in the fluid, the conditions amend 

with time (Massey, 1998; Biswas, 2003).  

 

As mentioned above, the steady state form for a flow-field indicates that the velocity 

field and any ability or character related with the flow field stay unaffected with time. 

In other words, local derivative of the velocity is zero. Mathematically,  

 

 0.
u

t





 (1.1) 

The concentration and temperature fields, if related will also be under steady state: 

 

 0.
T C

t t

 
 

 
  (1.2) 

Extensively, the flows in all manufacturing appliances such as the components of a 

steam power plant (turbines, heat exchangers, compressor and pumps) are randomly 

assumed to be steady. The flow in the real-life systems, as an example, the helicopter 

rotor, the ship propeller, the cascades of turbo machinery blade, etc., usually is 

different with time and thus the flows are unsteady. Indeed, there is no real flow 

circumstance, natural or imitation, that does not include some unsteadiness. It is 

renowned that in practice many devices come across an even or rapid change in their 

aerodynamic situation. In many industrial purposes, unsteadiness is an important 

element of the problem. The helicopter rotor, the blades of turbomachinery, the ship 

propeller, etc., usually work in unsteady surroundings. Most of the basic ideas of 

unsteady viscous flows are expressed by Telionis (1981). The study of unsteady flows 

is basically more complicated than that of steady flows because unsteady flow situation 

may differ regarding both space and time, i.e., they are function of both space and time. 

For that reason, partial differential equations describe unsteady flows as the dependent 

variables are functions of more than one independent variable. 

 

1.4 Viscous Fluid 

 

The viscous term come from the Latin word, ‘viscum’ which means glue. Viscous fluid 

has an ability to cling at the solid’s surface. This is one of the most important boundary 

condition, that is in mechanic of viscous fluid. Fluid friction was invented for the first 

time by Mariotte, 1620-1684 (Darus, 1989). It had been realized even before Prandtl 

that the discrepancies between the results of classical hydrodynamics and experiment 

were, in very many cases, due to the fact that the theory neglected fluid friction 

(Schlichting, 1979) .  
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A Newtonian fluid is considered as a viscous fluid for which the shear stress is 

equivalent to the velocity slope or gradient (i.e. to the time-rate of strain), 

 u y    ,   is the shear stress,   is the constant dynamic or absolute viscosity 

of the fluid and u y  is the velocity slope or gradient that perpendicular to the 

direction of shear, while a kinematic viscosity is   

 

(Pavlov, 1974).  

 

For a non-Newtonian fluid, the viscosity alters with the adapted strain rate (velocity 

gradient). Consequently, non-Newtonian fluids may not have a well-defined viscosity 

(Peddieson and Mcnitt, 1970). The Reynolds number is a dimensionless parameter 

defined as Re UL   where U indicates a typical flow velocity, L is a characteristic 

length range of the flow and   is the kinematic viscosity of the fluid. In addition, the 

Reynolds number represents a basic indication of the relative amplitudes of two 

important concept in the equations of motion (John, 1972). For the high Reynolds 

number flow, Re 1 , indicates a motion of a fluid with low viscosity. Therefore, the 

viscous effects can be insignificant. While for the low Reynolds number flow, Re 1  

means a very high viscosity of flow.  

 

In this thesis, we applied the Boussinesq approximation (Tritton, 1977) to formulate 

the mathematical model. The Boussinesq approximation is a method to 

solve nonisothermal flow, for example natural convection problems, without having 

to solve for the full compressible formulation of the Navier-Stokes equations. The 

Boussinesq approximation was a well-liked method for solving nonisothermal flow, 

particularly in previous years, as computational costs were lower when solving this 

method and convergence was more likely to be achieved. The approximation is 

accurate when density variations are small as this reduces the nonlinearity of the 

problem. It assumes that variations in density have no effect on the flow field, except 

that they give rise to buoyancy forces. In more practical terms, this approximation is 

typically used to model liquids around room temperature, natural ventilation in 

buildings, or dense gas dispersion in industrial set-ups. 

 

While the Boussinesq approximation has been used to simplify the implementation of 

some Computational Fluid Dynamic solvers, its use these days is becoming less 

prevalent. This is because it only slightly reduces the nonlinearity of the system and, 

with today's solvers and computational hardware, consequently leads to marginal 

reduction in computational costs. A larger computational cost difference between the 

full Navier-Stokes equations and the Boussinesq approximation may indicate that the 

Boussinesq approximation is not valid. 

 

1.5 Micropolar Fluid 

 

Micropolar fluids can be described as fluids with microstructure. They can be allied to 

a category of fluids with nonsymmetric stress tensor called polar fluids. In physical 

point of view, micropolar fluids correspond to fluids which consist of rigid, randomly 

oriented (or spherical) elements suspended in a viscous medium, where the 

https://www.comsol.com/multiphysics/nonisothermal-flow
http://en.wikipedia.org/wiki/Natural_convection
https://www.comsol.com/multiphysics/navier-stokes-equations
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deformation of fluid particles is negligible. The model of micropolar fluids established 

in Eringen (1966) by C. A. Eringen is worth to investigate as a very well balanced one. 

First, it is a well-studied and considerable generalization of the classical Navier-Stokes 

model, including both in theory and applications, many more development than the 

classical one. Furthermore, it is well-designed and not too complex, in other words, 

convenient to  mathematicians who explore its theory and, physicists and engineers 

who employ it. (Lukaszewicz, 1999).  

 

The idea of the micropolar fluid flow theory established in the expansion of the 

constitutive equations for Newtonian fluids, in order that more intricated fluid such as 

lubrication and turbulent shear flows can be represent by this theory. The fundamental 

of micropolar fluid, first clarified by Eringen (1966). This theory has caught much 

significance, and many classical flows are being reviewed to verify the reactions of the 

microstructure fluid. This theory is a special class of the theory of micropolar fuids. 

The elements are permitted to go through only rigid rotations without stretch. 

Practically, the theory of micropolar fluid have need of that we must put in a transport 

equation that described the law of conservation of local angular momentum to the 

normal transport equations for the conservation of momentum and mass. Therefore, 

some extra local constitutive parameters are brought in. 

 

The main idea in the growth of Eringen’s microcontinum mechanics are the essentials 

of new kinematic variables, as an example, the microinertia moment tensor and 

gyration tensor, and the accumulation of the notion of stress moments, body moments, 

and microstress averages to classical continuum mechanics. These special notes of 

micropolar fluids were studied in a complete review paper of the theory and application 

of micropolar fluid mechanics by Ariman et al. (1973). Books by Lukaszewicz (1999) 

and Eringen (2001) offer a helpful explanation of the theory and wide-ranging studies 

of the literature of the micropolar fluid theory. 

 

1.6 Nanofluid 

 

Nanofluids is a fluid by dispersing solid nanoparticles in base fluid such as water and 

oil. Nanofluids are used to increase thermal conductivity, which goes up with 

increasing volumetric fraction of nanoparticles and it is concept to represent a fluid in 

which nanometer-sized particles are suspended in conventional heat transfer basic 

fluids. The nanofluid concept which was firstly introduced by Choi (1995), have 

remarkable characteristics that cause them have many practical applications in heat 

transfer, inclusive of microelectronics, pharmaceutical processes, fuel cells, and hybrid-

powered engines. There have been published several recent papers in nanofluids.  

 

Convectional heat transfer fluids, including water, oil, and ethylene glycol mixture are 

low heat transfer fluids, because the thermal conductivity of these fluids plays a 

significant function in determining the coefficient of heat transfer between the heat 

transfer surface and the heat transfer medium. Consequently, various methods have 

been used to develop the thermal conductivity of these fluids by suspending 

nanometer/micrometer-sized particle materials in liquids (Hamad et al., 2011). There 
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are two models used by researchers; Tiwari and Das model and Buongiorno model. 

Buongiorno model applied for nanofluid incorporated the effets of thermophoresis and 

Brownian motion and this model depended on seven slip mechanisms: inertia, 

Brownian diffusion, diffusiophoresis, thermophoresis, Magnus effect, gravity settling, 

and fluid drainage. Buongiorno (2006) proceeded to write down conservation equations 

based on these two effects (Kuznetsov and Nield, 2010). His analysis however did not 

consider the influence of local velocity on the diffusion coefficients. Tiwari and Das 

(2007) have proposed a theoretical model to analyze the behaviour of nanofluids 

considering the solid volume fraction. It is found that both the Richardson number and 

the direction of the moving walls affect the fluid flow and heat transfer in the cavity. 

 

1.7 Magnetohydrodynamic (MHD) Fluid Flow 

 

Magnetohydrodynamics is one of the latest fluid mechanics branches. It is mainly 

concerned with the study of electrically conducting fluids and how they are influenced 

by magnetic field. Based on Faraday’s laws of electromagnetism, when a conductor is 

passed through a magnetic flux, a current gets induced in the conductor. This current is 

in a direction that is mutually perpendicular to both the direction of the motion of the 

conductor and magnetic field. On the other hand, when a conductor carrying an electric 

current is placed in a magnetic flux, a conductor experiences a significant force that is 

in a direction that is mutually perpendicular to both the direction of the current and the 

magnetic field. Based on these it is, therefore, true to state that electromagnetic forces 

result within an electrically conducting fluid when in the influence of a magnetic field. 

Hydrodynamic forces within the fluid combine with the electromagnetic forces 

resulting to what is termed as magnetohydrodynamic (MHD) flow.  

 

The model of MHD flow can be described by considering that the equations of motion 

account for the effects of electromagnetic forces and other forces such as inertial and 

hydrodynamic forces. The equations of motion are a combination of the Maxwell’s 

equations of electromagnetism and Navier-Stokes equations of fluid dynamics. 

Therefore, they need to be solved simultaneously. Electrofluid mechanical energy 

conversion is linked to the interaction of the magnetic fluids with the electrically 

conducting fluids. The impacts of this interaction can clearly be observed in plasmas, 

two-phase mixtures, gases and liquids. 

 

The latter presented applications have diverse technological applications ranging from 

heating and flow control in metal processing, two-phase mixtures resulting in power 

generation and the magnetic confinement of high temperature plasmas. 

Magnetogasdynamics, magnetofluidmechanics, and the widely used 

magnetohydrodynamics can be used to describe the extensive effects of 

electromagnetism in the electrically conducting fluids. 
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1.8 Types of Boundary Conditions 

 

In this thesis, the effect of suction or injection, stretching or shrinking and convective 

boundary conditions at the boundary conditions are included in mathematical 

formulation of the problems. 

 

1.8.1 Suction 

 

Suction is one of the factors that influence the boundary layer control. Reduction of the 

pull on bodies in an external flow or reduction of the losses of energy in channels is 

one of the methods in the impediment of boundary layer separation. Suction 

implementation requires the surface to have holes which can be expounded to refer as 

perforations, slots and porous sections. The holes are vital for the sucking the portion 

of the boundary layer that is closest to the wall and which is travelling to the lowest 

possible velocity. 

 

Practically, to increase the efficiency of diffusers that have a greater compression ratio 

of the working fluid (with large convergence angles), suction is applied to delay early 

boundary layer separation. Additionally, the increase in the lift and decrease drag of 

aerofoil operating at great incidence angles occur when the boundary layer suction 

through slots is exerted located close the trailing edge. Practically it has been 

demonstrated that suction through slots is less effective compared to suction in a 

porous wall. For instance, aerofoil, a similar increase of lift force can be attained by 

sucking a smaller amount of fluid through pores and slots. 

 

 

Permeability is a measure of the potential of a porous media to transport fluids. It is an 

important feature in defining the flow capacity of a rock sample. The permeability of a 

rock is a degree of the easiness in which the rock will allow the passageway of fluids 

(see Figure 1.4). In other words, medium are permeable by cause of the presence of 

interrelated gaps through which water can move from high energy points to low energy 

points. 

 

1.8.2 Stretching or Shrinking 

 

Stretching sheet flow defined as the flow of fluid is induced when the elastic sheet in 

the incompressible fluid is being extended by an application of stress. This sheet has an 

elasticity behavior, means by an ability of a sheet to resist a distorting stress and to 

return to its original size and shape when the stress is removed. The movement of the 

stretched or shrinked sheet has velocity that alters or changes with the distance from a 

fixed point. In spite of that, shrinking sheet has an opposite nature with stretching one; 

the sheet is compressed and influences the fluid flow and the rate of transferring heat. 
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Low Permeability High Permeability 

 

 

                               

 

 

 

Figure 1.4 : Permeability (Wang, 2000) 

 

The theoretical studies on boundary layer flow and heat transfer, driven by a stretching 

or shrinking sheet have been in numerous investigations, for the reason that this field 

has many industrial applications. Some of the aforementioned industrial applications of 

stretching sheet flow are extrusion of polymer sheets from a die, drawing of plastic 

films, wire drawing, polyester thin wall heat shrink tubing, and in glass as well as paper 

production.  

 

It is worth noting that the quality of the final product in industrial applications depends 

largely on the heat transfer rate at the stretching or shrinking surface. Therefore, in 

order to achieve the desired properties of the material being manufactured, proper 

cooling fluid should be chosen and the flow of the cooling fluid cause by the stretching 

or shrinking sheet must be controlled. As a result, this calls for extra attention to be 

drawn for both flow and heat transfer characteristics of the cooling fluid medium in the 

manufacturing processes involving stretching or shrinking sheet. 

 

1.8.3 Convective Boundary Condition 

 

This convective boundary condition (sometimes called the Robin condition) says that 

conduction is equal to the convection. Consider a fluid over a sheet along the x-axis. 

The lower face of the sheet is in contact with another fluid at temperature fT  . The 

sheet is stretched and the fluid starts moving, this situation is called convective 

boundary condition and the boundary condition is, 
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CONDUCTION 

 CONVECTION 

 

RADIATION 

 

 

 

 

 

                                         

Figure 1.5 : The modes of heat transfer (Welty et al., 1976) 

 

where 
fT  is the temperature of the hot fluid and 

fh  is the heat transfer coefficient. Due 

to the increase in the need for small-size units, the focus has been casted on the effects 

of the interaction between developments of the thermal boundary layer in both fluid 

streams, and of axial wall conduction, which usually affects heat exchange 

performance. In the practical applications of laser processing or laser damage, it often 

encounters the convective boundary conditions. 

 

1.9 Heat Transfer 

 

Heat transfer is determined as the thermal energy transfer from high temperature point 

to low temperature point. Heat transfer mechanisms are restricted into three kinds. The 

first is conduction, which is described as transport of heat going on via interceding 

substance without bulk movement of the substance. This kind of heat conduction can 

happen, for instance, through a turbine blade in a jet engine. The outer surface, which is 

opened to gases from the combustor, is at a higher temperature than the internal 

surface, which has cooling air close to it. The degree of the wall temperature is crucial 

for a turbine blade. 

 

The second type is called radiation which is defined as transportation of energy through 

space or area without any required existence of substance. Radiation is the only process 

for heat transfer in space. Radiation can be significant even in conditions in which there 

is an intervening medium; a common example is the heat transfer from a fire (see 

Figure 1.5). The third heat transfer process is convection, or heat transfer by cause of a 

flowing fluid. The fluid can be a liquid or a gas. In convection heat transfer, the heat is 

changed through bulk transport of a non-uniform temperature fluid. Figure 1.5 shows 

the modes of heat transfer: conduction, radiation and convection.  
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Figure 1.6 : Types of Convection (Baehr and Stephan, 1994) 

 

The convective mode of heat transfer basically occurs into three elementary processes, 

which are free, forced and mixed convection (Baehr and Stephan, 1994). Forced 

convection happens when fluid motion is generated mechanically by external forced 

like a fan, blower, nozzle or jet. Fluid motion related to a surface can be generated by 

moving an object, such as a missile, through a fluid.  

 

Otherwise, the free convection happens when the fluid motion is generated by 

gravitational field. Occurrence of free convection requires fluid density change. In free 

convection, temperature changes are primarily due to variations in density. Whilst, 

combination of forced convection and natural convection, called mixed convection 

occurs when both mechanism act together to transfer heat. Figure 1.6 explains the 

natural and forced convection. 

 

Fluid flow and heat transfer link to each other because of this continuity process from 

buoyancy to a difference in temperature. An increase in the rate of heat exchange 

normally uses forced convection. Heat radiator systems and regulatory temperature 

systems in the body’s circulatory system, are examples of forced convection (Merkin 

and Pop, 2011). Convective heat transfer can also be classified as having either internal 

or external flow.  

 

Free, forced and mixed convection processes may be divided into having an external 

flow over immersed body such as flat plates, cylinder, sphere or an internal flow in 

ducts such as pipes, channels and enclosures. The resultant flow can further be 

categorized as laminar (stable) or turbulent (unstable) flow. Laminar flow is smooth, 

with a particle of fluid moving steadily in a smooth line parallel to a surface, while on 

the other hand, turbulent flow is described as chaotic of fluid moving unsteadily. 

      

NATURAL CONVECTION 
A flow is driven only by the 

temperature difference 

FORCED CONVECTION 
 A flow is driven by an external 

factor 
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Table 1.1 : Selected dimensionless parameter of heat and mass transfer 

 
Dimensionless 

Parameter 
Symbol Definition Interpretation 

Biot number Bi 
f

t

h L

k
 

Ratio of the internal thermal 

resistance of a solid to the 

boundary layer thermal 

resistance 

 

Coefficient of 

Friction 
fC  

2 2

w


 

 

Dimensionless shear stress 

Grashof number Gr    3

2

g T T L




 

Ratio of buoyancy to viscous 

forces 

 

Lewis number Le  

D


 

Ratio of thermal and mass 

diffusivities 

 

Nusselt number Nu 

t

hL

k
 

Dimensionless temperature 

gradient at the surface 

 

Prandtl number Pr 


 

Ratio of the momentum and 

thermal diffusivities 

 

Reynolds number Re L 


 

Ratio of the inertial and 

viscous forces 

 

Sherwood number Sh 
mh L

D
 

Dimensionless concentration 

gradient at the surface 

 

 

In this thesis, there are dimensionless parameters that exist throughout the formulation 

and calculations. For references, these parameters are listed in Table 1.1 

 

1.10 Motivation of Study 

 

Studies on boundary layer flows have significantly increased our understanding of 

effective velocity and temperature within the zone of the boundary layer. Application 

of these studies include: high speed flows, pollutants emission, conveyor belts for 

materials handling as shown below and so forth (Zarrini and Pralhad, 2010). 

 

The analysis of boundary layer flow and heat transfer of an incompressible fluid across 

a stretching sheet has gained attention of many researchers. Nowadays, a large amount 

of work has been placed to focus on this topic in view of its several applications in 

engineering and industrial processes. The cooling of electronic devices by the fan and 
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nuclear reactor, polymer extrusion, wire drawing, etc are examples of such flows in 

engineering and industrial processes. The list of importance of flows in fluid mechanics 

has motivated researchers to continue the study in different types of fluid as well as in 

different physical aspects.  

 

In a continuation study of flow over a stretching sheet, considerable interest has been 

placed on fluid flow over a shrinking sheet. For such problem, the movement of the 

sheet is in the opposite direction to that of the stretching case, and thus the flow moves 

towards a slot. It is worth noting that the quality of the final product in industrial 

applications depends largely on the heat transfer rate at the stretching or shrinking 

surface. 

 

Despite of that, injection or suction of a liquid or fluid throughout the bounding 

surface, for instance, in the mass transfer cooling has a significant variation in the flow 

field which consequently affects the heat transfer rate from the plate. Generally suction 

alleviates the heat transfer coefficients and skin frictions (Al-Sanea, 2004). 

 

The “nanofluid” term was first introduced by Choi and Eastman (1995) to describe the 

mixture of nanoparticles and base fluid such as water and oil. The addition of 

nanoparticle into the base fluid is able to change the transport properties, flow and heat 

transfer capability of the liquids and indirectly increase the low thermal conductivity of 

the base fluid which is identified as the main obstacle in heat transfer performance. 

This mixture has attracted the interest of numerous researchers because of its many 

significant applications such as in the medical applications, transportations, 

microelectronics, chemical engineering, aerospace and manufacturing. 

 

Motivated by the importance and great influence of each effect and characters above, 

this study was encouraged to provide experimental data that will help on the 

improvement and validation of producing good quality of final product and efficient 

process in either industrial, manufacturing or engineering applications as well as . 

 

Therefore, it would be useful to have a solution (or a better solution) for the problem 

involving those kind effect and parameter mentioned above, and to explore some new 

findings and idea on each characteristics found. That is why in the present study, we 

propose to investigate such a boundary layer flow and heat transfer. 

 

1.11 Problem Statement 

 

Boundary layer flow and heat transfer is an important type of flow occurring in several 

engineering processes. The boundary layer equations must be used in order to solve 

boundary layer problem. There are many ways in order to solve boundary layer 

equation where the result sometimes is not really accurate. The problem may occur if 

the calculations made have errors and are not accurate. So in order to solve the 

boundary layer equations, suitable numerical methods will be used. 
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Therefore, in this study, we want to investigate and to find any possible information on 

fluid flow as well as the characteristics of the fluid flow and heat transfer that is 

immensely useful in producing good quality products and efficient process. In other 

words, we will be examining the equations governing the mass and momentum balance 

as well as the appropriate similarity variables as well as its fundamental transformation.  

 

Besides, some effects or additional characters that are injected to the system of 

boundary layer either on the governing equations or the boundary conditions will be 

studied to see which parameter shows significant effects and changes. In this thesis, we 

study and observe for steady or unsteady, stretching or shrinking, permeable or 

impermeable, moving or stationary effect. 

 

1.12 Objectives and Scope 

 

The objectives of the present study are to develop mathematical model, to provide 

mathematical formulation and analysis for the computation and to solve numerically 

the following problems: 

 

(a) The steady, two dimensional mixed convection boundary layer flow and heat 

transfer over a vertical plate in a viscous fluid. Also, the stagnation point and 

the stretching/shrinking axis are considered as non-aligned for this objective. 

The effect of the non-aligned on flow behavior will be discussed. In this 

problem, we analyze the effects of mixed convection parameter,  ,  non-

alignment distance parameter,  , stretching/shrinking parameter,  , as well 

as Prandtl number, Pr . 

 

(b) The unsteady, two dimensional mixed convection boundary layer flow and 

heat transfer of a viscous fluid in the vicinity of the stagnation point over a 

vertical plate moving along the direction of flow impingement. The main aim 

is to examine the fluid flow approaching normally onto a body which moves 

along the oncoming flow direction with a time-dependent velocity. 

Consequently, the effects of unsteadiness, ,A  ,  Pr,  will be analyzed 

associated to plane flow or axissymmetric flow parameter, m . 

 

(c) Unsteady two dimensional micropolar fluid flow over a horizontal permeable 

stretching/shrinking surface with the influence of the nondimensional 

curvature radius on the physical quantities of interest including velocity and 

microrotation velocity. For this problem objective, we discussed the effect of 

,A  micropolar parameter, ,K  curvature parameter, k , according to weak or 

strong concentration of micropolar fluid parameter, ,n  with the boundary 

condition effects of suction parameter, S  and  .  
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(d) Two dimensional steady magnetohydrodynamics (MHD) flow and heat 

transfer of a nanofluid under the application of a constant applied magnetic 

field at the forward stagnation point of an infinite horizontal permeable 

stretching/shrinking wall with a convective boundary condition effects. By 

using Buongiorno model of nanofluid (Buongiorno, 2006), we also apply new 

boundary condition where the nanoparticle at boundary considered as zero. 

Accordingly, we explore the effects of magnetic parameter, ,M  Brownion 

motion parameter, ,Nb  thermophorosis parameter, ,Nt  Lewis number of 

nanofluid parameter, ,Ln  Biot number, ,Bi  Pr,  ,S  and ,  in the system.  

 

(e) Steady flow and heat transfer of nanofluid over a non-linearly horizontal 

permeable shrinking sheet. Instead of using two-dimensional flow as stated in 

objectives (a) to (d), this problem looks at the three dimensional case. Also by 

using Buongiorno model of nanofluid, similar with (d) objectives where no 

nanoparticle flux boundary conditions applied.  In view of that, the effects of 

linearity parameter,  , ,Nb  ,Nt  ,Ln  ,Bi  Pr,  ,S  and   will be examine. 

 

The scope of study is limited to problems involving steady and unsteady, two and three 

dimensional forced and mixed convection, stagnation point boundary layer flow, 

immersed in viscous, micropolar fluids and nanofluids with the following boundary 

condition effects: 

(a) stretching and shrinking surface 

(b) permeable wall 

(c) convective boundary condition.  

 

1.13 Outline of the Thesis 

 

This thesis is divided into nine chapters including this introductory chapter. Chapter 1 

is the preliminary chapter consisting of general introduction of boundary layer theory, 

stagnation point flow, and few important types of flow and fluid that will be considered 

in this thesis as well as some important parameters that are related to this study. 

Further, the problem statement, objectives, scope and the thesis outline that described 

briefly about this thesis also included in this chapter. 

 

Literature review that contributes as references to this related topic was presented in 

Chapter 2. Next in Chapter 3, the derivation of mathematical model for steady mixed 

convection flow, unsteady micropolar fluid flow and MHD stagnation point flow are 

given. 

 

Chapter 4 to Chapter 8 discussed the five main problems mentioned in previous 

section. Basically, each chapter started with introduction, follows by mathematical 

formulation or basic equation. Then, the results are presented and discussed in the next 

section. Finally, the conclusion will be stated at the end of each chapter. 
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Chapter 4 investigated the case of steady mixed convection flow close to a non-

alignment stagnation point and a vertical shrinking surface. The problem of unsteady 

mixed convection stagnation point flow over a plate moving along the direction of flow 

impingement have been solved and discussed in Chapter 5. The next three chapters 

delivered the effect of permeable case.  

 

In the next Chapter 6 will described on an unsteady micropolar fluid over a permeable 

curved stretching/shrinking surface. The study of MHD flow of a nanofluid at the 

forward stagnation point of an infinite permeable stretching/shrinking wall with a 

convective boundary condition effect have been done in Chapter 7. The three 

dimensional problem was described in Chapter 8 for the case of nanofluid flow over 

non-linearly permeable shrinking sheet. The last chapter of this thesis, namely Chapter 

9, outlined the conclusions of the whole thesis and recommended future study related 

to this thesis. 
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