MODULATION OF NMDA AND AMPA/KAINATE RECEPTORS BY TOCOTRIENOL-RICH FRACTION AND α-TOCOPHEROL IN GLUTAMATE-INDUCED INJURY OF PRIMARY ASTROCYTES

ZAHRA ABEDI

FPSK(M) 2017 17
MODULATION OF NMDA AND AMPA/KAINATE RECEPTORS BY TOCOTRIENOL-RICH FRACTION AND α-TOCOPHEROL IN GLUTAMATE-INDUCED INJURY OF PRIMARY ASTROCYTES

By

ZAHRA ABEDI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

March 2017
COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MODULATION OF NMDA & AMPA/KAINATE RECEPTORS BY TOCOTRIENOL-RICH FRACTION AND α-TOCOPHEROL IN GLUTAMATE INDUCED INJURY OF PRIMARY ASTROCYTES

By

ZAHRA ABEDI

March 2017

Chairman : Huzwah Binti Khaza’ai, PhD
Faculty : Medicine and Health Sciences

Neurodegenerative diseases such as Huntington’s, Alzheimer’s, Parkinson’s disease and stroke are the most common diseases suffered by the aged population. Glutamate is considered as a main excitatory amino acid neurotransmitter in the mammalian central nervous system which can be excitotoxic, playing a key role in series of chronic neurodegenerative diseases. The Vitamin E which consist of tocopherol and tocotrienols, are different in their side chain either in saturated or unsaturated phytyl tail. Previous studies have demonstrated that tocopherol and tocotrienol have protective effects against glutamate toxicity in an astrocytic cell line. The aim of current study is to demonstrate the potential of tocopherol and tocotrienol in protecting glutamate injured primary astrocytes. For this purpose, the primary astrocytes were isolated from mixed glial cells of C57BL/6 mice by using the Easysep Mouse CD11b positive selection kit and cultured in supplemented DMEM. Mixed glial cultures were treated with 50-75 mM L-leucine methyl ester (LME) for 60-90 minutes to improve purity of cultures. The purity of primary astrocytes was measured by flow-cytometer and is approximately 79.4%. The IC_{20} and IC_{50} values of glutamate were determined by MTT assay at 10 mM and 100 mM respectively. Cell were induced injury at IC_{20} and IC_{50} of glutamate and the effects of tocopherol and tocotrienol rich fraction (TRF) was determined in pre and post-treatment study. For the high yield of RNA, the IC_{20} of glutamate was used in the experiment. Exposure to 100 mM of glutamate in primary astrocytes reduced cell viability by approximately 64.75 % and 61.10 % in pre and post treatment study respectively. The mitochondrial membrane potential (MMP) detected in primary astrocytes were assessed with 100, 200 and 300 ng/ml concentration of TRF and α-Tocopherol. The results depicted that pre-treatment with TRF and α-Tocopherol caused the mitochondrial activity to achieve 88.46%, 82.42%, 80.74% and 93.31%, 87.51%, 83.70%, respectively. In post-treatment study, with increase of TRF (100, 200 and 300 ng/ml) concentration causes the increase to 61.21%, 73.01%, 78.43% of MMP value. Similarly, increase of MMP value from 66.12%, 76.46%, and 81.22% was observed with increasing
concentration of α-Tocopherol. Then the expression of ionotropic glutamate receptors genes was elucidated using Real-time PCR. The gene of interest consists of the Gria2 (Glutamate Receptor, Inotoropic AMPA), GRIK1 (Glutamate Receptor, Ionotropic, kainate1) and Grin2A (Glutamate Receptor, Ionotropic, N-Methyl D-Aspartate 2A). The results showed that in both pre and post studies, the ionotropic glutamate receptors genes were down regulated after the treatment and α- tocopherol played an important role in down regulating the genes. The most affected genes were Gria2, GriK1 and Grin2A respectively in both pre and post studies. Decreased intracellular calcium concentration also was observed indicating the present of vitamin E altered the polarization of astrocytes. As a conclusion, this study shown that α- tocopherol is more effective and only required low concentration of α- tocopherol for prophylactic purposes compared to post-treatment in primary astrocytes cells.
MODULASI RESEPTOR-RESEPTOR NMDA & AMPA/ KAINATE OLEH FRAKSI-KAYA TOKOTRIENOL DAN TOKOFEROL DI DALAM SEL PRIMER ASTROSIT YANG DIRANGSANG KECEDERAAN OLEH GLUTAMAT

Oleh

ZAHRA ABEDI

Mac 2017

Pengerusi : Huzwah Khaza’ai, PhD
Fakulti : Perubatan dan Sains kesihatan

Penyakit neurodegeneratif seperti Huntington’s, Alzheimer’s dan Parkinson’s dan strok adalah penyakit yang sering dialami oleh populasi golongan warga tua. Glutamate merupakan neurotransmiter utama asid amino bagi sistem saraf pusat mamalia yang boleh menyebabkan eksitotoksik dan ia memainkan peranan penting dalam siri penyakit kronik neurodegeneratif. Vitamin E terdiri daripada tokoferyl dan tokotrienol yang mempunyai perbezaan dari segi struktur rantai sisi lemak tidak tepu dan lemak tepu. Berdasarkan kajian sebelum ini, tokoferyl dan tokotrienol didapati mempunyai kesan pelindung terhadap toksisiti glutamat di dalam sel astrosit. Tujuan kajian ini dilakukan adalah bagi melihat potensi Vitamin E dalam melindungi sel astrosit primer daripada kecederaan yang disebabkan oleh glutamate. Dengan ini, sel primer astrosit telah dipencilkan daripada campuran sel glial tikus C57BL/6 dengan menggunakan kit pemilihan positif Easysep Mouse CD116 dan dikulturkan di dalam media DMEM yang mengandungi supplemen. Kultur campuran glial dirawat selama 60-90 minit dengan 50-75 mM L-leucine methyl ester (LME) bagi tujuan memperbaiki ketulenan kultur tersebut. Ketulenan sel astrosit yang diperolehi adalah 79.4% dengan menggunakan “flow-sitometer”. Nilai IC₂₀ dan IC₅₀ glutamat ditentukan dengan menggunakan MTT asai iaitu 10 mM dan 100 Mm. Sel diceredakan dengan glutamat pada aras IC₂₀ dan IC₅₀ untuk kesan tokoferol dan fraksi kaya tokotrienol (TRF) dan ditentukan di dalam pra dan pasca rawatan. Bagi tujuan menghasilkan RNA yang tinggi, eksperimen dijalankan dengan menggunakan glutamat pada IC₂₀. Pada kepekatan 100 mM glutamat di dalam sel astrosit utama menyebabkan pengurangan sel hidup dengan anggaran 64.75% dan 61.10% di dalam pra dan pasca rawatan. Potensi membran mitokondria (MMP) mengesankan sel utama astrosit pada kepekatan 100, 200 dan 300 ng/ml untuk fraksi kaya tokotrienol (TRF) dan α-tokoferol. Hasil kajian pra-rawatan dengan menggunakan TRF dan α-tokoferol menyebabkan aktiviti mitokondria telah mencapai sebanyak 88.46%, 82.42%, 80.47% bagi TRF dan 93.31%, 87.51%, 83.70% untuk tokoferol. Dalam kajian pasca-rawatan
pula, pertambahan kepekatan TRF pada 100, 200 dan 300 ng/mL menyebabkan kenaikan nilai MMP kepada 61.21%, 73.01% dan 78.43%. Kenaikan yang serupa bagi nilai MMP daripada 66.12%, 76.46% ke 81.22% diperhatikan apabila kepekatan α-tokoferol meningkat. Ekspresi reseptor gen ionotropik glutamat juga telah dikenalpasti menggunakan “Real-time PCR”. Gen-gen tersebut ialah Gria2 (Reseptor glutamate, Ionotropic AMPA), GRIK1 (Reseptor Glutamate, Ionotropic, Kinate 1) dan Grin2A (Reseptor Glutamate, Ionotropik, N-Methyl-D-Aspartate 2A). Kajian didapati, kedua-dua pra dan pasca rawatan menunjukkan reseptor ionotropik glutamate menurun selepas rawatan, dan ini menunjukkan keberkesanan α-tokoferol dalam mengawal selia gen-gen tersebut. Gen yang paling terkesan dalam pra dan paska rawatan kajian, adalah Gria2, Grik1 dan Grin2A. Penurunan kepekatan kalsium pada intraselular menyebabkan perubahan polarisasi pada sel astrosit dengan kehadiran vitamin E. Kesimpulannya, kajian ini menunjukkan α-tokoferol adalah lebih berkesan dan memerlukan hanya kepekatan yang rendah bagi tujuan profilaktik berbanding penggunaannya dalam pasca rawatan di dalam sel primer astrosit.
ACKNOWLEDGEMENTS

I humbly thank Allah Almighty, the Beneficent and the Merciful, who gave me health, thoughts and co-operative people to enable me to achieve this goal.

This work would not be accomplished without the help of so many people. In the following lines is a brief account of some but not all who deserve my thanks.

First, I offer my sincerest gratitude to my supervisor, Dr. Huzwah Khaza’ai for taking the burden of supervising this research. Her theoretical insight and her relentless enthusiasm assisting in creating such inspiration to make this direction and finally, to succeed in this study. Without her, this thesis would not have been completed.

I am also delighted to convey my appreciations to my co-supervisor, Assoc. Prof. Dr. Sharmili Vidyadaran, for her unwavering efforts in reviewing this thesis and other support. Appreciate from Miss Tan Shi wei for her valuable assist to complete the section 3.2.2.1 in Immunolgy lab.

My warmest gratitude goes to all my friends: Dr. Atabak Kheirkhah, Dr. Hamid Reza Abolkheir, Dr. Kambiz Yousefi Talooki and Dr. Thilaga Rati Selvaraju for their endless patient, support, understanding and encouragement.

My heartfelt thanks go to all my family member, especially my parents Mr.Hossein Abedi and Mrs.Fatima Abedi for their endless love and support in all my life, with all nice memory that I could never forget.
I certify that a Thesis Examination Committee has met on 2 March 2017 to conduct the final examination of Zahra Abedi on her thesis entitled "Modulation of NMDA and AMPA/Kainate Receptors by Tocotrienol-Rich Fraction and α-Tocopherol in Glutamate-Induced Injury of Primary Astrocytes" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Suhailli binti Abu Bakar @ Jamaludin, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Abdah binti Md Akim, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
/Internal Examiner

Junedah binti Sanusi, PhD
Associate Professor
Universiti Malaya
Malaysia
(External Examiner)

\[Signature\]

NOR AINI AB. SHUKOR, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 2 June 2017
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Huzwah Khaza’ai, PhD
Senior Lecturer
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Chairman)

Sharmili Vidyadaran, PhD
Associate Professor
Faculty of Medicine and Health Science
Universiti Putra Malaysia
(Member)

ROBIAH BINTI YUNUS, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice- Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________

Name and Matric No.: Zahra Abedi, GS35289
Declaration by Members of Supervisory Committee

This is to confirm that:

• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) were adhered to.

Signature:
Name of Chairman of Supervisory Committee:

Signature:
Name of Member of Supervisory Committee:

DR. HUZWAH KHAZA'AI
DEPARTMENT OF BIOMEDICAL SCIENCES
FACULTY OF MEDICINE AND HEALTH SCIENCES
UNIVERSITI PUTRA MALAYSIA
43400 SERDANG SELANGOR
(PhD, UNIVERSITY OF ABERDEEN)
TEL: 03-8947 2436 FAX: 03-8943 6178

DR. SHARMILI Vidyadaran
Associate Professor
Immunology Unit, Department of Pathology
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
43400 Serdang, Malaysia.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vi</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

1 **INTRODUCTION**

1.1 Background of the study 1
1.2 Research Problem 3
1.3 Research Objectives 3
 1.3.1 General Objective 3
 1.3.2 Specific Objectives 3
1.4 Hypotheses 4

2 **LITERATURE REVIEW**

2.1 Vitamin E 5
 2.1.1 Tocopherols 5
 2.1.2 Tocotrienols 7
2.2 Neurodegenerative diseases 12
 2.2.1 Alzheimer's disease (AD) 12
 2.2.2 Parkinson's disease (PD) 13
 2.2.3 Other neurodegenerative disorders 14
2.3 Glial cells 14
 2.3.1 Importance of interaction between neurons and astrocytes 15
2.4 Glutamate 17
 2.4.1 Glutamate receptors 17
 2.4.2 Inotropic glutamate receptors 18
 2.4.3 Glutamate receptors gene 20
 2.4.4 Glutamate transporters 21
 2.4.5 Glutamate excitotoxicity 22
 2.4.6 Glutamate homeostasis 23
 2.4.7 Glutamate metabolism 24
2.5 Calcium ion (Ca^{2+}) influx and mitochondrial dysfunction 26
2.6 Modes of cell death in astrocytes cells: Apoptosis and necrosis 27
2.7 Biological markers in astrocytes cells 28
3 MATERIALS AND METHODS
3.1 Materials
3.1.1 Cell culture
3.2 Methods
3.2.1 Chemical and solution preparation
3.2.2 Isolation and purification of primary cells
3.2.3 Cells culture
3.2.4 Flow Cytometry
3.2.5 Culturing of astrocytes in 96-multiwell plate
3.2.6 MTT assay
3.2.7 MMP assay
3.2.8 Real-time PCR
3.2.9 Calcium assay Kit (colorimetric)

4 RESULTS
4.1 Isolation and purification of primary astrocytes
4.2 Cell viability study (MTT assay)
4.2.1 Dose response of glutamate in astrocytes
4.2.2 Vitamin E pre-treatment
4.2.3 Vitamin E post-treatment
4.3 Mitochondrial membrane potential study (MMP assay)
4.3.1 Vitamin E pre-treatment
4.3.2 Vitamin E post-treatment
4.4 Effect of vitamin E on the expression of ionotropic glutamate receptors genes
4.4.1 RT-PCR standard curve
4.4.2 GRIA2 gene (AMPA glutamate receptor gene)
4.4.3 GRIK1 gene (Kainat glutamate receptor gene)
4.4.4 GRIN2A gene (NMDA glutamate receptor gene)
4.5 Ca2+ ion assay
4.5.1 Vitamin E pre-treatment
4.5.2 Vitamin E post-treatment

5 DISCUSSION
5.1 Isolation and purification of primary astrocytes
5.2 Cell viability upon glutamate toxicity
5.2.1 Protective effect of vitamin E on glutamate-induced injury
5.3 Survivability of glutamate-induced injury cells by Vitamin E
5.4 Expression of glutamate receptor gene upon glutamate toxicity
5.5 Calcium (Ca2+) influx in primary astrocytes upon glutamate toxicity

6 CONCLUSION
6.1 Recommendation for future study
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The term vitamin E includes four tocopherols (α, β, γ, δ) and four tocotrienols (α, β, γ, δ). Source: (Sen et al., 2006)</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design of vitamin E treatments against glutamate injury</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>Amount of Master Mix for 1 Reaction of Real-time PCR</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structures of vitamin E analogs. Source: (Sen et al., 2006)</td>
</tr>
<tr>
<td>2.2</td>
<td>Glutamate homeostasis between Astrocytes and Neuron.</td>
</tr>
<tr>
<td>3.1</td>
<td>Appearance of the hemacytometer grid visualized under microscope</td>
</tr>
<tr>
<td>4.1</td>
<td>Phase contrast micrographs of different culture.</td>
</tr>
<tr>
<td>4.2</td>
<td>GFAP immunophenotyping to determining purity of astrocyte culture.</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of various concentration of glutamate on primary astrocytes cells.</td>
</tr>
<tr>
<td>4.4</td>
<td>Effects of TRF and α-TCP pre-treatment against 100 mM glutamate on primary astrocytes viability.</td>
</tr>
<tr>
<td>4.5</td>
<td>Effects of TRF and α-TCP post-treatment against 100 mM glutamate on primary astrocyte viability.</td>
</tr>
<tr>
<td>4.6</td>
<td>Effects of TRF and α-TCP pre-treatment against 100 mM glutamate on primary astrocytes viability in terms of MMP.</td>
</tr>
<tr>
<td>4.7</td>
<td>Effects of TRF and α-TCP post-treatment against 100 mM glutamate on primary astrocytes viability in terms of MMP.</td>
</tr>
<tr>
<td>4.8</td>
<td>Representative standard curve for ACTB plotted based on serial dilution of cDNA against Cq value obtained during amplification of each dilution series.</td>
</tr>
<tr>
<td>4.9</td>
<td>GRIA2 gene expression in primary astrocytes with TRF and α-TCP pre-treatment against glutamate insult.</td>
</tr>
<tr>
<td>4.10</td>
<td>GRIA2 expression in primary astrocytes with TRF and α-TCP post-treatment against glutamate insult.</td>
</tr>
<tr>
<td>4.11</td>
<td>GRIK1 gene expression in primary astrocytes with TRF and α-TCP pre-treatment against glutamate insult.</td>
</tr>
<tr>
<td>4.12</td>
<td>GRIK1 expression in primary astrocytes with TRF and α-TCP post-treatment against glutamate insult.</td>
</tr>
<tr>
<td>4.13</td>
<td>GRIN2A gene expression in primary astrocytes with TRF and α-TCP pre-treatment against glutamate insult.</td>
</tr>
<tr>
<td>4.14</td>
<td>GRIN2A expression in primary astrocytes with TRF and α-TCP post-treatment against glutamate insult.</td>
</tr>
<tr>
<td>4.15</td>
<td>Effects of TRF and α-TCP pre-treatment against 100 mM glutamate on primary astrocytes viability in terms of Ca^{2+} ion assay.</td>
</tr>
<tr>
<td>4.16</td>
<td>Effects of TRF and α-TCP post-treatment against 100 mM glutamate on primary astrocytes viability in terms of Ca^{2+} ion assay.</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary of process involved glutamate-induce cell death. The figure has been created based on this study.</td>
</tr>
</tbody>
</table>
5.2 Schematic representation of role of vitamin E in prevention of Cell death induced by elevated concentration. The figure has been created based on this study.
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dose response of glutamate in primary astrocytes</td>
<td>103</td>
</tr>
<tr>
<td>B</td>
<td>Protective effect of vitamin E on glutamate-induced injury</td>
<td>104</td>
</tr>
<tr>
<td>C</td>
<td>Survivability of glutamate-induced injury cells by vitamin E</td>
<td>105</td>
</tr>
<tr>
<td>D</td>
<td>Expression of glutamate receptors gene upon glutamate toxicity</td>
<td>106</td>
</tr>
<tr>
<td>E</td>
<td>Calcium influx in primary astrocyte upon glutamate toxicity</td>
<td>109</td>
</tr>
<tr>
<td>F</td>
<td>GFAP Immunophenotyping to determine purity of astrocyte culture</td>
<td>110</td>
</tr>
<tr>
<td>G</td>
<td>Real-time PCR supplementary data</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>Amyloid beta</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthetase</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly ADP ribose polymerase</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis- inducing factor</td>
</tr>
<tr>
<td>TRF</td>
<td>Palm tocotrienol-rich fraction</td>
</tr>
<tr>
<td>α-TCP</td>
<td>A-tocopherol</td>
</tr>
<tr>
<td>HGA</td>
<td>Homogentisate</td>
</tr>
<tr>
<td>HPT</td>
<td>HGA phytlytransferase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>DMBA</td>
<td>7, 12-dimethyl benz[α] anthracene</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>3-hydroxy-3-methylglutaryl coA</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>HUVEC</td>
<td>Human umbilical vein endothelial cells</td>
</tr>
<tr>
<td>TBARS</td>
<td>Thiobarbituric acid reactive substances</td>
</tr>
<tr>
<td>12-Lox</td>
<td>12-lipoxygenase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>NFT</td>
<td>Neurofibrillary tangles</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>BBB</td>
<td>The blood-brain barrier</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Non-steroidal anti-inflammatory drugs</td>
</tr>
<tr>
<td>SNpc</td>
<td>Substantia nigra pars compact</td>
</tr>
<tr>
<td>HD</td>
<td>Huntington's disease</td>
</tr>
<tr>
<td>ALS</td>
<td>Amyotrophic lateral sclerosis</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>GABA</td>
<td>Γ-aminobutyric acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AMPA</td>
<td>A-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>TAC</td>
<td>Tricarboxylic acid</td>
</tr>
<tr>
<td>MPT</td>
<td>Mitochondrial permeability transition</td>
</tr>
<tr>
<td>NSE</td>
<td>Neuron specific enolase</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glialfibrillary acidic protein</td>
</tr>
<tr>
<td>MBP</td>
<td>Myelin basic protein</td>
</tr>
<tr>
<td>TBI</td>
<td>Traumatic brain injury</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified eagle medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>Rlio 123</td>
<td>Dye rhodamine 123</td>
</tr>
<tr>
<td>Day in vitro</td>
<td>Div</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
</tr>
<tr>
<td>BSO</td>
<td>Buthionine sulfoximine</td>
</tr>
<tr>
<td>AHS</td>
<td>Ammon's horn sclerosis</td>
</tr>
<tr>
<td>iGluR</td>
<td>Ionotrope glutamate receptor</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the study

Neurodegenerative diseases such as Alzheimer’s disease and Parkinson as well as stroke are some of the common diseases among the aged individuals. In neurodegenerative diseases in mammals, cell death occurs in the brain due to two reasons: either the accumulation of amyloid beta (AB) protein or oxidative glutamate toxicity that causes neuronal cell death (Murphy et al., 1990).

The endogenous chemicals which transmit a signal from one neuron to another neuron across a synapse are referred to as neurotransmitters. These transmitters bind to a receptor in postsynaptic membrane where depolarization is caused by an excitatory neurotransmitter. In contrast, hyper-polarization in the postsynaptic membrane occurs as a result of an inhibitory neurotransmitter. It is assumed that glutamate, which is the main amino-acid neurotransmitter stimulant in the mammals’ central nervous system can be excitotoxic at higher concentration, which mainly responsible for neurodegenerative diseases.

Glutamate which is considered as an important excitatory amino acid neurotransmitter plays a key role in the mammals’ central nervous system. It can be excitotoxic and is assumed to be a cause of most types of neurodegenerative diseases (Zou & Crews, 2005). According to (Coyle & Puttfarcken, 1993), glutamate toxicity is a kind of brain-cell death which is associated with many types of chronic neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.

There are two reasons for the occurrence of glutamate toxicity: receptor-originated excitotoxicity and non-receptor mediated toxicity. In the former type, excitotoxicity is caused by the activation of glutamate receptors, while in the latter it is the result of a series of disturbances, which reduce and oxide homeostasis in the cells. There are two main types of glutamate receptors: ionotropic receptors that are ligand-gated ion channels and metabotropic receptors, which are coupled with second messenger systems by G proteins (Hollmann & Heinemann, 1994). Cell death caused by excitotoxicity is due to the lack of three functional families of ionotropic glutamate receptors known as N-Methyl-D- Aspartate (NMDA) receptor, α-Amino-3-Hydroxy-5-Methyl-4- isoxazolepropionic acid (AMPA) receptor and Kainate receptor. These receptors are considerably penetrable to Ca$^{2+}$ ions as well as Na$^{+}$ and K$^{+}$. Thus, the increase in [Ca$^{2+}$] through this receptor–gated channels is essential for physiological function and Excitotoxicity (Choi et al., 2005; Singh et al., 2003).
When a neuron and glial cell injury occur, as a result of their deprivation of oxygen and glucose, ATP decreases rapidly and becomes depolarized which leads to the release of glutamate from nerve terminals and eventually caused reduction of glutamate uptake by glial cells (SIESJÖ et al., 1995).

Additionally, glutamate accumulation over-excites the post-synaptic NMDA and AMPA receptors leading to an intracellular overload of Ca\(^{2+}\) (Sattler & Tymianski, 2001). Furthermore, increased of Ca\(^{2+}\) uptake into mitochondria due to strong loading, which can disrupt their function and lead to the release of damaging reactive oxygen species (ROS) (Dowling, 2001). Ca\(^{2+}\) loading may also lead to the generation of ROS through other mechanisms, such as the activation of nitric oxide synthetase (NOS), resulting in nitric oxide production, and the activation of NADPH-oxidase producing superoxide in mitochondria (Brennan et al., 2009). The generated ROS can induce DNA damage, which causes the activation of Poly ADP ribose polymerase (PARP) enzyme, capable of injuring neurons via NAD\(^{+}\) depletion, causing glycolytic block, ATP depletion, and induction of apoptotic signaling pathway through the release of apoptosis-inducing factor (AIF) from mitochondria (Alano et al., 2010).

In the case of a cerebral insult, the role of astrocytes in improving neuronal survival and recovery is increasingly recognized. The large body of recent studies on neuroprotection has focused on improving the neuron survival (Chang et al., 2009); however, a main simultaneous effect of ischemic infarction is the death of glia, especially astrocytes.

When an astrocyte is damaged, reduction of astrocytes function can lead to loss of CNS and the overall pathology related to the excitatory amino acids (Chen et al., 2000). Thus, it is essential to identify the responsible mechanisms in astrocytes death after insults and it should result in developing strategies with the specific aim of promoting astrocytes survival. Many studies have shown astrocytes damage after neurodegenerative disorders (Landis, 1994; Liu et al., 1999). For example, a study by Chen (2000)(Chen et al., 2000) showed that stimulating astrocytes with glutamate cause cell swelling and cell death.

With regard to the significance of the astrocyte survival in the occurrence of glutamate insult, it is highly desirable to find treatments to prevent excitotoxicity that causes cell death. It has been shown that astrocytes treated with vitamin E were able to resist glutamate excitotoxicity (Chen et al., 2001). The neuroprotective properties of Vitamin E composed of eight different isoforms, four tocopherols (α,β,γ,δ-) and four tocotrienols (α,β,γ,δ-) have been identified (Aggarwal et al., 2010).

Structurally, tocopherols and tocotrienols are different, in which the former possesses a saturated phytol tail, while the latter has an unsaturated isoprenoid side chain. Palm tocotrienol-rich fraction (TRF) which is extracted from palm oil contains 75% tocotrienols and 25% α-tocopherol. It was illustrated that TRF has potent antioxidant (Maniam et al., 2008; Serbinova & Packer, 1994), anti-inflammatory (Wu et al., 2008), anticancer (Goh et al., 1994; Takahashi & Loo, 2004; WU & Ng, 2007),
neuroprotection (Osakada et al., 2004; Sen et al., 2000) and cholesterol-lowering effects (Minhajuddin et al., 2005; Mutalib et al., 2003; Qureshi et al., 1995). Most of the studies have focused on the neuronal cell protection rather than astrocytes (Pettmann & Henderson, 1998; Wang et al., 2005). Hence, the present study attempts to investigate the effects of tocotrienols and tocopherols in preventing glutamate excitotoxicity in astrocytes. Besides promoting astrocytes survival, advanced neuroprotection would be expected. The prophylactic and preventive properties of tocotrienols and tocopherol in neurodegeneration are expected to be achieved and an alternative therapeutics based on nutrition would be offered.

1.2 Research Problem

Glutamate excitotoxicity in astrocytes cells leads to the release of Ca$^{2+}$ and reactivation of free radicals by over-activation of glutamate receptors that eventually cause neuronal neurodegeneration and cell death. Controlling the receptor activity and inhibition of Ca$^{2+}$ release of glutamate and free radicals from astrocyte cells may be an effective method for preventing neurodegeneration. Does neuroprotective action of tocotrienol and tocopherols prevent astrocyte cells death induced glutamate?

1.3 Research Objectives

1.3.1 General Objective

To determine the role of tocotrienols and tocopherols in the prevention of glutamate toxicity in injured primary astrocytes.

1.3.2 Specific Objectives

- To determine the IC$_{20}$ and IC$_{50}$ values of glutamate in primary astrocyte cells.
- To determine the effect of tocotrienols and tocopherols on cell viability in primary astrocytes injured by glutamate.
- To determine the effect of tocotrienols and tocopherols on NMDA receptors in primary astrocytes injured by glutamate.
- To determine the effect of tocotrienol and tocopherols on the activation of Ca$^{2+}$ permeability in AMPA/Kainate receptors in primary astrocytes injured by glutamate.
- To determine the effect of tocotrienol and tocopherols on Ca$^{2+}$ ion influx in primary astrocytes injured by glutamate.
1.4 Hypotheses

Tocotrienols and tocopherols are capable of modulating glutamate receptors and Ca2+ influx in increasing survivability of primary astrocytes.
REFERENCES

Bartłomiej, S., Justyna, R.-K., & Ewa, N. (2012). Bioactive compounds in cereal grains—occurrence, structure, technological significance and nutritional benefits—a review. *Food science and technology international, 18*(6), 559-568.

Borlongan, C. V., Nishino, H., & Sanberg, P. R. (1997). Systemic, but not intraparenchymal, administration of 3-nitropropionic acid mimics the
neuropathology of Huntington's disease: a speculative explanation.
Neuroscience research, 28(3), 185-189.

Neuropsychopharmacology, 31(11), 2405-2414.

Nature neuroscience, 12(7), 857-863.

The FASEB Journal, 13(10), 1145-1155.

The central nervous system: structure and function : Oxford University Press.

Glia, 55(12), 1263-1271.

Bruno, R. S., Leonard, S. W., Park, S.-i., Zhao, Y., & Traber, M. G. (2006). Human vitamin E requirements assessed with the use of apples fortified with deuterium-labeled α-tocopheryl acetate.

Current opinion in neurobiology, 6(3), 311-317.

Burnashev, N., Monyer, H., Seeburg, P. H., & Sakmann, B. (1992). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit.
Neuron, 8(1), 189-198.

Journal of Alzheimer's Disease, 12(1), 61-72.

Minhajuddin, M., Beg, Z. H., & Iqbal, J. (2005). Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in
experimentally induced hyperlipidemic rats. *Food and chemical toxicology, 43*(5), 747-753.

Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L., & Coyle, J. T. (1989). Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. *Neuron, 2*(6), 1547-1558.

Mutalib, M. S. A., Khaza'ai, H., & Wahle, K. W. (2003). Palm-tocotrienol rich fraction (TRF) is a more effective inhibitor of LDL oxidation and endothelial
cell lipid peroxidation than α-tocopherol in vitro. Food research international, 36(5), 405-413.

