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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 

of the requirement for the degree of Master of Science 

QUASI-STATIC AXIAL CRUSHING BEHAVIOUR OF COMPOSITE 

HEMI-SPHERICAL SHELLS

By

MHFUD AHMED MASOUD SALEH

March- 2004

Chairman:  Associate Professor Abdel Magid Salem Hamouda, Ph.D. 

Faculty:       Engineering

Experimental investigations were carried out to investigate the energy absorption 

capability and load-carrying capacity of hemi-spherical composite shells subjected 

to quasi-static axial compressive load. The hemi-spherical shell specimens were 

fabricated by hand lay-up fabrication process in which the fibre was mixed with 

the matrix. Two types of resins were explored (polyester and epoxy) two types of 

fibre were also studied (woven glass fibre and woven carbon fibre). Four different 

R/t ratios of hemi-spherical composite shells were investigated as well as four 

different shells cross section area (A) were studied. A description of typical 

crushing modes and mechanisms of energy absorption for hemi-spherical 

composite shells is presented. Results showed that epoxy resin has higher value of 

load- caring capacity and energy-absorption capability than polyester resin. The 

results also show that the carbon fibre has higher value of load-carrying capacity 

and energy-absorption capability than glass fibre. The results of R/t ratio and area 
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(A) of shells also show that the specific energy absorption capability of hemi-

spherical shells increases with reducing both of the geometry values.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

KELAKUAN PENGHAN CURAN PAKSIAN MIRIPSTATKIK BAGI

KELOMPANG KOMPOSIT HEMISFERA 

Oleh

MHFUD A. M. SALEH

March 2004 

Pengerusi:  Profesor Madya  Abdel Magid Salem Hamouda, Ph.D. 

Fakulti:  Kejuruteraan

 

Pkaian eksperimentasi yang telah dijalankan untuk mengkaji keupayaon  tenaga 

penyerapan dan keupayoon membawa ebon  komposit hemisfera dipawah beban 

quasi static paksian. Specimenkelompang” ini  dibikin dengan menggunakan 

proses “be ngkalai tangant” di mana gentian telah dicampurkan dengan matriks. 

Dua jenis resin telah digunakan (polyester dan epoksi) dan gentian jenis jalinan 

juga telah dikaji (gentian kaca dan karbon teranyam). Empat nisbah R/t bagi 

“kelompang” komposit hemi-spherical telah disiasat dan empat luias keratan rentas 

“kelompang” juga telah dikaji. Satu penerangan mengenai ragam penghancuran 

tipikaldan mekanisma tenaga penyerapan bagi kelompang komposit hemisfera 

kelompang telah dilaporkan. Kelakuan “kelompan” hemisfera tersebut telah diuji 

dan dilaporkan mengenai keupagan membawa bebanbeban bawaan dan juga 

kapabiliti tenaga penyerapan yang mendadak. Keputusan menunjukkan bahawa 

damar epoksi mempunyia nilai keopayan membawa beban dan tenaga penyerapan 

yang tinggi berbanding dengan poliester, tetapi keputusan juga menunjukkan 

gentian karbon mempunyai nilai keupayoon membawa beban dan keupayantenya 
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penyerapan yang tinggi berbanding gentian kaca. Keputusan nisbah R/t dan luas 

(A) “kelompang” juga menunjukkan bahawa keupayoon penyeraapan tenaga 

spesifik bagi “ kelompang ” hemisfera meningkat dengan penguangan kedua-dua 

nilai geometri kelompang tersebut. 
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CHAPTER- I 

INTRODUCTION

The increasing deployment of composite structures in engineering applications, 

many of which are being designed as the primary load-carrying parts in hostile 

environments, has given greater attention to the long-term behaviour of composite 

components. Accordingly, there is an urgent need in the engineering community 

for a predictive tool of the durability, reliability, energy absorber, and safety of 

composite systems. In the design of modern structures, the damage tolerance of a 

structure needs to be quantified.  

 

Composite structures are well suited for design with emphasis on damage tolerance 

due to the ability of continuous fibre composites to arrest cracks and prevent self-

similar crack propagation. However, a number of design parameters such as fibre 

orientation patterns, choices of constituent material combinations, ply drops and 

hybridization, and render a multiplicity of design options for composite structures. 

Only by a priori quantification of progressive damage in a composite structure and 

its fracture characteristics, it is feasible to achieve a damage tolerant design. 

Compared with homogeneous materials, damage initiation and progression 

characteristics of fibre composites are much more complicated.  

 

Energy absorber device is used to absorb impact energy in the event of a crash to 

reduce the net deceleration of the vehicle which might cause serious damage to the 

occupants. Materials such as carbon fibre/epoxy are inherently brittle and usually 
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exhibit a linear elastic response up to failure with little or no plasticity. Thus 

composite structures are vulnerable to impact damage and have to satisfy 

certification procedures for high velocity impact from the sudden accidents. 

Conventional metallic structures absorb impact and crash energy through plastic 

deformation and folding. Modern explicit FE codes are able to model these effects 

and are being successfully applied to simulate the collapse of metallic aircraft and 

automotive structures.  

 

High-energy absorbency per unit mass is possible with composite materials if 

proper failure mechanisms are initiated and maintained during the crash event. 

Whereas metals absorb energy primarily through plastic deformation, composite 

materials absorb energy through a variety of failure mechanisms. For example, 

Kevlar reinforced composites absorb energy through a buckling failure mechanism 

similar to the accordion buckling modes of metal structures. Carbon fibre and glass 

fibre-reinforced composites absorb energy through successive failures involving 

delamination, intraply cracking, and fibre fracture. Because energy absorbency of a 

composite structure is directly dependent on the failure mode that occurs and the 

failure mode is a function of the laminate stacking sequence, the loading history 

and environment, proper characterization ought to include off-axis crush tests.  

As well known an initial geometry used by researchers to study the energy 

absorption capabilities of composite materials was the tube. This geometry is self-

stabilizing and allows testing of relatively thin-section laminates. However, the 

lack of edges along its length reduces the complexity of the boundary conditions 

and provides consistency throughout the cross section.   
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In passenger vehicles, the ability to absorb impact energy and be survivable for the 

occupant is called the “crashworthiness” of the structure. This absorption of energy 

is through controlled failure mechanisms and modes that enable the maintenance of 

a gradual decay in the load profile. The crashworthiness of a material is expressed 

in terms of its specific energy absorption that is characteristic to that particular 

material. It is defined as the energy absorbed per unit mass of material.  In the 

crashworthiness of automotive structures, the primary issues to the automotive 

industry are the overall mechanisms, e.g., fibre fracture, matrix crazing and 

cracking, fibre-matrix debonding, delamination, and inter-ply separation, and 

sequence of damage are highly dependent on lamina orientation, crush speed, 

triggers and geometry of the structure. Much of the experimental work to study the 

effects of fibre type, matrix type, and fibre architecture and specimen geometry on 

the energy absorption of composite materials has been carried out on axisymmetric 

tubes. Tube structures are relatively easy to fabricate and close to the geometry of 

the actual crashworthy structures. These tubes were designed to absorb impact 

energy in a controlled manner by providing a trigger to initiate progressive 

crushing. A trigger is a stress concentrator that causes failure to initiate at a 

specific location within a structure and propagate through the body in a controlled 

predictable manner. The most widely used method of triggering is chamfering one 

end of the tube. The brittle fibre reinforced composite tubes crushed in the 

fragmentation and splaying modes while progressive folding was exhibited by 

ductile fibre reinforced composite tubes. Both material and structural damage 

processes need to be well understood to accurately model and design crashworthy 

automotive composite structures. In the progressive crushing of composite tubes, 

many different failure mechanisms contribute to the overall energy absorption of 
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the structure. To isolate the damage mechanisms and quantify the energy 

absorption contributed by the splaying mode.  

Problem Statement 

 

To ensure passengers safety or at least to alleviate severe impact during collision, a 

highly reliable system is required. In such design and for gross deformation, the 

overall stability of the energy absorber device is important. However, the tubular 

composite energy absorber devices crush behaviour is often unstable, with energy 

absorption rising and falling erratically. The instabilities are one of the more 

critical problems in using composites tubular devices for crash energy 

management. To overcome this instability behaviour was the main reason behind 

this study. Therefore, the primary aim of this study is to explore the ability of 

composite hemispherical shells as collapsible energy absorber devices.  

 

1.2 Objectives

The overall aim of the present project is to introduce the hemispherical shells to the 

field of collapsible energy absorber devices. The main specific objectives are as 

following: 

1. To investigate the materials type (matrix& fibre reinforced) effect on the 

energy absorber capability, failure modes and load carrying capacity of 

hemi spherical composite shells  

2. To examine the effect of the hemi spherical shells aspect ratio (R/t) on the 

energy absorber capability and failure modes. 
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3.  To examine the relationship between the cross-section area and the energy 

absorber capability and failure modes of hemi spherical composite shells. 

1.3 Importance of the Study

Composite hemispherical shells can be used in many applications such as energy absorber devices in aeroplanes, spacecraft 

and automotive vehicles, packaging and cushion goods, closure of compressed natural gas and submarines. This study could 

be useful in a manner to introduce the spherical geometry to the field of energy absorber devices.   

 

1.4 Thesis Layout 

Following this introduction chapter, Chapter 2 presents the literature reviews of the 

energy absorber capability of composite materials, energy shapes and the 

parameters that affects the energy absorption capability of composite structures. 

The overall methodology of the current study is presented in Chapter 3. The details 

of experimental work as well as fabrication and testing procedure are given in 

Chapter 4. Chapter 5 presents the result and discussion. Finally, in Chapter 6 

includes the conclusion drawn from this study as well as the future 

recommendations are giving.   

 

 

 

 

CHAPTER- II 

LITERATURE REVIEW
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In this chapter, literatures related to energy absorbers of composite structure, 

concentrating on hemi-spherical composite shells are reviewed. Factors that affect 

the energy absorption capability of composite structures are also discussed. In 

addition, the test methods, crushing modes and mechanisms of composite structure 

are explained.   

  

2.1 Energy Absorbers 

During the last part of the last century, a number of impact engineering problems 

were studied, especially in the field of the dynamic response of structures in the 

plastic range. This contributed towards a better understanding of the modes of 

failure and the energy dissipation patterns during impact in such structures. Such 

information is important in order to be able to design safer structures and also in 

evaluating existing ones for specific uses, therefore reducing losses in human and 

material resources. Application of this field of engineering is now available for use 

in a wide variety of situations, which include such aspects as crashworthiness of 

vehicles (cars, lifts, aircraft, ships, etc) [1,2], crash barrier design [3], safety of 

nuclear reactors [4], collision damage to road bridges [5] and offshore structures 

and oil tankers [6]. 

 

 

2.2 Energy absorbers Systems

An energy absorber is a system that converts, totally or partially, kinetic energy 

into another form of energy. Energy converted is either reversible, like pressure 

 6


